Niobium as Preferential Material for Cyclotron Target Windows
Abstract
:1. Introduction
2. Methods and Results
3. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- IAEA RADIOISOTOPES AND RADIOPHARMACEUTICALS SERIES No.4 Cyclotron Produced Radionuclides: Operation and Maintenance of Gas and Liquid Targets. (n.d.). Cyclotron Produced Radionuclides: Operation and Maintenance of Gas and Liquid Targets|IAEA. Available online: https://www.iaea.org/publications/8783/cyclotron-produced-radionuclides-operation-and-maintenance-of-gas-and-liquid-targets (accessed on 21 May 2024).
- Do Carmo, S.J.C.; Scott, P.J.H.; Alves, F. Production of radiometals in liquid targets. EJNMMI Radiopharm. Chem. 2020, 5, 154–196. [Google Scholar] [CrossRef]
- Kajan, I.; Heinitz, S.; Kossert, K.; Sprung, P.; Dressler, R.; Schumann, D. First direct determination of the 93Mo half-life. Sci. Rep. 2021, 11, 19788. [Google Scholar] [CrossRef]
- EXFOR Database-Experimental Nuclear Reaction Data. Available online: https://www.iaea.org/resources/databases/experimental-nuclear-reaction-data (accessed on 29 February 2024).
- Hintzt, N.M.; Ramsey, N.F. D IFFERENTIAL n-P SCATTERING CROSS SECTION Excitation Functions to 100 Mev. Phys. Rev. 1952, 88, 19–27. [Google Scholar] [CrossRef]
- Furukawa, M.; Shizuri, K.; Komura, K.; Sakamoto, K.; Tanaka, S. Production of 26Al and 22Na from proton bombardment of Si, Al and Mg. Nucl. Phys. 1971, 174, 539–544. [Google Scholar] [CrossRef]
- West, H.I., Jr.; Lanier, R.G.; Mustafa, M.G. Excitation Functions for the Nuclear Reactions on Titanium Leading to the Production of 48V48V, 44Sc, and 47Sc by Proton, Deuteron and Triton Irradiations at 0–35 MeV, U.C., Lawrence Rad. Lab., Berkeley and Livermore 1993. Available online: https://digital.library.unt.edu/ark:/67531/metadc1314805/m2/1/high_res_d/10142277.pdf (accessed on 21 May 2024).
- Levkovskij, V.N. Activation cross section nuclides of average masses (A = 40–100) by protons and alpha-particles with average energies (E = 10–50 MeV), Inter Vesi, Moscow, Russia. 1991. Available online: https://www-nds.iaea.org/CRP-CP-monitor/2RCM/Hussain-2RCM-2014.pdf (accessed on 21 May 2024).
- Chodil, G.; Jopson, R.C.; Mark, H.; Swift, C.D.; Thomas, R.G.; Yates, M.K. (p,n) and (p,2n) cross sections of nine elements between 7.0 and 15.0 MeV. Nucl. Phys. 1967, 93, 648–672. [Google Scholar] [CrossRef]
- Ditrói, F.; Hermanne, A.; Corniani, E.; Takács, S.; Tárkányi, F.; Csikai, J.; Shubin, Y.N. Investigation of proton induced reactions on niobium at low and medium energies. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. At. 2009, 267, 3364–3374. [Google Scholar] [CrossRef]
- Avila-Rodriguez, M.A.; Wilson, J.S.; Schueller, M.J.; McQuarrie, S.A. Measurement of the activation cross section for the (p,xn) reactions in niobium with potential applications as monitor reactions. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. At. 2008, 266, 3353–3358. [Google Scholar] [CrossRef]
- Lapi, S.; Mills, W.J.; Wilson, J.; McQuarrie, S.; Publicover, J.; Schueller, M.; Schyler, D.; Ressler, J.J.; Ruth, T.J. Production cross-sections of 181-186Re isotopes from proton bombardment of natural tungsten. Appl. Radiat. Isot. 2007, 65, 345–349. [Google Scholar] [CrossRef]
- Gagnon, K.; Bénard, F.; Kovacs, M.; Ruth, T.J.; Schaffer, P.; Wilson, J.S.; McQuarrie, S.A. Cyclotron production of 99mTc: Experimental measurement of the 100Mo(p,x) 99Mo, 99mTc and 99gTc excitation functions from 8 to 18 MeV. Nucl. Med. Biol. 2011, 38, 907–916. [Google Scholar] [CrossRef]
- Izumo, M.; Matsuoka, H.; Sorita, T.; Nagame, Y.; Sekine, T.; Hata, K.; Baba, S. Production of 95mTm with Proton Bombardment of 95Mo. Int. J. Radiat. Appl. Instrumentation. Part A. Appl. Radiat. Isot. 1991, 42, 297–301. [Google Scholar] [CrossRef]
- Skakun, E.A.; Batij, V.G.; Rakivnenko, Y.N.; Rastrepin, O.A. Excitation Functions and Isomer Ratios for up-to-9-MeV Proton Interactions with Zr and Mo Isotope Nuclei. Yad. Fiz. 1987, 46, 28. [Google Scholar]
- Alharbi, A.A.; Alzahrani, J.; Azzam, A. Activation cross-section measurements of some proton induced reactions on Ni, Co and Mo for proton activation analysis (PAA) purposes. Radiochim. Acta 2011, 99, 763–770. [Google Scholar] [CrossRef]
- Schoen, N.C.; Orlov, G.; Mcdonald, R.J. (n.d.). Excitation functions for radioactive isotopes produced by proton bombardment of Fe, Co, and W in the energy range from 10 to 60 MeV. Phys. Rev. C 1979, 20, 88. [Google Scholar] [CrossRef]
- Ghosh, R.; Badwar, S.; Lawriniang, B.; Jyrwa, B.; Naik, H.; Naik, Y.; Suryanarayana, S.V.; Ganesan, S. Measurement of Fe58(p,n)Co58 reaction cross-section within the proton energy range of 3.38 to 19.63 MeV. Nucl. Phys. A 2017, 964, 86–92. [Google Scholar] [CrossRef]
- Sudar, S.; Szelecsenyi, F.; Qaim, S.M. Excitation function and isomeric cross-section ratio for the ’Ni(p, a) Co ’g process. Phys. Rev. C 1993, 48, 3115. [Google Scholar] [CrossRef]
- Stearns, C.M. COMPARISON OF REACTIONS OF COPPER-63 COMPOUND NUCLEI FORMED BY ALPHA-PARTICLE, PROTON, AND CARBON-ION BOMBARDMENTS., EXFOR entry C237613, United States: N. p., 1962. Available online: https://www.osti.gov/biblio/4722126 (accessed on 21 May 2024).
- Tanaka, S.; Furukawa, M.; Chibat, M. Nuclear reactions of nickel with protons up to 56 MeV. J. Inorg. Nucl. Chem. 1972, 34, 2419–2426. [Google Scholar] [CrossRef]
- Ditrói, F.; Tárkányi, F.; Takács, S.; Hermanne, A.; Yamazaki, H.; Baba, M.; Mohammadi, A. Activation cross-sections of longer lived products of proton induced nuclear reactions on cobalt up to 70 MeV. J. Radioanal. Nucl. Chem. 2013, 298, 853–865. [Google Scholar] [CrossRef]
- Wenrong, Z.; Hanlin, L.; Weixiang, Y. Measurement of cross sections by bombarding Fe with protons up to 19 MeV. Chin. J. Nucl. Phys. 1993, 15, 337–340. [Google Scholar]
- Al-Abyad, M.; Comsan, M.N.H.; Qaim, S.M. Excitation functions of proton-induced reactions on natFe and enriched 57Fe with particular reference to the production of 57Co. Appl. Radiat. Isot. 2009, 67, 122–128. [Google Scholar] [CrossRef]
- Reimer, P.; Qaim, S.M. Excitation Functions of Proton Induced Reactions on Highly Enriched 58 Ni with Special Relevance to the Production of 55 Co and 57 Co. Radiochim. Acta 1998, 80, 113–120. [Google Scholar] [CrossRef]
- Uddin, M.S.; Sudár, S.; Spahn, I.; Shariff, M.A.; Qaim, S.M. Excitation function of the Ni 60 (p,γ) Cu 61 reaction from threshold to 16 MeV. Phys. Rev. C 2016, 93, 044606. [Google Scholar] [CrossRef]
- Jenkins, L.; Wain, A.G. Excitation functions for the bombardment of 56Fe with protons. J. Inorg. Nucl. Chem. 1970, 32, 1419–1425. [Google Scholar] [CrossRef]
- Al-Abyad, M.; Spahn, I.; Qaim, S.M. Experimental studies and nuclear model calculations on proton induced reactions on manganese up to 45MeV with reference to production of 55Fe, 54Mn and 51Cr. Appl. Radiat. Isot. 2010, 68, 2393–2397. [Google Scholar] [CrossRef] [PubMed]
- Michel, A.R.; Bodemann, R.; Busemann, H.; Dam, R.; Gloris, M.; Lange, H.; Klug, B.; Krins, A.; Leya, I.; Liipke, M.; et al. Cross sections for the production of residual nuclides by low-and medium-energy protons from the target elements C, N, O, Mg, Al, Si, Ca, Ti, V, Mn, Fe, Co, Ni, Cu, Sr, Y, Zr, Nb, Ba and Au. Nucl. Instrum. Methods Phys. Res. Sect. B: Beam Interact. Mater. At. 1997, 129, 153–193. [Google Scholar] [CrossRef]
- Ditrói, F.; Tárkányi, F.; Takács, S.; Hermanne, A.; Yamazaki, H.; Baba, M.; Mohammadi, A. Activation cross-sections of longer lived products of proton induced nuclear reactions on manganese up to 70 MeV. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. At. 2013, 308, 34–39. [Google Scholar] [CrossRef]
- Cohen, B.I.; Handley, T.H. Experimental Studies of (p, t) Reactions. Phys. Rev. 1954, 93, 514–517. [Google Scholar] [CrossRef]
- Hermanne, A.; Tarkanyi, F.; Takacs, S. Activation cross sections for production of 7Be by proton and deuteron induced reactions on 9Be: Protons up to 65MeV and deuterons up to 50MeV. Appl. Radiat. Isot. 2014, 90, 203–207. [Google Scholar] [CrossRef]
- Inoue, T.; Tanaka, S. Production of 7Be from proton bombardment of light elements. J. Inorg. Nucl. Chem. 1976, 38, 1425–1427. [Google Scholar] [CrossRef]
- Alves, F.; Alves, V.H.; Neves, A.C.B.; do Carmo, S.J.C.; Nactergal, B.; Hellas, V.; Kral, E.; Gonçalves-Gameiro, C.; Abrunhosa, A.J. Cyclotron production of Ga-68 for human use from liquid targets: From theory to practice. AIP Conf. Proc. 2017, 1845, 020001. [Google Scholar] [CrossRef]
- Alves, F.; Alves, V.H.P.; do Carmo, S.J.C.; Neves, A.C.B.; Silva, M.; Abrunhosa, A.J. Production of copper-64 and gallium-68 with a medical cyclotron using liquid targets. Mod. Phys. Lett. A 2017, 32, 1740013. [Google Scholar] [CrossRef]
- Wilson, J.S.; Avila-Rodriguez, M.A.; Johnson, R.R.; Zyuzin, A.; McQuarrie, S.A. Niobium sputtered Havar foils for the high-power production of reactive [18F]fluoride by proton irradiation of [18O]H2O targets. Appl. Radiat. Isot. 2008, 66, 565–570. [Google Scholar] [CrossRef] [PubMed]
- Gagnon, K.; Wilson, J.S.; Sant, E.; Backhouse, C.J.; McQuarrie, S.A. Assessing the performance and longevity of Nb, Pt, Ta, Ti, Zr, and ZrO 2-sputtered Havar foils for the high-power production of reactive [ 18F]F- by proton irradiation of [18O]H 2O. Appl. Radiat. Isot. 2011, 69, 1330–1336. [Google Scholar] [CrossRef] [PubMed]
- Ammonia (13N) Injection. European Pharmacopoia; 10.0; EDQM: Strasbourg, France, 2019; p. 1183. [Google Scholar]
- Do Carmo, S.J.C.; Kral, E.; Geets, J.-M.; Nactergal, B.; Abrunhosa, A.; Alves, F. Improved production of novel radioisotopes with custom energy Cyclone® Kiube. Instruments 2024. submitted for publication. [Google Scholar]
- Do Carmo, S.J.C.; de Oliveira, P.M.; Alves, F. Thermal simulation studies for the characterization of a cyclotron liquid target with thick niobium target windows. Appl. Sci. 2021, 11, 10922. [Google Scholar] [CrossRef]
Radioisotope Produced | Half-Life | Cumulated Production Yield | Cross-Section Data | Estimation of Activation after One Month of Irradiation |
---|---|---|---|---|
(months) | (MBq/µAsat) | (MBq) | ||
500 µm thick aluminium irradiated at 18 MeV (for 14N(p,α)11C) | ||||
22Na | 31.224 | 33.77 | [5] | 0.81 |
26Al | 8.60 × 106 | 1790.32 | [6] | 1.56 × 10−4 |
12.5 µm thick titanium irradiated at 18 MeV | ||||
(for 14N(p,α)11C, 18O(p,n)18F, natZn(p,n)61Cu, and 64Ni(p,n)64Cu) | ||||
48V | 0.525 | 69.46 | [7,8] | 757.27 |
46Sc | 2.7529 | 1.328 | [8] | 6.26 |
12.5 µm thick titanium irradiated at 13 MeV (for 68Zn(p,n)68Ga) | ||||
48V | 0.525 | 191.09 | [7,8] | 1986.82 |
46Sc | 2.7529 | 0.83 | [8] | 1.74 |
75 µm thick niobium irradiated at 18 MeV (for natZn(p,n)61Cu, and 64Ni(p,n)64Cu) | ||||
93Mo | 48,000 | 345.13 | [9] | 0.023 |
92mNb | 0.333 | 137.33 | [8,10,11] | 604.67 |
75 µm thick niobium irradiated at 13 MeV (for 68Zn(p,n)68Ga) | ||||
93Mo | 48,000 | 1644.64 | [9] | 0.20 |
92mNb | 0.333 | 8.01 | [8,10,11] | 126.12 |
35 µm thick Havar® irradiated at 18 MeV (for 18O(p,n)18F) | ||||
184Re | 2.33 | 0.64 | [12] | 4.66 |
99Tc | 2.53 × 106 | 1.88 | [13] | 6.97 × 10−6 |
95mTc | 2.00 | 1.55 | [8,14,15] | 7.06 |
95Nb | 1.15 | 0.04 | [8] | 0.35 |
92mNb | 0.333 | 0.031 | [8] | 0.37 |
59Ni | 9.12 × 105 | 181.80 | [9] | 1.87 × 10−3 |
58Co | 2.328 | 214.86 | [8,16,17,18,19,20,21] | 847.82 |
57Co | 8.929 | 70.50 | [8,17,21,22,23,24,25,26] | 73.75 |
56Co | 2.537 | 43.72 | [8,23] | 158.58 |
55Fe | 32.84 | 110.15 | [27,28] | 31.46 |
54Mn | 10.26 | 14.13 | [8,23,24,28,29,30] | 12.88 |
51Cr | 0.910 | 148.06 | [8,28,30] | 1443.88 |
9Be | 1.745 | 0.06 | [31,32,33] | 0.32 |
Radionuclide | Half-Life (Month) | Activity Produced after 30 Years of Daily Irradiations (MBq) | Residual Activity after 30 Years of Cooling Time (MBq) | |
---|---|---|---|---|
Titanium | 48V | 0.525 | 2388.1 | 0 |
46Sc | 2.753 | 35.9 | 0 | |
Niobium | 93Mo | 48,000 | 80.1 | 79.7 |
92mNb | 0.333 | 763.2 | 0 | |
Aluminium | 22Na | 31.224 | 37.0 | 0.0125 |
26Al | 8,604,000 | 0.0563 | 0.0563 | |
Havar | 9Be | 1.745 | 0.98 | 0 |
51Cr | 0.910 | 2708.4 | 0 | |
54Mn | 10.260 | 197.2 | 0 | |
55Fe | 32.844 | 1505.5 | 0.755 | |
56Co | 2.537 | 663.4 | 0 | |
57Co | 8.929 | 987.4 | 0 | |
58Co | 2.328 | 3292.5 | 0 | |
59Ni | 912,000 | 0.67 | 0.67 | |
92mNb | 0.333 | 0.42 | 0 | |
95Nb | 1.150 | 0.76 | 0 | |
95mTc | 2.004 | 24.1 | 0 | |
99Tc | 2,533,200 | 0.0025 | 0.0025 | |
184Re | 1.248 | 10.9 | 0 |
Number of Runs since Installation of a New Havar® Target Foil | Activity (kBq) | |||||
---|---|---|---|---|---|---|
52Mn | 55Co | 56Co | 57Co | 57Ni | 58Co | |
1 | 0.170 | 0.335 | 0.051 | n.d. | 0.902 | 0.049 |
2 | 0.172 | 0.098 | 0.050 | 0.026 | 1.552 | 0.118 |
6 | 0.184 | 2.465 | 0.093 | 0.086 | 3.958 | 0.251 |
8 | 0.858 | 2.246 | 0.276 | 0.221 | 2.171 | 0.848 |
9 | 0.786 | 6.022 | 0.395 | 0.200 | 2.662 | 1.628 |
10 | 2.567 | 15.086 | 1.010 | 0.493 | 5.587 | 3.564 |
11 | 2.399 | 18.156 | 1.043 | 0.377 | 6.049 | 3.777 |
13 | 5.288 | 14.118 | 1.144 | 0.709 | 4.652 | 3.395 |
14 | 3.500 | 10.140 | 0.824 | 0.194 | 3.048 | 1.741 |
15 | 2.647 | 8.489 | 0.596 | 0.295 | 2.561 | 1.195 |
16 | 0.323 | 1.653 | 0.332 | n.d. | 3.856 | 0.250 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
do Carmo, S.J.C.; Alves, F. Niobium as Preferential Material for Cyclotron Target Windows. Instruments 2024, 8, 33. https://doi.org/10.3390/instruments8020033
do Carmo SJC, Alves F. Niobium as Preferential Material for Cyclotron Target Windows. Instruments. 2024; 8(2):33. https://doi.org/10.3390/instruments8020033
Chicago/Turabian Styledo Carmo, Sergio J. C., and Francisco Alves. 2024. "Niobium as Preferential Material for Cyclotron Target Windows" Instruments 8, no. 2: 33. https://doi.org/10.3390/instruments8020033
APA Styledo Carmo, S. J. C., & Alves, F. (2024). Niobium as Preferential Material for Cyclotron Target Windows. Instruments, 8(2), 33. https://doi.org/10.3390/instruments8020033