Optical Readout of the ARIADNE LArTPC Using a Timepix3-Based Camera
Abstract
:1. Introduction
2. The Ariadne Detector
2.1. Description and Detection Principle
2.2. Fast Imaging Using Tpx3cam Technology
2.3. Operational Configuration
3. Cosmic Muons Analysis
3.1. Spatial Conversion Factors and Drift Velocity
3.2. Gallery
3.3. Electron Lifetime Correction
3.4. Thgem Characterisation
3.5. Energy Calibration and Resolution
3.6. Calorimetry Using Stopping Muons
4. Conclusions and Outlook
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Machado, P.A.N.; Palamara, O.; Schmitz, D.W. The Short-Baseline Neutrino Program at Fermilab. arXiv 2019, arXiv:1903.04608. [Google Scholar] [CrossRef] [Green Version]
- Abi, B.; Acciarri, R.; Acero, M.A.; Adamowski, M.; Adams, C.; Adams, D.L.; Adamson, P.; Adinolfi, M.; Ahmad, Z.; Albright, C.H.; et al. The Single-Phase ProtoDUNE Technical Design Report. arXiv 2017, arXiv:1706.07081. [Google Scholar]
- Cuesta, C. Status of ProtoDUNE Dual Phase. arXiv 2019, arXiv:1910.10115. [Google Scholar]
- The DUNE Collaboration. Long-Baseline Neutrino Facility (LBNF) and Deep Underground Neutrino Experiment (DUNE) Conceptual Design Report Volume 1: The LBNF and DUNE Projects. arXiv 2016, arXiv:1601.05471. [Google Scholar]
- The DUNE Collaboration. Long-Baseline Neutrino Facility (LBNF) and Deep Underground Neutrino Experiment (DUNE) Conceptual Design Report Volume 2: The Physics Program for DUNE at LBNF. arXiv 2015, arXiv:1512.06148. [Google Scholar]
- Strait, J.; McCluskey, E.; Lundin, T.; Willhite, J.; Hamernik, T.; Papadimitriou, V.; Marchionni, A.; Kim, M.J.; Nessi, M.; Montanari, D.; et al. Long-Baseline Neutrino Facility (LBNF) and Deep Underground Neutrino Experiment (DUNE) Conceptual Design Report Volume 3: Long-Baseline Neutrino Facility for DUNE June 24, 2015. arXiv 2016, arXiv:1601.05823. [Google Scholar]
- The DUNE Collaboration. Long-Baseline Neutrino Facility (LBNF) and Deep Underground Neutrino Experiment (DUNE) Conceptual Design Report, Volume 4 The DUNE Detectors at LBNF. arXiv 2016, arXiv:1601.02984. [Google Scholar]
- The DUNE Collaboration. The DUNE Far Detector Interim Design Report Volume 1: Physics, Technology and Strategies. arXiv 2018, arXiv:1807.10334. [Google Scholar]
- The DUNE Collaboration. The DUNE Far Detector Interim Design Report, Volume 2: Single-Phase Module. arXiv 2018, arXiv:1807.10327. [Google Scholar]
- The DUNE Collaboration. The DUNE Far Detector Interim Design Report, Volume 3: Dual-Phase Module. arXiv 2018, arXiv:1807.10340. [Google Scholar]
- Breskin, A.; Alon, R.; Cortesi, M.; Chechik, R.; Miyamoto, J.; Dangendorf, V.; Maia, J.M.; Dos Santos, J.M.F. A concise review on THGEM detectors. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrometers Detect. Assoc. Equip. 2009, 598, 107–111. [Google Scholar] [CrossRef] [Green Version]
- Lightfoot, P.K.; Barker, G.J.; Mavrokoridis, K.; Ramachers, Y.A.; Spooner, N.J.C. Optical readout tracking detector concept using secondary scintillation from liquid argon generated by a thick gas electron multiplier. J. Instrum. 2009, 4, P04002. [Google Scholar] [CrossRef] [Green Version]
- Monteiro, C.M.B.; Fernandes, L.M.P.; Veloso, J.F.C.A.; Oliveira, C.A.B.; Dos Santos, J.M.F. Secondary scintillation yield from GEM and THGEM gaseous electron multipliers for direct dark matter search. Phys. Lett. B 2012, 714, 18–23. [Google Scholar] [CrossRef] [Green Version]
- Buzulutskov, A. Electroluminescence and Electron Avalanching in Two-Phase Detectors. Instruments 2020, 4, 16. [Google Scholar] [CrossRef]
- Bondar, A.; Buzulutskov, A.; Dolgov, A.; Grebenuk, A.; Shemyakina, E.; Sokolov, A.; Breskin, A.; Thers, D. First demonstration of THGEM/GAPD-matrix optical readout in two-phase Cryogenic Avalanche Detector in Ar. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrometers Detect. Assoc. Equip. 2013, 732, 213–216. [Google Scholar] [CrossRef]
- Mavrokoridis, K.; Ball, F.; Carroll, J.; Lazos, M.; McCormick, K.J.; Smith, N.A.; Touramanis, C.; Walker, J. Optical Readout of a Two Phase Liquid Argon TPC using CCD Camera and THGEMs. J. Instrum. 2014, 9, P02006. [Google Scholar] [CrossRef] [Green Version]
- Mavrokoridis, K.; Carroll, J.; McCormick, K.J.; Paudyal, P.; Roberts, A.; Smith, N.A.; Touramanis, C. First Demonstration of Imaging Cosmic Muons in a Two-Phase Liquid Argon TPC using an EMCCD Camera and a THGEM. J. Instrum. 2015, 10, P10004. [Google Scholar] [CrossRef] [Green Version]
- Hollywood, D.; Majumdar, K.; Mavrokoridis, K.; McCormick, K.J.; Philippou, B.; Powell, S.; Roberts, A.; Smith, N.A.; Stavrakis, G.; Touramanis, C.; et al. ARIADNE—A Novel Optical LArTPC: Technical Design Report and Initial Characterisation using a Secondary Beam from the CERN PS and Cosmic Muons. J. Instrum. 2020, 15, P03003. [Google Scholar] [CrossRef]
- Roberts, A.; Svihra, P.; Al-Refaie, A.; Graafsma, H.; Küpper, J.; Majumdar, K.; Mavrokoridis, K.; Nomerotski, A.; Pennicard, D.; Philippou, B.; et al. First demonstration of 3D optical readout of a TPC using a single photon sensitive Timepix3 based camera. J. Instrum. 2019, 14, P06001. [Google Scholar] [CrossRef] [Green Version]
- Heindl, T.; Dandl, T.; Hofmann, M.; Krücken, R.; Oberauer, L.; Potzel, W.; Wieser, J.; Ulrich, A. The scintillation of liquid argon. EPL 2010, 91, 62002. [Google Scholar] [CrossRef] [Green Version]
- Poikela, T.; Plosila, J.; Westerlund, T.; Campbell, M.; De Gaspari, M.; Llopart, X.; Gromov, V.; Kluit, R.; Van Beuzekom, M.; Zappon, F.; et al. Timepix3: A 65K channel hybrid pixel readout chip with simultaneous ToA/ToT and sparse readout. J. Instrum. 2014, 9, C05013. [Google Scholar] [CrossRef]
- De Gaspari, M.; Alozy, J.; Ballabriga, R.; Campbell, M.; Fröjdh, E.; Idarraga, J.; Kulis, S.; Llopart, X.; Poikela, T.; Valerio, P.; et al. Design of the analog front-end for the Timepix3 and Smallpix hybrid pixel detectors in 130 nm CMOS technology. J. Instrum. 2014, 9, C01037. [Google Scholar] [CrossRef]
- Nomerotski, A. Imaging and time stamping of photons with nanosecond resolution in Timepix based optical cameras. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrometers Detect. Assoc. Equip. 2019, 937, 26–30. [Google Scholar] [CrossRef] [Green Version]
- Fisher-Levine, M.; Nomerotski, A. TimepixCam: A fast optical imager with time-stamping. J. Instrum. 2016, 11, C03016. [Google Scholar] [CrossRef]
- Nomerotski, A.; Chakaberia, I.; Fisher-Levine, M.; Janoska, Z.; Takacs, P.; Tsang, T. Characterization of TimepixCam, a fast imager for the time-stamping of optical photons. J. Instrum. 2017, 12, C01017. [Google Scholar] [CrossRef]
- Gehman, V.M.; Seibert, S.R.; Rielage, K.; Hime, A.; Sun, Y.; Mei, D.M.; Maassen, J.; Moore, D. Fluorescence efficiency and visible re-emission spectrum of tetraphenyl butadiene films at extreme ultraviolet wavelengths. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrometers Detect. Assoc. Equip. 2011, 654, 116–121. [Google Scholar] [CrossRef] [Green Version]
- van der Heijden, B.; Visser, J.; van Beuzekom, M.; Boterenbrood, H.; Kulis, S.; Munneke, B.; Schreuder, F. SPIDR, a general-purpose readout system for pixel ASICs. J. Instrum. 2017, 12, C02040. [Google Scholar] [CrossRef]
- Roberts, A. ARIADNE Design, Construction and Operation of a Liquid Argon Time Projection Chamber with Novel Optical Readout. Ph.D. Thesis, University of Liverpool, Liverpool, UK, 2020. [Google Scholar] [CrossRef]
- VICTREX PEEK 450G Datasheet. Available online: https://www.victrex.com/~/media/datasheets/victrex_tds_450g.pdf (accessed on 30 June 2020).
- Amoruso, S.; Antonello, M.; Aprili, P.; Arneodo, F.; Badertscher, A.; Baiboussinov, B.; Ceolin, M.B.; Battistoni, G.; Bekman, B.; Benetti, P.; et al. Analysis of the liquid argon purity in the ICARUS T600 TPC. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrometers Detect. Assoc. Equip. 2004, 516, 68–79. [Google Scholar] [CrossRef]
- Walkowiak, W. Drift velocity of free electrons in liquid argon. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrometers Detect. Assoc. Equip. 2000, 449, 288–294. [Google Scholar] [CrossRef] [Green Version]
- The DUNE Collaboration. First results on ProtoDUNE-SP liquid argon time projection chamber performance from a beam test at the CERN Neutrino Platform. arXiv 2020, arXiv:2007.06722. [Google Scholar]
- Liquid Argon Properties (Tables and Calculators). Available online: https://lar.bnl.gov/properties/#particle-pass (accessed on 29 October 2019).
- Pitters, F.M.; Nurnberg, A.M.; Munker, M.; Dannheim, D.; Fiergolski, A.; Hynds, D.; Llopart, C.X.; Alipour, T.N.; Williams, M.J.; Klempt, W.; et al. Time and Energy Calibration for Timepix3 Assemblies with Thin Silicon Sensors. Available online: http://cds.cern.ch/record/2649493/files/CLICdp-Note-2018-008.pdf?version=2 (accessed on 25 November 2020).
- MicroBooNE Collaboration. Detector Calibration Using through Going and Stopping Muons in the MicroBooNE LArTPC. Available online: https://microboone.fnal.gov/wp-content/uploads/MICROBOONE-NOTE-1048-PUB.pdf (accessed on 25 November 2020).
- Amedo, P.; Mavrokoridis, K.; Pietropaolo, F.; Lowe, A.; Saa, A.; Majumdar, K.; Nessi, M.; Gonzalez-Dıaz, D.; Vann, J.; Resnati, F.; et al. Letter of Intent: Large-scale demonstration of the ARIADNE LArTPC optical readout system at the CERN Neutrino Platform. Available online: https://cds.cern.ch/record/2739360/files/SPSC-I-255.pdf (accessed on 25 November 2020).
Parameter | Value | Comments |
---|---|---|
PMTs | ||
Biases | 970V | Different voltages used so as to equalise the individual |
1100V | ||
1300V | PMT responses | |
950V | ||
Field Cage Biases | ||
Cathode | −46.0 kV | Drift field of 0.54 kV/cm |
Extraction Grid | −3.0 kV | |
THGEM Top | +1.945 kV | Nominal THGEM field of 29.45 kV/cm |
THGEM Bottom | −1.000 kV | (varied for the THGEM characterisation study in Section 3.4) |
Other | ||
Cryostat pressure | 1.040 bar |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lowe, A.; Majumdar, K.; Mavrokoridis, K.; Philippou, B.; Roberts, A.; Touramanis, C.; Vann, J. Optical Readout of the ARIADNE LArTPC Using a Timepix3-Based Camera. Instruments 2020, 4, 35. https://doi.org/10.3390/instruments4040035
Lowe A, Majumdar K, Mavrokoridis K, Philippou B, Roberts A, Touramanis C, Vann J. Optical Readout of the ARIADNE LArTPC Using a Timepix3-Based Camera. Instruments. 2020; 4(4):35. https://doi.org/10.3390/instruments4040035
Chicago/Turabian StyleLowe, Adam, Krishanu Majumdar, Konstantinos Mavrokoridis, Barney Philippou, Adam Roberts, Christos Touramanis, and Jared Vann. 2020. "Optical Readout of the ARIADNE LArTPC Using a Timepix3-Based Camera" Instruments 4, no. 4: 35. https://doi.org/10.3390/instruments4040035
APA StyleLowe, A., Majumdar, K., Mavrokoridis, K., Philippou, B., Roberts, A., Touramanis, C., & Vann, J. (2020). Optical Readout of the ARIADNE LArTPC Using a Timepix3-Based Camera. Instruments, 4(4), 35. https://doi.org/10.3390/instruments4040035