Sex Differences in the Association between Internet Usage and Overweight/Obesity: Evidence from a Nationally Representative Survey in Nepal
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design, Population and Setting
2.2. Measures of Outcomes: Body Mass Index
2.3. Measures of Exposures: Internet Usage
2.4. Covariates and Potential Confounders
2.5. Statistical Analysis
3. Results
3.1. Sample Characteristics
3.2. Weighted Prevalence of Overweight/Obesity and Internet Usages by Sample Characteristics
3.3. Associations between Internet Usage and Overweight/Obesity
3.4. Sensitivity Analyses
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wang, Y.; Beydoun, M.A.; Min, J.; Xue, H.; Kaminsky, L.A.; Cheskin, L.J. Has the prevalence of overweight, obesity and central obesity levelled off in the United States? Trends, patterns, disparities, and future projections for the obesity epidemic. Int. J. Epidemiol. 2020, 49, 810–823. [Google Scholar] [CrossRef] [PubMed]
- Amugsi, D.A.; Dimbuene, Z.T.; Mberu, B.; Muthuri, S.; Ezeh, A.C. Prevalence and time trends in overweight and obesity among urban women: An analysis of demographic and health surveys data from 24 African countries, 1991–2014. BMJ Open 2017, 7. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lin, T.C.; Courtney, T.K.; Lombardi, D.A.; Verma, S.K. Association between Sedentary Work and BMI in a U.S. National Longitudinal Survey. Am. J. Prev. Med. 2015, 49, e117–e123. [Google Scholar] [CrossRef] [Green Version]
- World Health Organization. Global Status Report on Noncommunicable Diseases 2014; WHO: Geneva, Switzerland, 2014. [Google Scholar]
- Dean, E.; Söderlund, A. What is the role of lifestyle behaviour change associated with non-communicable disease risk in managing musculoskeletal health conditions with special reference to chronic pain? BMC Musculoskelet. Disord. 2015, 16, 1–7. [Google Scholar] [CrossRef]
- Ezzati, M.; Riboli, E. Behavioral and dietary risk factors for noncommunicable diseases. N. Engl. J. Med. 2013, 369, 954–964. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barrense-Dias, Y.; Berchtold, A.; Akre, C.; Surís, J.C. The relation between internet use and overweight among adolescents: A longitudinal study in Switzerland. Int. J. Obes. 2016, 40, 45–50. [Google Scholar] [CrossRef] [PubMed]
- Aghasi, M.; Matinfar, A.; Golzarand, M.; Salari-Moghaddam, A.; Ebrahimpour-Koujan, S. Internet Use in Relation to Overweight and Obesity: A Systematic Review and Meta-Analysis of Cross-Sectional Studies. Adv. Nutr. 2019, 11, 349–356. [Google Scholar] [CrossRef]
- Chaput, J.P.; Després, J.P.; Bouchard, C.; Tremblay, A. The association between sleep duration and weight gain in adults: A 6-year prospective study from the Quebec Family Study. Sleep 2008, 31, 517–523. [Google Scholar] [CrossRef] [Green Version]
- Lin, P.H.; Lee, Y.C.; Chen, K.L.; Hsieh, P.L.; Yang, S.Y.; Lin, Y.L. The relationship between sleep quality and internet addiction among female college students. Front. Neurosci. 2019, 13. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Do, Y.K.; Shin, E.; Bautista, M.A.; Foo, K. The associations between self-reported sleep duration and adolescent health outcomes: What is the role of time spent on Internet use? Sleep Med. 2013, 14, 195–200. [Google Scholar] [CrossRef]
- Tooth, L.; Moss, K.; Hockey, R.; Mishra, G.D. Adherence to screen time recommendations for Australian children aged 0–12 years. Med. J. Aust. 2019, 211, 181–182. [Google Scholar] [CrossRef] [Green Version]
- Eliacik, K.; Bolat, N.; Koçyiğit, C.; Kanik, A.; Selkie, E.; Yilmaz, H.; Catli, G.; Dundar, N.O.; Dundar, B.N. Internet addiction, sleep and health-related life quality among obese individuals: A comparison study of the growing problems in adolescent health. Eat. Weight Disord. 2016, 21, 709–717. [Google Scholar] [CrossRef]
- Tsai, M.C.; Strong, C.; Chen, W.T.; Lee, C.T.; Lin, C.Y. Longitudinal impacts of pubertal timing and weight status on adolescent internet use: Analysis from a cohort study of taiwanese youths. PLoS ONE 2018, 13, e0197860. [Google Scholar] [CrossRef] [Green Version]
- Tsitsika, A.K.; Andrie, E.K.; Psaltopoulou, T.; Tzavara, C.K.; Sergentanis, T.N.; Ntanasis-Stathopoulos, I.; Bacopoulou, F.; Richardson, C.; Chrousos, G.P.; Tsolia, M. Association between problematic internet use, socio-demographic variables and obesity among European adolescents. Eur. J. Public Health 2016, 26, 617–622. [Google Scholar] [CrossRef] [Green Version]
- Goel, D.; Subramanyam, A.; Kamath, R. A study on the prevalence of internet addiction and its association with psychopathology in Indian adolescents. Indian J. Psychiatry 2013, 55, 140–143. [Google Scholar] [CrossRef]
- Bener, A.; Bhugra, D. Lifestyle and depressive risk factors associated with problematic internet use in adolescents in an Arabian Gulf culture. J. Addict. Med. 2013, 7, 236–242. [Google Scholar] [CrossRef] [PubMed]
- Bradbury, K.M.; Turel, O.; Morrison, K.M. Electronic device use and beverage related sugar and caffeine intake in US adolescents. PLoS ONE 2019, 14. [Google Scholar] [CrossRef] [PubMed]
- Haque, M.; McKimm, J.; Sartelli, M.; Samad, N.; Haque, S.Z.; Bakar, M.A. A narrative review of the effects of sugar-sweetened beverages on human health: A key global health issue. J. Popul. Ther. Clin. Pharmacol. 2020, 27, e76–e103. [Google Scholar] [CrossRef]
- Aryal, K.K.; Mehata, S.; Neupane, S.; Vaidya, A.; Dhimal, M.; Dhakal, P.; Rana, S.; Bhusal, C.L.; Lohani, G.R.; Paulin, F.H.; et al. The burden and determinants of non communicable diseases risk factors in Nepal: Findings from a nationwide STEPS survey. PLoS ONE 2015, 10, e0134834. [Google Scholar] [CrossRef]
- Rawal, L.B.; Kanda, K.; Mahumud, R.A.; Joshi, D.; Mehata, S.; Shrestha, N.; Poudel, P.; Karki, S.; Renzaho, A. Prevalence of underweight, overweight and obesity and their associated risk factors in Nepalese adults: Data from a nationwide survey, 2016. PLoS ONE 2018, 13, e0205912. [Google Scholar] [CrossRef] [PubMed]
- Xu, C.-X.; Zhu, H.-H.; Fang, L.; Hu, R.-Y.; Wang, H.; Liang, M.-B.; Zhang, J.; Lu, F.; He, Q.-F.; Wang, L.-X.; et al. Gender disparity in the associations of overweight/obesity with occupational activity, transport to/from work, leisure-time physical activity, and leisure-time spent sitting in working adults: A cross-sectional study. J. Epidemiol. 2017, 27, 401–407. [Google Scholar] [CrossRef]
- Poobalan, A.; Aucott, L. Obesity Among Young Adults in Developing Countries: A Systematic Overview. Curr. Obes. Rep. 2016, 5, 2–13. [Google Scholar] [CrossRef] [Green Version]
- Dixon, L.J.; Correa, T.; Straubhaar, J.; Covarrubias, L.; Graber, D.; Spence, J.; Rojas, V. Gendered Space: The digital divide between male and female users in internet public access sites. J. Comput. Commun. 2014, 19, 991–1009. [Google Scholar] [CrossRef] [Green Version]
- Su, W.; Han, X.; Jin, C.; Yan, Y.; Potenza, M.N. Are males more likely to be addicted to the internet than females? A meta-analysis involving 34 global jurisdictions. Comput. Human Behav. 2019, 99, 86–100. [Google Scholar] [CrossRef]
- Mis, N. Nepal Telecommunications Authority. 2019. Volume 174, pp. 1–11. Available online: https://nta.gov.np/wp-content/uploads/MIS-2076-Baisakh.pdf (accessed on 10 July 2020).
- Ministry of Health, Nepal; New ERA; ICF. Nepal Demographic and Health Survey 2016; Ministry of Health, Nepal: Kathmandu, Nepal, 2017.
- Al Kibria, G.M. Prevalence and factors affecting underweight, overweight and obesity using Asian and World Health Organization cutoffs among adults in Nepal: Analysis of the Demographic and Health Survey 2016. Obes. Res. Clin. Pract. 2019, 13, 129–136. [Google Scholar] [CrossRef]
- Bishwajit, G. Household wealth status and overweight and obesity among adult women in Bangladesh and Nepal. Obes. Sci. Pract. 2017, 3, 185–192. [Google Scholar] [CrossRef]
- Matusitz, J.; McCormick, J. Sedentarism: The effects of internet use on human obesity in the United States. Soc. Work Public Health 2012, 27, 250–269. [Google Scholar] [CrossRef]
- Shrier, I.; Platt, R.W. Reducing bias through directed acyclic graphs. BMC Med. Res. Methodol. 2008, 8, 1–15. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rana, J.; Ahmmad, Z.; Sen, K.K.; Bista, S.; Islam, R.M. Socioeconomic Differentials in Hypertension based on JNC7 and ACC/AHA 2017 Guidelines Mediated by Body Mass Index: Evidence from Nepal Demographic and Health Survey. PLoS ONE 2020, 15. [Google Scholar] [CrossRef] [PubMed]
- R Core Team. R: A Language and Environment for Statistical Computing 2020; R Core Team: Vienna, Austria, 2020. [Google Scholar]
- Vandelanotte, C.; Sugiyama, T.; Gardiner, P.; Owen, N. Associations of leisure-time internet and computer use with overweight and obesity, physical activity and sedentary behaviors: Cross-sectional study. J. Med. Internet Res. 2009, 11, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Afshin, A.; Forouzanfar, M.H.; Reitsma, M.B.; Sur, P.; Estep, K.; Lee, A.; Marczak, L.; Mokdad, A.H.; Moradi-Lakeh, M.; Naghavi, M.; et al. Health effects of overweight and obesity in 195 countries over 25 years. N. Engl. J. Med. 2017, 377, 13–27. [Google Scholar] [CrossRef] [PubMed]
- Clement, J. Internet Usage Worldwide—Statistics & Facts; Statistica Inc.: New York, NY, USA, 2015. [Google Scholar]
- Meral, G. Is digital addiction a reason for obesity? Ann. Med. Res. 2018, 25, 472. [Google Scholar] [CrossRef]
- Gaskin, C.J.; Orellana, L. Factors associated with physical activity and sedentary behavior in older adults from six Lowand middle-income countries. Int. J. Environ. Res. Public Health 2018, 15, 908. [Google Scholar] [CrossRef] [Green Version]
- Kim, J.H.; Lau, C.H.; Cheuk, K.K.; Kan, P.; Hui, H.L.C.; Griffiths, S.M. Brief report: Predictors of heavy Internet use and associations with health-promoting and health risk behaviors among Hong Kong university students. J. Adolesc. 2010, 33, 215–220. [Google Scholar] [CrossRef] [PubMed]
- Elder, S. Labour Market Transitions of Young Women and Men in Sub-Saharan Africa; Series No. 9; International Labour Organization: Geneva, Switzerland, 2014. [Google Scholar]
- Pedisic, Z.; Shrestha, N.; Loprinzi, P.D.; Mehata, S.; Mishra, S.R. Prevalence, patterns, and correlates of physical activity in Nepal: Findings from a nationally representative study using the Global Physical Activity Questionnaire (GPAQ). BMC Public Health 2019, 19, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Bodner-Adler, B.; Shrivastava, C.; Bodner, K. Risk factors for uterine prolapse in Nepal. Int. Urogynecol. J. 2007, 18, 1343–1346. [Google Scholar] [CrossRef]
- Rosiek, A.; Maciejewska, N.F.; Leksowski, K.; Rosiek-Kryszewska, A.; Leksowski, Ł. Effect of television on obesity and excess of weight and consequences of health. Int. J. Environ. Res. Public Health 2015, 12, 9408–9426. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Characteristics | Sample Distribution (%) | Prevalence of (%) Underweight, Normal Weight, and Overweight/Obesity | |||
---|---|---|---|---|---|
Underweight | Normal | Overweight/ Obesity | p-Value | ||
Overall | 10380 (100) | 16.5 (1722) | 48.5 (5243) | 35.0(3415) | - |
Age group | |||||
15–24 | 4048 (38.2) | 25.1 | 57.1 | 17.8 | <0.001 |
25–34 | 2950 (29.0) | 11.7 | 46.5 | 41.8 | |
35–44 | 2417 (23.7) | 10.7 | 39.3 | 50.0 | |
45–49 | 965 (9.1) | 11.0 | 43.4 | 45.6 | |
Sex | |||||
Male | 3995 (39.0) | 16.8 | 50.7 | 32.5 | <0.001 |
Female | 6385 (61.0) | 16.3 | 47.1 | 36.6 | |
Marital status | |||||
Unmarried | 2609 (25.4) | 27.8 | 56.9 | 15.3 | <0.001 |
Ever Married | 7771 (74.6) | 12.7 | 45.7 | 41.6 | |
Number of under five years old child | |||||
No under 5 | 5892 (57.0) | 15.5 | 47.7 | 36.8 | <0.001 |
One | 2910 (27.9) | 16.0 | 48.5 | 35.5 | |
Two | 1241 (11.9) | 20.6 | 51.8 | 27.6 | |
Three or more | 337 (3.2) | 23.4 | 52.4 | 24.2 | |
Educational qualification | |||||
No education | 2524 (24.0) | 17.8 | 50.7 | 31.5 | <0.001 |
Primary | 1783 (17.7) | 17.3 | 46.1 | 36.6 | |
Secondary | 4325 (40.9) | 17.8 | 49.0 | 33.2 | |
Higher | 1748 (17.4) | 10.8 | 47.0 | 42.2 | |
Occupational status | |||||
Unemployed | 2579 (25.3) | 21.4 | 46.1 | 32.5 | <0.001 |
Non-manual job | 2080 (21.7) | 8.3 | 39.9 | 51.8 | |
Agriculture | 4436 (40.0) | 17.4 | 54.2 | 28.4 | |
Manual job | 1285 (13.0) | 17.8 | 50.2 | 32.0 | |
Wealth index | |||||
Poorest | 2109 (16.6) | 18.6 | 59.5 | 22.0 | <0.001 |
Poorer | 2088 (18.8) | 20.5 | 52.3 | 27.2 | |
Middle | 2106 (20.1) | 19.7 | 51.4 | 28.9 | |
Richer | 2204 (23.1) | 15.9 | 47.6 | 36.5 | |
Richest | 1873 (21.4) | 9.0 | 35.2 | 55.8 | |
Current tobacco use (any type) | |||||
No | 7631 (73.9) | 17.0 | 47.5 | 35.5 | 0.014 |
Yes | 2749 (26.1) | 15.1 | 51.6 | 33.3 | |
Coffee, tea, cola, or other drink (Caffeine) | |||||
No | 9809 (94.2) | 16.8 | 48.9 | 34.3 | <0.001 |
Yes | 571 (5.8) | 10.9 | 43.0 | 46.1 | |
Frequency of watching television | |||||
Not at all | 2901 (25.7) | 21.5 | 54.0 | 24.5 | <0.001 |
Less than once a week | 2644 (24.2) | 17.3 | 54.2 | 28.5 | |
At least once a week | 4835 (50.1) | 13.6 | 43.0 | 43.4 | |
Urbanicity | |||||
Urban | 6736 (63.0) | 15.5 | 46.0 | 38.5 | <0.001 |
Rural | 3644 (37.0) | 18.3 | 52.8 | 28.9 | |
Ecological zone | |||||
Mountain | 751 (6.1) | 12.0 | 56.1 | 31.9 | <0.001 |
Hill | 4668 (43.6) | 11.6 | 48.6 | 39.8 | |
Terai | 4961 (50.3) | 21.3 | 47.6 | 31.1 | |
Internet use (IU) at the last 12 months or earlier | |||||
No | 7134 (66.1) | 17.9 | 50.0 | 32.1 | <0.001 |
Yes | 3246 (33.9) | 13.9 | 45.6 | 40.5 | |
Frequency of internet use (FIU) in the last month | |||||
Non-user | 7472 (69.4) | 17.8 | 49.9 | 32.3 | <0.001 |
Less than/at least once in a week | 1324 (13.1) | 16.4 | 47.0 | 36.6 | |
Almost every day | 1584 (17.5) | 11.4 | 44.5 | 44.1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rana, J.; Islam, M.M.; Oldroyd, J.; Samad, N.; Islam, R. Sex Differences in the Association between Internet Usage and Overweight/Obesity: Evidence from a Nationally Representative Survey in Nepal. Sexes 2021, 2, 132-143. https://doi.org/10.3390/sexes2010011
Rana J, Islam MM, Oldroyd J, Samad N, Islam R. Sex Differences in the Association between Internet Usage and Overweight/Obesity: Evidence from a Nationally Representative Survey in Nepal. Sexes. 2021; 2(1):132-143. https://doi.org/10.3390/sexes2010011
Chicago/Turabian StyleRana, Juwel, Md. Momin Islam, John Oldroyd, Nandeeta Samad, and Rakibul Islam. 2021. "Sex Differences in the Association between Internet Usage and Overweight/Obesity: Evidence from a Nationally Representative Survey in Nepal" Sexes 2, no. 1: 132-143. https://doi.org/10.3390/sexes2010011
APA StyleRana, J., Islam, M. M., Oldroyd, J., Samad, N., & Islam, R. (2021). Sex Differences in the Association between Internet Usage and Overweight/Obesity: Evidence from a Nationally Representative Survey in Nepal. Sexes, 2(1), 132-143. https://doi.org/10.3390/sexes2010011