Space Charge Effects in Noble-Liquid Calorimeters and Time Projection Chambers
Abstract
:1. Introduction
2. Observation and Modeling of Space-Charge Effects
2.1. Calorimeters
2.1.1. The NA48 Liquid-Krypton Calorimeter and the One-Dimensional Model
- The flux to which the detector was exposed was equivalent to a charge density injection of positive ions exceeding 100 pC cms in the central part of the calorimeter.
- The nearly longitudinal readout structure made the detector response sensitive to the position of the axis of the electromagnetic shower within the readout cell, which had a gap of about 1.0 cm.
- The readout cells were operated at a voltage of only 1.5 kV for the first year of data taking.
2.1.2. Developments for Liquid-Argon Calorimetry
2.2. Liquid-Argon Time Projection Chambers
- These detectors may have lateral dimensions comparable to the drift length, so that border effects are relevant and the description cannot be reduced to one dimension.
- Fluid motion may alter the drift of positive ions, moving them away from electrostatic equilibrium, and therefore changing the way they affect the electric field.
2.2.1. ICARUS
2.2.2. MicroBooNE
2.2.3. ProtoDUNE Single-Phase Detector
3. Space Charge Beyond the Basic One-Dimensional Model
3.1. Side Faces and Field Cage
3.2. Detector Aspect Ratio
3.3. Comparison of Models and Observations
4. Dual-Phase Devices
5. Calibration Methods
6. Conclusions
Funding
Acknowledgments
Conflicts of Interest
References
- Child, C.D. Discharge from hot CaO. Phys. Rev. Ser. I 1911, 32, 492–511. [Google Scholar] [CrossRef]
- Langmuir, I. The effect of space charge and residual gases on thermionic currents in high vacuum. Phys. Rev. 1913, 2, 450–486. [Google Scholar] [CrossRef]
- Langmuir, I. The pure electron discharge and its applications in radio telegraphy and telephony. Proc. Inst. Radio Eng. 1915, 3, 261–286. [Google Scholar] [CrossRef] [Green Version]
- Marx, J.N.; Nygren, D.N. The time projection chamber. Phys. Today 1978, 31, 46–53. [Google Scholar] [CrossRef]
- Aihara, H.; Alston-Garnjost, M.; Badtke, D.H.; Bakken, J.A.; Barbaro-Galtieri, A.; Barnes, A.V.; Madaras, R.J. Spatial resolution of the PEP-4 time projection chamber. IEEE Trans. Nucl. Sci. 1983, 30, 76–81. [Google Scholar] [CrossRef]
- Palestini, S.; Barr, G.D.; Biino, C.; Calafiura, P.; Ceccucci, A.; Cerri, C.; Wahl, H. Space charge in ionization detectors and the NA48 electromagnetic calorimeter. Nucl. Instrum. Methods Phys. Res. A 1999, 421, 75–89. [Google Scholar] [CrossRef] [Green Version]
- Palestini, S. Resnati, F. Space charge in liquid argon time-projection chambers: A review of analytical and numerical models, and mitigation method. J. Instrum. 2021, 16, P01028. [Google Scholar] [CrossRef]
- Rutherfoord, J.P. Signal degradation due to charge buildup in noble liquid ionization calorimeters. Nucl. Instrum. Methods Phys. Res. A 2002, 482, 156–178. [Google Scholar] [CrossRef] [Green Version]
- Toggerson, B.; Newcomer, A.; Rutherfoord, J.; Walker, R.B. Onset of space charge effects in liquid argon ionization chambers. Nucl. Instrum. Methods Phys. Res. A 2009, 608, 238–245. [Google Scholar] [CrossRef]
- Rutherfoord, J.P.; Walker, R.B. Space-charge effects in liquid argon ionization chambers. Nucl. Instrum. Methods Phys. Res. A 2015, 776, 65–74. [Google Scholar] [CrossRef] [Green Version]
- Rubbia, C. The Liquid-Argon Time Projection Chamber: A New Concept for Neutrino Detectors. CERN-EP/77-08 (1977). Available online: https://cds.cern.ch/record/117852 (accessed on 26 February 2021).
- Bueno, A.; Melgarejo, A.J.; Navas, S.; Dai, Z.; Ge, Y.; Laffranchi, M.; Rubbia, A. Nucleon decay searches with large liquid argon TPC detectors at shallow depths: Atmospheric neutrinos and cosmogenic backgrounds. J. High Energy Phys. 2007, 041. [Google Scholar] [CrossRef] [Green Version]
- Antonello, M.; Baibussinov, B.; Bellini, V.; Boffelli, F.; Bonesini, M.; Bubak, A.; Zani, A. Study of space charge in the ICARUS T600 detector. J. Instrum. 2020, 15, P07001. [Google Scholar] [CrossRef]
- Abratenko, P.; Alrashed, M.; An, R.; Anthony, J.; Asaadi, J.; Ashkenazi, A.; Soderberg, M. Measurement of space charge effects in the MicroBooNE LArTPC using cosmic muons. J. Instrum. 2020, 15, P12037. [Google Scholar] [CrossRef]
- Abi, B.; Abud, A.A.; Acciarri, R.; Acero, M.A.; Adamov, G.; Adamowski, M.; Chen, M. First results on ProtoDUNE-SP liquid argon time projection chamber performance from a beam test at the CERN Neutrino Platform. J. Instrum. 2020, 15, P12004. [Google Scholar] [CrossRef]
- Aimard, B.; Alt, C.; Asaadi, J.; Auger, M.; Aushev, V.; Autiero, D.; Sinclair, J. A 4 tonne demonstrator for large-scale dual-phase liquid argon time projection chambers. J. Instrum. 2018, 13, P11003. [Google Scholar] [CrossRef]
- Romero, L.; Santorelli, R.; Montes, B. Dynamics of the ions in Liquid Argon Detectors and electron signal quenching. Astropart. Phys. 2017, 92, 11–20. [Google Scholar] [CrossRef]
- Adams, C.; Alrashed, M.; An, R.; Anthony, J.; Asaadi, J.; Ashkenazi, A.; Smith, A. A method to determine the electric field of liquid argon time projection chambers using a UV laser system and its application in MicroBooNE. J. Instrum. 2020, 15, P07010. [Google Scholar] [CrossRef]
- Abi, B.; Acciarri, R.; Acero, M.A.; Adamov, G.; Adams, D.; Adinolfi, M.; Chiriacescu, A. DUNE Far Detector TDR, volume IV: Far detector single-phase technology. J. Instrum. 2020, 15, T08010. [Google Scholar] [CrossRef]
- Sun, J.; Cao, D.; Dimmock, J. Investigating laser-induced ionization of purified liquid argon in a time projection chamber. Nucl. Instrum. Methods Phys. Res. A 1996, 370, 372–376. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Palestini, S. Space Charge Effects in Noble-Liquid Calorimeters and Time Projection Chambers. Instruments 2021, 5, 9. https://doi.org/10.3390/instruments5010009
Palestini S. Space Charge Effects in Noble-Liquid Calorimeters and Time Projection Chambers. Instruments. 2021; 5(1):9. https://doi.org/10.3390/instruments5010009
Chicago/Turabian StylePalestini, Sandro. 2021. "Space Charge Effects in Noble-Liquid Calorimeters and Time Projection Chambers" Instruments 5, no. 1: 9. https://doi.org/10.3390/instruments5010009
APA StylePalestini, S. (2021). Space Charge Effects in Noble-Liquid Calorimeters and Time Projection Chambers. Instruments, 5(1), 9. https://doi.org/10.3390/instruments5010009