Reading in Children Who Survived Cerebellar Tumors: Evidence from Eye Movements
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Apparatus
2.3. Stimuli and Procedure
2.3.1. Saccadic Tasks
2.3.2. Reading Task
2.4. Statistical Analysis
3. Results
3.1. Comparing Eye Movements during Reading Texts in the Patient Group and Control Group
3.2. Comparing Eye Movements during Oculomotor Tasks in the Patient Group and Control Group
3.3. Analysis of the Correlation between Eye Movements during Reading and Two Oculomotor Tests in Cerebellar Tumor Survivors
3.4. Analysis of the Impact of Histology and Age at Disease Onset on the Eye Movements during Reading in Cerebellar Tumor Survivors
3.5. Analysis of the Correlation between Eye Movements during Reading and Two Oculomotor Tests in the Control Group
3.6. Exploring Eye Movements Peculiarities in Reading and Oculomotor Measures Using Correlational Analysis in the Patient Group and the Control Group
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gupta, T.; Achari, R.; Chatterjee, A.; Chen, Z.P.; Mehta, M.; Bouffet, E.; Jalali, R. Comparison of Epidemiology and Outcomes in Neuro-Oncology between the East and the West: Challenges and Opportunities. Clin. Oncol. 2019, 8, 539–548. [Google Scholar] [CrossRef]
- Garfunkel, L.C.; Kaczorowski, J.; Christy, C. Pediatric Clinical Advisor E-Book: Instant Diagnosis and Treatment, 2nd ed.; Mosby Elsevier: Amsterdam, The Netherlands, 2007. [Google Scholar]
- Hatten, M.E.; Roussel, M.F. Development and Cancer of the Cerebellum. Trends Neurosci. 2011, 34, 134–142. [Google Scholar] [CrossRef] [Green Version]
- Manto, M.; Bower, J.M.; Conforto, A.B.; Delgado-García, J.M.; Da Guarda, S.N.F.; Gerwig, M.; Habas, C.; Hagura, N.; Ivry, R.B.; Mariën, P.; et al. Consensus Paper: Roles of the Cerebellum in Motor Control—The Diversity of Ideas on Cerebellar Involvement in Movement. Cerebellum 2012, 11, 457–487. [Google Scholar] [CrossRef]
- Ito, M. Cerebellar Circuitry as a Neuronal Machine. Prog. Neurobiol. 2006, 78, 272–303. [Google Scholar] [CrossRef] [PubMed]
- Aizenshtein, A.; Shurupova, M.; Shipilov, A.; Latanov, A.; Skvortsov, D.; Kasatkin, V. Diagnostics of Ataxia in Children Who Survived Cerebellar Tumor: The Relationship between Parameters of Tandem Gait, Saccadic System and Postural Stability. In International Conference on Cognitive Sciences; Springer: Cham, Switzerland, 2021; pp. 612–618. [Google Scholar] [CrossRef]
- Shurupova, M.A.; Kasatkin, V.N.; Anisimov, V.N.; Latanov, A.V. Effects of Cerebellar Dysfunction Acquired as a Result of Tumor Therapy on the Functioning of the Saccadic System in Children. Neurosci. Behav. Physiol. 2021, 51, 402–409. [Google Scholar] [CrossRef]
- Schmahmann, J.D. The Cerebellar Cognitive Affective Syndrome. Brain 1998, 121, 561–579. [Google Scholar] [CrossRef]
- Beh, S.C.; Frohman, T.C.; Frohman, E.M. Cerebellar Control of Eye Movements. J. Neuro-Ophthalmol. 2017, 37, 87–98. [Google Scholar] [CrossRef]
- Kheradmand, A.; Zee, D.S. Cerebellum and Ocular Motor Control. Front. Neurol. 2011, 2, 53. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Noda, H.; Fujikado, T. Topography of the Oculomotor Area of the Cerebellar Vermis in Macaques as Determined by Microstimulation. J. Neurophysiol. 1987, 58, 359–378. [Google Scholar] [CrossRef] [PubMed]
- Kojima, Y.; Kaufman-Francis, K.; Studdert, J.B.; Steiner, K.A.; Power, M.D.; Loebel, D.A.; Jones, V.; Hor, A.; de Alencastro, G.; Logan, G.J.; et al. The Transcriptional and Functional Properties of Mouse Epiblast Stem Cells Resemble the Anterior Primitive Streak. Cell Stem Cell 2014, 14, 107–120. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Selhorst, J.B.; Stark, L.; Ochs, A.L.; Hoyt, W.F. Disorders in Cerebellar Ocular Motor Control. Brain 1976, 99, 497–508. [Google Scholar] [CrossRef]
- Wennmo, C.; Hindfelt, B.; Pyykkö, I. Eye Movements in Cerebellar and Combined Cerebellobrainstem Diseases. Ann. Otol. Rhinol. Laryngol. 1983, 92, 165–171. [Google Scholar] [CrossRef]
- Serra, A.; Liao, K.; Martinez-Conde, S.; Optican, L.M.; Leigh, R.J. Suppression of Saccadic Intrusions in Hereditary Ataxia by Memantine. Neurology 2008, 70, 810–812. [Google Scholar] [CrossRef] [PubMed]
- Leigh, R.J.; Zee, D.S. The Neurology of Eye Movements, 5th ed.; Oxford University Press: New York, NY, USA, 2015. [Google Scholar]
- Shaikh, A.G.; Marti, S.; A Tarnutzer, A.; Palla, A.; O Crawford, T.; Straumann, D.; Taylor, A.M.; Zee, D.S. Gaze Fixation Deficits and their Implication in Ataxia-Telangiectasia. J. Neurol. Neurosurg. Psychiatry 2009, 80, 858–864. [Google Scholar] [CrossRef] [Green Version]
- Bastug, M. The Structural Relationship of Reading Attitude, Reading Comprehension and Academic Achievement. Int. J. Soc. Sci. Educ. 2014, 4, 931–946. [Google Scholar]
- Alvarez, T.A.; Fiez, J.A. Current Perspectives on the Cerebellum and Reading Development. Neurosci. Biobehav. Rev. 2018, 92, 55–66. [Google Scholar] [CrossRef]
- Rae, C.; Harasty, J.A.; Dzendrowskyj, T.E.; Talcott, J.B.; Simpson, J.M.; Blamire, A.; Dixon, R.M.; Lee, M.A.; Thompson, C.H.; Styles, P.; et al. Cerebellar Morphology in Developmental Dyslexia. Neuropsychologia 2001, 40, 1285–1292. [Google Scholar] [CrossRef]
- Stein, J.F.; Richardson, A.J.; Fowler, M.S. Monocular Occlusion Can Improve Binocular Control and Reading in Dyslexics. Brain 2000, 123, 164–170. [Google Scholar] [CrossRef] [Green Version]
- Vlachos, F.; Papathanasiou, I.; Andreou, G. Cerebellum and Reading. Folia Phoniatr. Logop. 2007, 59, 177–183. [Google Scholar] [CrossRef] [PubMed]
- Stoodley, C.J. The Cerebellum and Neurodevelopmental Disorders. Cerebellum 2015, 15, 34–37. [Google Scholar] [CrossRef] [PubMed]
- Stoodley, C.J.; Schmahmann, J.D. The Cerebellum and Language: Evidence from Patients with Cerebellar Degeneration. Brain Lang. 2009, 110, 149–153. [Google Scholar] [CrossRef] [PubMed]
- Eckert, M.A.; Leonard, C.M.; Richards, T.L.; Aylward, E.H.; Thomson, J.; Berninger, V.W. Anatomical Correlates of Dyslexia: Frontal and Cerebellar Findings. Brain 2003, 126, 482–494. [Google Scholar] [CrossRef] [Green Version]
- Riva, D. The Cerebellum Contributes to Higher Functions during Development: Evidence from a Series of Children Surgically Treated for Posterior Fossa Tumours. Brain 2000, 123, 1051–1061. [Google Scholar] [CrossRef]
- Docking, K.M.; Murdoch, B.E.; Suppiah, R. The Impact of a Cerebellar Tumour on Language Function in Childhood. Folia Phoniatr. Logop. 2007, 59, 190–200. [Google Scholar] [CrossRef]
- De Witte, E.; Wilssens, I.; De Surgeloose, D.; Dua, G.; Moens, M.; Verhoeven, J.; Manto, M.; Mariën, P. Apraxia of Speech and Cerebellar Mutism Syndrome: A Case Report. Cerebellum Ataxias 2017, 4, 2. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Scott, R.B.; Stoodley, C.J.; Anslow, P.; Paul, C.; Stein, J.F.; Sugden, E.M.; Mitchell, C.D. Lateralized Cognitive Deficits in Children Following Cerebellar Lesions. Dev. Med. Child Neurol. 2001, 43, 685–691. [Google Scholar] [CrossRef] [PubMed]
- Vias, C.; Dick, A.S. Cerebellar Contributions to Language in Typical and Atypical Development: A Review. Dev. Neuropsychol. 2017, 42, 404–421. [Google Scholar] [CrossRef]
- Ohad, G. Fit_Ellipse. MATLAB Central File Exchange. Available online: https://www.mathworks.com/matlabcentral/fileexchange/3215-fit_ellipse (accessed on 26 December 2021).
- Moretti, R.; Bava, A.; Torre, P.; Antonello, R.M.; Cazzato, G. Reading Errors in Patients with Cerebellar Vermis Lesions. J. Neurol. 2002, 249, 461–468. [Google Scholar] [CrossRef]
- Cámara, S.; Fournier, M.C.; Cordero, P.; Melero, J.; Robles, F.; Esteso, B.; Vara, M.T.; Rodríguez, S.; Lassaletta, Á.; Budke, M. Neuropsychological Profile in Children with Posterior Fossa Tumors with or Without Postoperative Cerebellar Mutism Syndrome (CMS). Cerebellum 2019, 19, 78–88. [Google Scholar] [CrossRef] [PubMed]
- Rayner, K. Eye Movements in Reading and Information Processing: 20 Years of Research. Psychol. Bull. 1998, 124, 372–422. [Google Scholar] [CrossRef]
- Bezrukikh, M.M.; Ivanov, V.V. Eye Movements in the Process of Reading as an Indicator of Development of Reading Skill. Hum. Physiol. 2013, 39, 68–77. [Google Scholar] [CrossRef]
- Seassau, M.; Bucci, M.-P. Reading and Visual Search: A Developmental Study in Normal Children. PLoS ONE 2013, 8, e70261. [Google Scholar] [CrossRef] [Green Version]
- Baier, B.; Dieterich, M. Incidence and Anatomy of Gaze-Evoked Nystagmus in Patients with Cerebellar Lesions. Neurology 2011, 76, 361–365. [Google Scholar] [CrossRef]
- Starowicz-Filip, A.; Chrobak, A.; Milczarek, O.; Kwiatkowski, S. The Visuospatial Functions in Children after Cerebellar Low-Grade Astrocytoma Surgery: A Contribution to the Pediatric Neuropsychology of the Cerebellum. J. Neuropsychol. 2015, 11, 201–221. [Google Scholar] [CrossRef]
- Schmahmann, J.D.; Guell, X.; Stoodley, C.J.; Halko, M. The Theory and Neuroscience of Cerebellar Cognition. Annu. Rev. Neurosci. 2019, 42, 337–364. [Google Scholar] [CrossRef]
- Frey, A.; Ionescu, G.; Lemaire, B.; López-Orozco, F.; Baccino, T.; Guérin-Dugué, A. Decision-Making in Information Seeking on Texts: An Eye-Fixation-Related Potentials Investigation. Front. Syst. Neurosci. 2013, 7, 39. [Google Scholar] [CrossRef] [Green Version]
- López-Pérez, P.J.; Dampuré, J.; Hernández-Cabrera, J.A.; Barber, H. Semantic Parafoveal-on-Foveal Effects and Preview Benefits in Reading: Evidence from Fixation Related Potentials. Brain Lang. 2016, 162, 29–34. [Google Scholar] [CrossRef]
- Hyönä, J. An Eye Movement Analysis of Topic-Shift Effect during Repeated Reading. J. Exp. Psychol. Learn. Mem. Cogn. 1995, 21, 1365–1373. [Google Scholar] [CrossRef]
- Vitu, F.; McConkie, G.W.; Zola, D. About Regressive Saccades in Reading and Their Relation to Word Identification. In Eye Guidance in Reading and Scene Perception; Elsevier: Amsterdam, The Netherlands, 1998; pp. 101–124. [Google Scholar] [CrossRef]
- Oh, A.J.; Chen, T.; Shariati, M.A.; Jehangir, N.; Hwang, T.N.; Liao, Y.J. A Simple Saccadic Reading Test to Assess Ocular Motor Function in Cerebellar Ataxia. PLoS ONE 2018, 13, e0203924. [Google Scholar] [CrossRef]
- Zawoyski, A.M.; Ardoin, S.P.; Binder, K.S. Using Eye Tracking to Observe Differential Effects of Repeated Readings for Second-Grade Students as a Function of Achievement Level. Read. Res. Q. 2014, 50, 171–184. [Google Scholar] [CrossRef]
- McConkie, G.W.; Zola, D.; Grimes, J.; Kerr, P.W.; Bryant, N.R.; Wolf, P.M. Children’s Eye Movements during Reading. In Vision and Visual Dyslexia; Stein, J.F., Ed.; Macmillan Press: London, UK, 1991; pp. 251–262. [Google Scholar]
- Luna, B.; Velanova, K.; Geier, C. Development of Eye-Movement Control. Brain Cogn. 2008, 68, 293–308. [Google Scholar] [CrossRef] [Green Version]
- Mariën, P.; Ackermann, H.; Adamaszek, M.; Barwood, C.H.S.; Beaton, A.; Desmond, J.; De Witte, E.; Fawcett, A.J.; Hertrich, I.; Küper, M.; et al. Consensus Paper: Language and the Cerebellum: An Ongoing Enigma. Cerebellum 2013, 13, 386–410. [Google Scholar] [CrossRef]
- Armstrong, G.T. Long-Term Survivors of Childhood Central Nervous System Malignancies: The Experience of the Childhood Cancer Survivor Study. Eur. J. Paediatr. Neurol. 2010, 14, 298–303. [Google Scholar] [CrossRef] [Green Version]
- Mulhern, R.K.; Merchant, T.E.; Gajjar, A.; Reddick, W.E.; Kun, L.E. Late Neurocognitive Sequelae in Survivors of Brain Tumours in Childhood. Lancet Oncol. 2004, 5, 399–408. [Google Scholar] [CrossRef]
- Nicolson, R.I.; Fawcett, A.J.; Dean, P. Developmental Dyslexia: The Cerebellar Deficit Hypothesis. Trends Neurosci. 2001, 24, 508–511. [Google Scholar] [CrossRef]
- Fang, Q.; Chou, X.-L.; Peng, B.; Zhong, W.; Zhang, L.I.; Tao, H.W. A Differential Circuit via Retino-Colliculo-Pulvinar Pathway Enhances Feature Selectivity in Visual Cortex through Surround Suppression. Neuron 2019, 105, 355–369.e6. [Google Scholar] [CrossRef]
- Ekzhanova, E.A.; Medvedeva, O.V. Otsenka Rezultatov Korrekcii Dizartricheskih Narushenij u Detej Nejroonkologicheskogo Profilja. [Estimation of the Results of Correcting Dysarthria Disorders in Children after Neuro-Oncological Disease]. Defektologija. Defectology 2021, 6, 26–35. [Google Scholar]
- Taylor, O.D.; Ware, R.S.; Weir, K.A. Speech Pathology Services to Children with Cancer and Nonmalignant Hematological Disorders. J. Pediatr. Oncol. Nurs. 2012, 29, 98–108. [Google Scholar] [CrossRef] [PubMed]
Parameter | Mean | SD | Median | Min | Max | U | Z | p-Value | Effect Size | |||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
CG | PG | CG | PG | CG | PG | CG | PG | CG | PG | |||||
Total reading time | 23.869 | 37.530 | 11.771 | 26.054 | 22.236 | 27.067 | 8.416 | 11.678 | 70.885 | 131.797 | 1017 | 3.007 | 0.003 | 0.284 |
Reading word per second | 2.362 | 1.707 | 1.017 | 0.898 | 2.123 | 1.711 | 0.637 | 0.273 | 5.755 | 4.181 | 971 | −3.278 | 0.001 | 0.310 |
Total number of fixations | 73.884 | 96.636 | 20.663 | 54.094 | 74.000 | 82.000 | 40.167 | 48.000 | 142.429 | 385.000 | 1124 | 2.376 | 0.018 | 0.225 |
Number of fixations per word | 1.605 | 2.196 | 0.454 | 1.307 | 1.625 | 1.863 | 0.872 | 1.059 | 2.992 | 9.619 | 1033 | 2.913 | 0.004 | 0.275 |
Number of fixations per row | 13.985 | 17.481 | 3.861 | 8.753 | 14.083 | 15.667 | 7.594 | 6.450 | 23.320 | 60.125 | 1196 | 1.952 | 0.051 | 0.184 |
Average fixation duration | 258.767 | 315.325 | 73.760 | 199.395 | 250.485 | 270.214 | 151.635 | 151.831 | 597.755 | 1716.400 | 1109 | 2.464 | 0.014 | 0.233 |
Percentage of saccadic regressions | 19.848 | 26.908 | 4.863 | 11.210 | 19.653 | 25.417 | 9.782 | 6.625 | 30.003 | 59.259 | 910 | 3.638 | 0.000 | 0.344 |
Progressive saccadic amplitude | 4.143 | 3.890 | 0.931 | 0.953 | 4.296 | 3.782 | 2.206 | 1.920 | 6.332 | 6.358 | 1262 | −1.562 | 0.118 | 0.148 |
CV of progressive saccade amplitude | 0.413 | 0.443 | 0.053 | 0.062 | 0.412 | 0.443 | 0.268 | 0.181 | 0.568 | 0.582 | 987 | 3.184 | 0.001 | 0.301 |
Parameter | Mean | SD | Median | Min | Max | U | Z | p-Value | Effect Size | |||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
CG | PG | CG | PG | CG | PG | CG | PG | CG | PG | |||||
Gaze-holding score average | 2.264 | 9.069 | 2.171 | 13.096 | 1.594 | 4.502 | 0.354 | 0.883 | 11.778 | 63.081 | 600 | 3.881 | 0.000 | 6.340 |
Performance time of visual search task | 5.360 | 7.907 | 1.872 | 5.204 | 4.770 | 6.342 | 3.203 | 2.568 | 11.522 | 38.618 | 633 | 3.781 | 0.000 | 3.882 |
Scanpath length | 203.242 | 235.031 | 207.286 | 147.392 | 144.361 | 199.491 | 92.788 | 56.085 | 1340.435 | 836.375 | 880 | 2.184 | 0.029 | 83.638 |
Number of fixations | 16.103 | 20.164 | 7.279 | 10.594 | 15.000 | 18.000 | 10.000 | 6.000 | 51.000 | 71.000 | 783 | 2.869 | 0.004 | 7.100 |
Mean of fixation duration | 0.271 | 0.296 | 0.072 | 0.090 | 0.261 | 0.284 | 0.162 | 0.150 | 0.430 | 0.579 | 1001 | 1.329 | 0.184 | 0.058 |
Mean saccade amplitude | 9.778 | 8.776 | 3.820 | 2.742 | 9.280 | 8.410 | 4.980 | 3.090 | 28.520 | 19.220 | 963 | −1.597 | 0.110 | 1.922 |
Parameter | Gaze-Holding Score | Time of Visual Search Task | Scan Path Lengths | Number of Fixations | Mean of Fixation Duration | Saccade Amplitude | Age | Age at Disease Onset | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
PG | CG | PG | CG | PG | CG | PG | CG | PG | CG | PG | CG | PG | CG | PG | |
Total reading time | 0.297 | 0.363 | 0.247 | 0.396 | 0.251 | −0.006 | 0.311 | 0.127 | −0.018 | 0.382 | 0.073 | −0.096 | −0.232 | −0.568 | −0.360 |
Reading word per second | −0.321 | −0.376 | −0.257 | −0.431 | −0.257 | −0.044 | −0.319 | −0.177 | 0.016 | −0.388 | −0.069 | 0.071 | 0.235 | 0.599 | 0.380 |
Total number of fixations | 0.219 | 0.399 | 0.195 | 0.443 | 0.210 | −0.085 | 0.268 | 0.115 | −0.005 | 0.419 | 0.109 | −0.172 | −0.238 | −0.510 | −0.307 |
Number of fixations per word | 0.249 | 0.41 | 0.196 | 0.44 | 0.232 | −0.016 | 0.267 | 0.137 | −0.008 | 0.400 | 0.113 | −0.102 | −0.233 | −0.545 | −0.343 |
Number of fixations per row | 0.200 | 0.377 | 0.193 | 0.452 | 0.232 | −0.028 | 0.264 | 0.135 | −0.022 | 0.42 | 0.099 | −0.101 | −0,225 | −0.506 | −0.354 |
Average fixation duration | 0,151 | 0.246 | 0.214 | 0.283 | 0.234 | 0.011 | 0.253 | 0.059 | 0.026 | 0.379 | 0.220 | −0.052 | −0.153 | −0.540 | −0.391 |
Percentage of saccadic regressions | 0.352 | 0.194 | 0.174 | 0.391 | 0.194 | 0.313 | 0.204 | 0.279 | −0.040 | 0.178 | 0.039 | 0.034 | −0.043 | −0.351 | 0.010 |
Progressive saccadic amplitude | −0.117 | −0.336 | −0.183 | −0.253 | −0.129 | 0.168 | −0.190 | −0.129 | −0.033 | −0.205 | 0.053 | 0.221 | 0.180 | 0.303 | 0.451 |
CV of progressive saccade amplitude | 0.135 | 0.147 | 0.072 | 0.047 | −0.042 | 0.124 | 0.113 | 0.157 | 0.065 | −0.065 | −0.076 | 0.025 | −0.077 | −0.083 | −0.288 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mironets, S.; Shurupova, M.; Dreneva, A. Reading in Children Who Survived Cerebellar Tumors: Evidence from Eye Movements. Vision 2022, 6, 10. https://doi.org/10.3390/vision6010010
Mironets S, Shurupova M, Dreneva A. Reading in Children Who Survived Cerebellar Tumors: Evidence from Eye Movements. Vision. 2022; 6(1):10. https://doi.org/10.3390/vision6010010
Chicago/Turabian StyleMironets, Sofia, Marina Shurupova, and Anna Dreneva. 2022. "Reading in Children Who Survived Cerebellar Tumors: Evidence from Eye Movements" Vision 6, no. 1: 10. https://doi.org/10.3390/vision6010010
APA StyleMironets, S., Shurupova, M., & Dreneva, A. (2022). Reading in Children Who Survived Cerebellar Tumors: Evidence from Eye Movements. Vision, 6(1), 10. https://doi.org/10.3390/vision6010010