The Effect of Ocular Perfusion Pressure on Retinal Thickness in Young People with Presumed Systemic Hypotension
Abstract
:1. Introduction
2. Methods and Materials
2.1. Sampling
2.2. Ethical Considerations
2.3. Selection Criteria
- Those included in the study were adults with presumed systemic hypotension of SBP <100 mmHg in women and SBP <110 mmHg in men.
- Adults with aided/unaided visual acuity of 6/6.
- Non-glaucomatous participants.
- Participants with chronic systemic disease and those on any chronic medication.
- Participants with any ocular pathology and those with moderate and high myopia > 5D.
- Smoking, alcohol, caffeine and water consumption were not allowed within 30 min of the screening.
2.4. Screening Procedure
2.5. Data Collection
2.5.1. Automated Sphygmomanometry (BP)
2.5.2. Tonometry (IOP)
2.5.3. OPP Calculations (mmHg)
2.5.4. Retinal Thickness Measurements
2.6. Data Analysis
3. Results
3.1. The Association between OPP and GCC Thickness (Macula) for the PSH Group
3.2. The Association between OPP and ONH-RNFL Thickness for the PSH Group
3.3. The Association between OPP and Retinal Thickness for the PSH Group
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Tham, Y.C.; Li, X.; Wong, T.Y.; Quigley, H.A.; Aung, T.; Cheng, C.Y. Global prevalence of glaucoma and projections of glaucoma burden through 2040: A systematic review and meta-analysis. Ophthalmology 2014, 121, 2081–2090. [Google Scholar] [CrossRef] [PubMed]
- Toro, M.D.; Brézin, A.P.; Burdon, M.; Cummings, A.B.; Kemer, O.E.; Malyugin, B.E.; Prieto, I.; Teus, M.A.; Tognetto, D.; Törnblom, R.; et al. Early impact of COVID-19 outbreak on eye care: Insights from EUROCOVCAT group. Eur. J. Ophthalmol. 2021, 31, 5–9. [Google Scholar] [CrossRef] [PubMed]
- Cheema, A.; Ahmad, A.; Moore, D. Spectral Domain Optical Coherence Tomography in Glaucoma. American Academy of Ophthalmology. 2021. Available online: http://eyewiki.aao.org/Spectral_Domain_Optical_Coherence_Tomography_in_Glaucoma (accessed on 8 June 2021).
- Kyari, F.; Abdull, M.M.; Bastawrous, A.; Gilbert, C.E.; Faal, H. Epidemiology of glaucoma in sub-Saharan Africa: Prevalence, incidence and risk factors. Middle East Afr. J. Ophthalmol. 2013, 20, 111–125. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kamińska, A.; Romano, G.; Rejdak, R.; Zweifel, S.; Fiedorowicz, M.; Rejdak, M.; Bajka, A.; Amato, R.; Bucolo, C.; Avitabile, T.; et al. Influence of Trace Elements on Neurodegenerative Diseases of The Eye—The Glaucoma Model. Int. J. Mol. Sci. 2021, 22, 4323. [Google Scholar] [CrossRef]
- Zhou, M.; Lu, B.; Zhao, J.; Wang, Q.; Zhang, P.; Sun, X. Interocular Symmetry of Macular Ganglion Cell Complex Thickness in Young Chinese Subjects. PLoS ONE 2016, 11, e0159583. [Google Scholar] [CrossRef]
- Fiedorowicz, M.; Choragiewicz, T.; Turski, W.; Kocki, T.; Nowakowska, D.; Wertejuk, K.; Kamińska, A.; Avitabile, T.; Wełniak-Kaminska, M.; Grieb, P.; et al. Tryptophan Pathway Abnormalities in a Murine Model of Hereditary Glaucoma. Int. J. Mol. Sci. 2021, 22, 1039. [Google Scholar] [CrossRef]
- He, Z.; Vingrys, A.; Armitage, J.; Bui, B.V. The role of blood pressure in glaucoma. Clin. Exp. Optom. 2011, 94, 133–149. [Google Scholar] [CrossRef]
- Costa, V.P.; Harris, A.; Anderson, D.; Stodtmeister, R.; Cremasco, F.; Kergoat, H.; Lovasik, J.; Stalmans, I.; Zeitz, O.; Lanzl, I.; et al. Ocular perfusion pressure in glaucoma. Acta Ophthalmol. 2014, 92, e252–e266. [Google Scholar] [CrossRef]
- Zheng, Y.; Wong, T.Y.; Mitchell, P.; Friedman, D.S.; He, M.; Aung, T. Distribution of Ocular Perfusion Pressure and Its Relationship with Open-Angle Glaucoma: The Singapore Malay Eye Study. Investig. Opthalmology Vis. Sci. 2010, 51, 3399–3404. [Google Scholar] [CrossRef] [PubMed]
- Memarzadeh, F.; Ying-Lai, M.; Chung, J.; Azen, S.P.; Varma, R. Blood Pressure, Perfusion Pressure, and Open-Angle Glaucoma: The Los Angeles Latino Eye Study. Investig. Opthalmol. Vis. Sci. 2010, 51, 2872–2877. [Google Scholar] [CrossRef]
- Leske, M.C.; Wu, S.-Y.; Nemesure, B.; Hennis, A. Incident Open-Angle Glaucoma and Blood Pressure. Arch. Ophthalmol. 2002, 120, 954–959. [Google Scholar] [CrossRef] [Green Version]
- Tielsch, J.M.; Katz, J.; Sommer, A.; Quigley, H.A.; Javitt, J.C. Hypertension, Perfusion Pressure, and Primary Open-angle Glaucoma. Arch. Ophthalmol. 1995, 113, 216. [Google Scholar] [CrossRef]
- World Health Organization Expert Committee. Arterial Hypertension; World Health Organization Technical Report Series; World Health Organization: Geneva, Switzerland, 1978; Volume 628. [Google Scholar]
- Posarelli, C.; Ortenzio, P.; Ferreras, A.; Toro, M.D.; Passani, A.; Loiudice, P.; Oddone, F.; Casini, G.; Figus, M. Twenty-Four-Hour Contact Lens Sensor Monitoring of Aqueous Humor Dynamics in Surgically or Medically Treated Glaucoma Patients. J. Ophthalmol. 2019, 2019, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Fiedorowicz, M.; Wełniak-Kamińska, M.; Świątkiewicz, M.; Orzeł, J.; Chorągiewicz, T.; Toro, M.D.; Rejdak, R.; Bogorodzki, P.; Grieb, P. Changes of Ocular Dimensions as a Marker of Disease Progression in a Murine Model of Pigmentary Glaucoma. Front. Pharmacol. 2020, 11. [Google Scholar] [CrossRef]
- Posarelli, C.; Toro, M.D.; Rejdak, R.; Żarnowski, T.; Pożarowska, D.; Longo, A.; Miccoli, M.; Nardi, M.; Figus, M. Safety and Efficacy of Second Ahmed Valve Implant in Refractory Glaucoma. J. Clin. Med. 2020, 9, 2039. [Google Scholar] [CrossRef] [PubMed]
- Kargi, S.; Altin, R.; Koksal, M.; Kart, L.; Cinar, F.; Ugurbas, S.; Ayoglu, F. Retinal nerve fibre layer measurements are reduced in patients with obstructive sleep apnoea syndrome. Eye 2005, 19, 575–579. [Google Scholar] [CrossRef] [Green Version]
- Wessely, S.; Nickson, J.; Cox, B. Symptoms of low blood pressure: A population study. BMJ 1990, 301, 362–365. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rosengren, A.; Tibblin, G.; Wilhelmsen, L. Low systolic blood pressure and self-perceived wellbeing in middle aged men. BMJ 1993, 306, 243–246. [Google Scholar] [CrossRef] [Green Version]
- Pilgrim, J.A.; Stansfeld, S.; Marmot, M. Low blood pressure, low mood? BMJ 1992, 304, 75–78. [Google Scholar] [CrossRef] [Green Version]
- Pemberton, J. Does constitutional hypotension exist? BMJ 1989, 298, 660–662. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Parati, G.; Di Rienzo, M.; Coruzzi, P.; Castiglioni, P. Chronic hypotension and modulation of autonomic cardiovascular regulation. Hypertens. Res. 2009, 32, 931–933. [Google Scholar] [CrossRef]
- Bengtsson, C.; Edstrom, K.; Furunes, B.; Sigurdsson, J.A.; Tibblin, G. Prevalence of Subjectively Experienced Symptoms in a Population Sample of Women with Special Reference to Women with Arterial Hypertension. Scand. J. Prim. Health Care 1987, 5, 155–162. [Google Scholar] [CrossRef]
- Koroboki, E.; Manios, E.; Psaltopoulou, T.; Vemmos, K.; Michas, F.; Alexaki, E.; Zakopoulos, N. Circadian variation of blood pressure and heart rate in normotensives, white-coat, masked, treated and untreated hypertensives. Hell. J. Cardiol. 2012, 53, 432–438. [Google Scholar]
- Pickering, T.G.; Hall, J.E.; Appel, L.J.; Falkner, B.E.; Graves, J.; Hill, M.N.; Jones, D.W.; Kurtz, T.; Sheps, S.G.; Roccella, E.J. Recommendations for Blood Pressure Measurement in Humans and Experimental Animals. Hypertension 2005, 45, 142–161. [Google Scholar] [CrossRef] [PubMed]
- Sajja, S.; Vemapti, P. Diurnal Variation of Intra Ocular Pressure (IOP) in Healthy Individuals: A Pilot Study. Sch. J. Appl. Med Sci. 2013, 1, 488–492. [Google Scholar]
- Handler, J. The Importance of Accurate Blood Pressure Measurement. Perm. J. 2009, 13, 51–54. [Google Scholar] [CrossRef] [PubMed]
- Myers, M.; Mclinnis, N.; Fodor, G.; Leenen, F. Comparison between an automated and manual sphygmomanometer in a population survey. Am. J. Hypertens. 2008, 21, 280–283. [Google Scholar] [CrossRef] [PubMed]
- Murgatroyd, H.; Bembridge, J. Intraocular pressure. Contin. Educ. Anaesth. Crit. Care Pain 2008, 8, 100–103. [Google Scholar] [CrossRef]
- Icare Finland Oy. Icare Tonometer Users and Maintenance Manual. 2009. Available online: www.icaretonometer.com (accessed on 18 April 2021).
- Buddle, R. A Day in the Life of IOP. Review of Optometry. 2014. Available online: https://www.reviewofoptometry.com/article/a-day-in-the-life-of-iop (accessed on 9 October 2020).
- Brusini, P.; Salvetat, M.L.; Zeppieri, M.; Tosoni, C.; Parisi, L. Comparison of ICare tonometer with Goldmann applanation tonometer in glaucoma patients. J. Glaucoma 2006, 15, 213–217. [Google Scholar] [CrossRef]
- Pakrou, N.; Gray, T.; Mills, R.; Landers, J.; Craig, J. Clinical Comparison of the Icare Tonometer and Goldmann Applanation Tonometry. J. Glaucoma 2008, 17, 43–47. [Google Scholar] [CrossRef] [Green Version]
- Optovue Inc. iVue Version 1.9. 2011. Available online: www.optovue.com (accessed on 18 April 2021).
- Karmel, M. The “New” Pressure for Glaucoma Specialists: Ocular Perfusion Arrives. American Academy of Ophthalmology. 2011. Available online: http://www.aao.org/eyenet/article/new-pressure-glaucoma-specialists-ocular-perfusion (accessed on 29 April 2021).
- Caprioli, J.; Coleman, A.L. Blood Pressure, Perfusion Pressure, and Glaucoma. Am. J. Ophthalmol. 2010, 149, 704–712. [Google Scholar] [CrossRef]
- Bruce, A.; Huang, I. Use of the ganglion cell complex as a new diagnostic indicator. Pharmacology 2014, 8, 101–106. [Google Scholar]
- Kergoat, H.; Herard, M.-E.; Lemay, M. RGC Sensitivity to Mild Systemic Hypoxia. Investig. Ophthalmol. Vis. Sci. 2006, 47, 5423. [Google Scholar] [CrossRef] [Green Version]
- Kuehn, M.; Fingert, J.; Kwon, Y. Retinal Ganglion Cell Death in Glaucoma: Mechanisms and Neuroprotective Strategies. Ophthalmol. Clin. N. Am. 2005, 18, 383–395. [Google Scholar] [CrossRef]
- Hashim, S.; Al Mansouri, F.; Farouk, M.; Al Hashemi, A.; Singh, R. Prevalence of glaucoma in patients with moderate to severe obstructive sleep apnea: Ocular morbidity and outcomes in a 3-year follow-up study. Eye 2014, 28, 1304–1309. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zengin, M.O.; Tuncer, I.; Karahan, E. Retinal nerve fiber layer thickness changes in obstructive sleep apnea syndrome: One year follow-up results. Int. J. Ophthalmol. 2014, 7, 704–708. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.-S.; Xie, H.-T.; Jia, Y.; Zhang, M.-C. Retinal nerve fiber layer thickness changes in obstructive sleep apnea syndrome: A systematic review and Meta-analysis. Int. J. Ophthalmol. 2016, 9, 1651–1656. [Google Scholar] [CrossRef]
- Owens, P.; Lyons, S.; O’Brien, E. Arterial hypotension: Prevalence of low blood pressure in the general population using ambulatory blood pressure monitoring. J. Hum. Hypertens. 2000, 14, 243–247. [Google Scholar] [CrossRef] [Green Version]
- O’Brien, E.; Atkins, N.; Stergiou, G.; Karpettas, N.; Parati, G.; Asmar, R.; Imai, Y.; Wang, J.; Mengden, T.; Shennan, A. European Society of Hypertension International Protocol revision 2010 for the validation of blood pressure measuring devices in adults. Blood Press. Monit. 2010, 15, 23–38. [Google Scholar] [CrossRef]
- Akahoshi, M.; Hida, A.; Imaizumi, M.; Soda, M.; Maeda, R.; Ichimaru, S.; Nakashima, E.; Seto, S.; Yano, K. Basic Characteristics of Chronic Hypotension Cases: A Longitudinal Follow-Up Study from 1958 through 1999. Hypertens. Res. 2006, 29, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Bonnemaijer, P.W.M.; Faro, V.L.; Sanyiwa, A.J.; Hassan, H.G.; Cook, C.; Van de Laar, S.; Lemij, H.G.; Klaver, C.C.W.; Jansonius, N.M.; Thiadens, A.A.H.J.; et al. Differences in clinical presentation of primary open-angle glaucoma between African and European populations. Acta Ophthalmol. 2021. [Google Scholar] [CrossRef] [PubMed]
- Myers, M.G. A proposed algorithm for diagnosing hypertension using automated office blood pressure measurement. J. Hypertens. 2010, 28, 703–708. [Google Scholar] [CrossRef] [PubMed]
- Chan, K.K.-W.; Ho, J.C.-H.; Leung, D.Y.-L. Ocular perfusion pressure and glaucoma: A review. Acta Ophtalmol. 2016, 20, 19–28. [Google Scholar]
Group | Mean IOP ±SD (mmHg) | Mean Systolic BP ±SD (mmHg) | Mean Diastolic BP ±SD (mmHg) | Mean MOPP ±SD (mmHg) | Mean SOPP ±SD (mmHg) | Mean DOPP ±SD (mmHg) |
---|---|---|---|---|---|---|
Experiment n = 15 (30 eyes) | 13.48 ± 2.27 | 90.99 ± 5.06 | 68.15 ± 4.80 | 62.54 ± 4.23 | 75.77 ± 9.10 | 55.93 ± 6.54 |
Control n = 14 (28 eyes) | 14.83 ± 2.14 | 107.43 ± 5.73 | 72.57 ± 5.42 | 69.54 ± 5.80 | 91.52 ± 9.10 | 59.00 ± 8.47 |
Mean Difference (p-values) | p = 0.024 # | p < 0.001 # | p = 0.002 # | p < 0.001 # | p < 0.001 # | p = 0.099 * |
Group | OPTIC NERVE HEAD-RNFL THICKNESS (Microns) | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
RNFL Average | Superior RNFL | Inferior RNFL | Nasal RNFL | Temporal RNFL | Superior Hemisphere RNFL | Inferior Hemisphere RNFL | ||||||||
Mean ± SD | Mean Difference (Range) | Mean ± SD | Mean Difference (Range) | Mean ± SD | Mean Difference (Range) | Mean ± SD | Mean Difference (Range) | Mean ± SD | Mean Difference (Range) | Mean ± SD | Mean Difference (Range) | Mean ± SD | Mean Difference (Range) | |
Experimental n = 30 eyes | 107.23 ± 7.47 | 1.07 (−3.55;5.69) | 107.61 ± 10.62 | −0.34 (−6.31;5.63) | 103.68 ± 10.51 | n/a | 79.94 ± 8.16 | n/a | 75.03 ± 8.14 | −0.12 (−4.68;4.44) | 136.67 ± 13.08 | 6.52 (−2.17;15.21) | 136.26 ± 13.29 | 0.26 (− 6.84;7.35) |
Control n = 28 eyes | 106.16 ± 9.87 | 107.95 ± 11.86 | 104.21 ± 8.83 | 82.160 ± 14.28 | 75.15 ± 9.04 | 130.15 ± 18.26 | 136.00 ± 12.31 | |||||||
p-value | 0.643 # | 0.910 # | 0.626 ¥ | 0.263 ¥ | 0.958 # | 0.138 # | 0.943 # |
Group | Macula-GCC Thickness (Microns) | |||||
---|---|---|---|---|---|---|
GCC Total | GCC Superior Hemisphere | GCC Inferior Hemisphere | ||||
Mean ± SD | Mean Difference (Range) | Mean ± SD | Mean Difference (Range) | Mean ± SD | Mean Difference (Range) | |
Experimental n = 30 eyes | 99.90 ± 6.57 | 0.40 (−3.26;4.05) | 99.444 ± 7.00 | 0.15 (−3.86;4.15) | 100.533 ± 6.292 | 0.61 (−2.78;4.00) |
Control n = 28 eyes | 99.59 ± 7.21 | 99.296 ± 8.088 | 99.926 ± 6.479 | |||
Independent t-test | p = 0.83 | p = 0.94 | p = 0.72 |
Retinal Thickness | |||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Macula GCC | ONH-RNFL | ||||||||||||||
Total | Superior Hemisphere | Average | Inferior | Temporal | |||||||||||
OR | CI | p-Value | OR | CI | p-Value | OR | CI | p-Value | OR | CI | p-Value | OR | CI | p-Value | |
MOPP | 0.51 | 0.27; 0.97 | 0.039 | ||||||||||||
SOPP | 0.79 | 0.64; 0.98 | 0.035 | 0.78 | 0.62; 0.99 | 0.049 | 0.11 | 0.01; 0.89 | 0.027 | 0.08 | 0.01; 0.73 | 0.017 | 0.26 | 0.04; 0.56 | 0.036 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vawda, N.; Munsamy, A. The Effect of Ocular Perfusion Pressure on Retinal Thickness in Young People with Presumed Systemic Hypotension. Vision 2021, 5, 36. https://doi.org/10.3390/vision5030036
Vawda N, Munsamy A. The Effect of Ocular Perfusion Pressure on Retinal Thickness in Young People with Presumed Systemic Hypotension. Vision. 2021; 5(3):36. https://doi.org/10.3390/vision5030036
Chicago/Turabian StyleVawda, Naazia, and Alvin Munsamy. 2021. "The Effect of Ocular Perfusion Pressure on Retinal Thickness in Young People with Presumed Systemic Hypotension" Vision 5, no. 3: 36. https://doi.org/10.3390/vision5030036
APA StyleVawda, N., & Munsamy, A. (2021). The Effect of Ocular Perfusion Pressure on Retinal Thickness in Young People with Presumed Systemic Hypotension. Vision, 5(3), 36. https://doi.org/10.3390/vision5030036