Graph Analysis of the Visual Cortical Network during Naturalistic Movie Viewing Reveals Increased Integration and Decreased Segregation Following Mild TBI
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
TBI and Control Participants
2.2. Stimuli and Procedure
Data Acquisition
2.3. Data Processing
2.3.1. Preprocessing
2.3.2. Surface-Based Analysis
2.3.3. Graph Comparisons
2.3.4. Whole-Brain Networks and Regional Subnetworks
3. Results
3.1. No Change in Static Architecture of Natural Viewing Network after mTBI
3.2. Increased Efficiency in Specific Regions of Interest in the mTBI Group
4. Discussion
4.1. Higher Mean Connectivity Degree
4.2. Higher Global Efficiency
4.3. Lower Modularity
4.4. Higher Clustering
4.5. Graph Theory and mTBI
4.6. Limitations
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Dewan, M.C.; Rattani, A.; Gupta, S.; Baticulon, R.E.; Hung, Y.C.; Punchak, M.; Park, K.B. Estimating the global incidence of traumatic brain injury. J. Neurosurg. 2018, 130, 1080–1097. [Google Scholar] [CrossRef] [PubMed]
- McAllister, T.W.; Saykin, A.J.; Flashman, L.A.; Sparling, M.B.; Johnson, S.C.; Guerin, S.J.; Mamourian, A.C.; Weaver, J.B.; Yanofsky, N. Brain activation during working memory 1 month after mild traumatic brain injury: A functional MRI study. Neurology 1999, 53, 1300–1308. [Google Scholar] [CrossRef] [PubMed]
- McDonald, B.C.; Saykin, A.J.; McAllister, T.W. Functional MRI of mild traumatic brain injury (mTBI): Progress and perspectives from the first decade of studies. Brain Imaging Behav. 2012, 6, 193–207. [Google Scholar] [CrossRef] [PubMed]
- Matthews, S.C.; Strigo, I.A.; Simmons, A.N.; O’Connell, R.M.; Reinhardt, L.E.; Moseley, S.A. A multimodal imaging study in U.S. veterans of Operations Iraqi and Enduring Freedom with and without major depression after blast-related concussion. Neuroimage 2011, 54 (Suppl. S1), S69–S75. [Google Scholar] [CrossRef] [PubMed]
- Witt, S.T.; Lovejoy, D.W.; Pearlson, G.D.; Stevens, M.C. Decreased prefrontal cortex activity in mild traumatic brain injury during performance of an auditory oddball task. Brain Imaging Behav. 2010, 4, 232–247. [Google Scholar] [CrossRef] [PubMed]
- McAllister, T.W.; Flashman, L.A.; McDonald, B.C.; Saykin, A.J. Mechanisms of working memory dysfunction after mild and moderate TBI: Evidence from functional MRI and neurogenetics. J. Neurotrauma 2006, 23, 1450–1467. [Google Scholar] [CrossRef] [PubMed]
- Sheth, C.; Rogowska, J.; Legarreta, M.; McGlade, E.; Yurgelun-Todd, D. Functional connectivity of the anterior cingulate cortex in Veterans with mild traumatic brain injury. Behav. Brain Res. 2021, 396, 112882. [Google Scholar] [CrossRef]
- Li, F.; Lu, L.; Shang, S.; Hu, L.; Chen, H.; Wang, P.; Zhang, H.; Chen, Y.; Yin, X. Disrupted functional network connectivity predicts cognitive impairment after acute mild traumatic brain injury. CNS Neurosci. Ther. 2020, 26, 1083–1091. [Google Scholar] [CrossRef] [PubMed]
- Caeyenberghs, K.; Leemans, A.; Heitger, M.H.; Leunissen, I.; Dhollander, T.; Sunaert, S.; Dupont, P.; Swinnen, S.P. Graph analysis of functional brain networks for cognitive control of action in traumatic brain injury. Brain 2012, 135, 1293–1307. [Google Scholar] [CrossRef]
- Messé, A.; Caplain, S.; Pélégrini-Issac, M.; Blancho, S.; Lévy, R.; Aghakhani, N.; Montreuil, M.; Benali, H.; Lehéricy, S. Specific and evolving resting-state network alterations in post-concussion syndrome following mild traumatic brain injury. PLoS ONE 2013, 8, e65470. [Google Scholar] [CrossRef]
- Rubinov, M.; Sporns, O. Complex network measures of brain connectivity: Uses and interpretations. Neuroimage 2010, 52, 1059–1069. [Google Scholar] [CrossRef] [PubMed]
- Wig, G.S. Segregated Systems of Human Brain Networks. Trends Cogn. Sci. 2017, 21, 981–996. [Google Scholar] [CrossRef] [PubMed]
- Wasserman, S.; Faust, K. Social Network Analysis: Methods and Applications, 1st ed.; Cambridge University Press: Cambridge, UK, 1994. [Google Scholar]
- Fornito, A.; Zalesky, A.; Breakspear, M. The connectomics of brain disorders. Nat. Rev. Neurosci. 2015, 16, 159–172. [Google Scholar] [CrossRef] [PubMed]
- Sharp, D.J.; Scott, G.; Leech, R. Network dysfunction after traumatic brain injury. Nat. Rev. Neurol. 2014, 10, 156–166. [Google Scholar] [CrossRef] [PubMed]
- Raizman, R.; Tavor, I.; Biegon, A.; Harnof, S.; Hoffmann, C.; Tsarfaty, G.; Fruchter, E.; Tatsa-Laur, L.; Weiser, M.; Livny, A. Traumatic Brain Injury Severity in a Network Perspective: A Diffusion MRI Based Connectome Study. Sci. Rep. 2020, 10, 9121. [Google Scholar] [CrossRef] [PubMed]
- Han, K.; Chapman, S.B.; Krawczyk, D.C. Cognitive Training Reorganizes Network Modularity in Traumatic Brain Injury. Neurorehabil. Neural Repair. 2020, 34, 26–38. [Google Scholar] [CrossRef] [PubMed]
- Arnemann, K.L.; Chen, A.J.-W.; Novakovic-Agopian, T.; Gratton, C.; Nomura, E.M.; D’Esposito, M. Functional brain network modularity predicts response to cognitive training after brain injury. Neurology 2015, 84, 1568–1574. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y. Small world properties changes in mild traumatic brain injury. J. Magn. Reson. Imaging 2017, 46, 518–527. [Google Scholar] [CrossRef] [PubMed]
- Biswal, B.; Yetkin, F.Z.; Haughton, V.M.; Hyde, J.S. Functional connectivity in the motor cortex of resting human brain using echo-planar MRI. Magn. Reson. Med. 1995, 34, 537–541. [Google Scholar] [CrossRef] [PubMed]
- Han, K.; Chapman, S.B.; Krawczyk, D.C. Disrupted Intrinsic Connectivity among Default, Dorsal Attention, and Frontoparietal Control Networks in Individuals with Chronic Traumatic Brain Injury. J. Int. Neuropsychol. Soc. 2016, 22, 263–279. [Google Scholar] [CrossRef]
- Nomura, E.M.; Gratton, C.; Visser, R.M.; Kayser, A.; Perez, F.; D’Esposito, M. Double dissociation of two cognitive control networks in patients with focal brain lesions. Proc. Natl. Acad. Sci. USA 2010, 107, 12017–12022. [Google Scholar] [CrossRef] [PubMed]
- Pandit, A.S.; Expert, P.; Lambiotte, R.; Bonnelle, V.; Leech, R.; Turkheimer, F.E.; Sharp, D.J. Traumatic brain injury impairs small-world topology. Neurology 2013, 80, 1826–1833. [Google Scholar] [CrossRef] [PubMed]
- Bai, L.; Yin, B.; Lei, S.; Li, T.; Wang, S.; Pan, Y.; Gan, S.; Jia, X.; Li, X.; Xiong, F.; et al. Reorganized Hubs of Brain Functional Networks after Acute Mild Traumatic Brain Injury. J. Neurotrauma 2023, 40, 63–73. [Google Scholar] [CrossRef] [PubMed]
- Boroda, E.; Armstrong, M.; Gilmore, C.S.; Gentz, C.; Fenske, A.; Fiecas, M.; Hendrickson, T.; Roediger, D.; Mueller, B.; Kardon, R.; et al. Network topology changes in chronic mild traumatic brain injury (mTBI). NeuroImage Clin. 2021, 31, 102691. [Google Scholar] [CrossRef] [PubMed]
- Botchway, E.; Kooper, C.C.; Pouwels, P.J.W.; Bruining, H.; Engelen, M.; Oosterlaan, J.; Königs, M. Resting-state network organisation in children with traumatic brain injury. Cortex 2022, 154, 89–104. [Google Scholar] [CrossRef] [PubMed]
- Kohl, A.D.; Wylie, G.R.; Genova, H.; Hillary, F.G.; Deluca, J. The neural correlates of cognitive fatigue in traumatic brain injury using functional MRI. Brain Inj. 2009, 23, 420–432. [Google Scholar] [CrossRef] [PubMed]
- Shumskaya, E.; Andriessen, T.M.; Norris, D.G.; Vos, P.E. Abnormal whole-brain functional networks in homogeneous acute mild traumatic brain injury. Neurology 2012, 79, 175–182. [Google Scholar] [CrossRef]
- Mayer, A.R.; Mannell, M.V.; Ling, J.; Gasparovic, C.; Yeo, R.A. Functional connectivity in mild traumatic brain injury. Hum. Brain Mapp. 2011, 32, 1825–1835. [Google Scholar] [CrossRef]
- Iraji, A.; Chen, H.; Wiseman, N.; Welch, R.D.; O’Neil, B.J.; Haacke, E.M.; Liu, T.; Kou, Z. Compensation through Functional Hyperconnectivity: A Longitudinal Connectome Assessment of Mild Traumatic Brain Injury. Neural Plast. 2016, 2016, 4072402. [Google Scholar] [CrossRef]
- Finger, S.; Koehler, P.J.; Jagella, C. The Monakow Concept of Diaschisis: Origins and Perspectives. Arch. Neurol. 2004, 61, 283–291. [Google Scholar] [CrossRef]
- Imms, P.; Clemente, A.; Cook, M.; D’Souza, W.; Wilson, P.H.; Jones, D.K.; Caeyenberghs, K. The structural connectome in traumatic brain injury: A meta-analysis of graph metrics. Neurosci. Biobehav. Rev. 2019, 99, 128–137. [Google Scholar] [CrossRef] [PubMed]
- Spiegel, D.P.; Reynaud, A.; Ruiz, T.; Laguë-Beauvais, M.; Hess, R.; Farivar, R. First- and second-order contrast sensitivity functions reveal disrupted visual processing following mild traumatic brain injury. Vision Res. 2016, 122, 43–50. [Google Scholar] [CrossRef] [PubMed]
- Hall, H. Under the Sea 3D: IMAX. 2009. [Google Scholar]
- Cox, R.W. AFNI: Software for analysis and visualization of functional magnetic resonance neuroimages. Comput. Biomed. Res. 1996, 29, 162–173. [Google Scholar] [CrossRef] [PubMed]
- Jo, H.J.; Saad, Z.S.; Simmons, W.K.; Milbury, L.A.; Cox, R.W. Mapping sources of correlation in resting state FMRI, with artifact detection and removal. Neuroimage 2010, 52, 571–582. [Google Scholar] [CrossRef]
- Saad, Z.S.; Reynolds, R.C.; Argall, B.; Japee, S.; Cox, R.W. SUMA: An interface for surface-based intra-and inter-subject analysis with AFNI. In Proceedings of the 2004 2nd IEEE International Symposium on Biomedical Imaging: Nano to Macro (IEEE Cat No. 04EX821), Arlington, VA, USA, 18 April 2004; Volume 2, pp. 1510–1513. [Google Scholar] [CrossRef]
- Argall, B.D.; Saad, Z.S.; Beauchamp, M.S. Simplified intersubject averaging on the cortical surface using SUMA. Hum. Brain Mapp. 2006, 27, 14–27. [Google Scholar] [CrossRef]
- Saad, Z.S.; Reynolds, R.C. SUMA. Neuroimage 2012, 62, 768–773. [Google Scholar] [CrossRef]
- Benjamini, Y.; Hochberg, Y. Controlling the False Discovery Rate: A Practical and Powerful Approach to Multiple Testing. J. R. Stat. Soc. Ser. B Methodol. 1995, 57, 289–300. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2013; Available online: http://www.R-project.org/ (accessed on 15 October 2020).
- Latora, V.; Marchiori, M. Efficient behavior of small-world networks. Phys. Rev. Lett. 2001, 87, 198701. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Mruczek, R.E.; Arcaro, M.J.; Kastner, S. Probabilistic Maps of Visual Topography in Human Cortex. Cereb. Cortex 2015, 25, 3911–3931. [Google Scholar] [CrossRef]
- Clauset, A.; Newman, M.E.; Moore, C. Finding community structure in very large networks. Phys. Rev. E 2004, 70, 066111. [Google Scholar] [CrossRef]
- Barrat, A.; Barthelemy, M.; Pastor-Satorras, R.; Vespignani, A. The architecture of complex weighted networks. Proc. Natl. Acad. Sci. USA 2004, 101, 3747–3752. [Google Scholar] [CrossRef] [PubMed]
- Fornito, A.; Zalesky, A.; Bullmore, E. Fundamentals of Brain Network Analysis, 1st ed.; Academic Press: San Diego, CA, USA, 2016. [Google Scholar]
- Muller, A.M.; Virji-Babul, N. Stuck in a State of Inattention? Functional Hyperconnectivity as an Indicator of Disturbed Intrinsic Brain Dynamics in Adolescents With Concussion: A Pilot Study. ASN Neuro 2018, 10, 1759091417753802. [Google Scholar] [CrossRef] [PubMed]
- Corbetta, M.; Shulman, G.L.; Miezin, F.M.; Petersen, S.E. Superior parietal cortex activation during spatial attention shifts and visual feature conjunction. Science 1995, 270, 802–805. [Google Scholar] [CrossRef] [PubMed]
- Tsirka, V.; Simos, P.G.; Vakis, A.; Kanatsouli, K.; Vourkas, M.; Erimaki, S.; Pachou, E.; Stam, C.J.; Micheloyannis, S. Mild traumatic brain injury: Graph-model characterization of brain networks for episodic memory. Int. J. Psychophysiol. 2011, 79, 89–96. [Google Scholar] [CrossRef] [PubMed]
- Yuan, W.; Wade, S.L.; Babcock, L. Structural connectivity abnormality in children with acute mild traumatic brain injury using graph theoretical analysis. Hum. Brain Mapp. 2015, 36, 779–792. [Google Scholar] [CrossRef] [PubMed]
- Yuan, W.; Wade, S.L.; Quatman-Yates, C.; Hugentobler, J.A.; Gubanich, P.J.; Kurowski, B.G. Structural connectivity related to persistent symptoms after mild TBI in adolescents and response to aerobic training: Preliminary investigation. J. Head. Trauma. Rehabil. 2017, 32, 378. [Google Scholar] [CrossRef] [PubMed]
- Verhelst, H.; Vander Linden, C.; De Pauw, T.; Vingerhoets, G.; Caeyenberghs, K. Impaired rich club and increased local connectivity in children with traumatic brain injury: Local support for the rich? Hum. Brain Mapp. 2018, 39, 2800–2811. [Google Scholar] [CrossRef] [PubMed]
- Kaushal, M.; España, L.Y.; Nencka, A.S.; Wang, Y.; Nelson, L.D.; McCrea, M.A.; Meier, T.B. Resting-state functional connectivity after concussion is associated with clinical recovery. Hum. Brain Mapp. 2019, 40, 1211–1220. [Google Scholar] [CrossRef] [PubMed]
- Stevens, M.C.; Lovejoy, D.; Kim, J.; Oakes, H.; Kureshi, I.; Witt, S.T. Multiple resting state network functional connectivity abnormalities in mild traumatic brain injury. Brain Imaging Behav. 2012, 6, 293–318. [Google Scholar] [CrossRef]
- Rigon, A.; Voss, M.W.; Turkstra, L.S.; Mutlu, B.; Duff, M. Relationship between individual differences in functional connectivity and facial-emotion recognition abilities in adults with traumatic brain injury. NeuroImage Clin. 2017, 13, 370–377. [Google Scholar] [CrossRef]
- Ruiz, T. Cortical Dysfunctions of the Human Visual System following Mild Traumatic Brain Injury. Ph.D. Thesis, McGill University, Montreal, QC, Canada, October 2021. [Google Scholar]
- Caeyenberghs, K.; Leemans, A.; Leunissen, I.; Gooijers, J.; Michiels, K.; Sunaert, S.; Swinnen, S.P. Altered structural networks and executive deficits in traumatic brain injury patients. Brain Struct. Funct. 2014, 219, 193–209. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.Z.; Soffer, J.M.; Kahn, A.E.; Vettel, J.M.; Pasqualetti, F.; Bassett, D.S. Role of graph architecture in controlling dynamical networks with applications to neural systems. Nat. Phys. 2018, 14, 91–98. [Google Scholar] [CrossRef] [PubMed]
- Gu, S.; Pasqualetti, F.; Cieslak, M.; Telesford, Q.K.; Yu, A.B.; Kahn, A.E.; Medaglia, J.D.; Vettel, J.M.; Miller, M.B.; Grafton, S.T.; et al. Controllability of structural brain networks. Nat. Commun. 2015, 6, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Iraji, A.; Chen, H.; Wiseman, N.; Zhang, T.; Welch, R.; O’Neil, B.; Kulek, A.; Ayaz, S.I.; Wang, X.; Zuk, C.; et al. Connectome-scale assessment of structural and functional connectivity in mild traumatic brain injury at the acute stage. NeuroImage Clin. 2016, 12, 100–115. [Google Scholar] [CrossRef] [PubMed]
- Sours, C.; Kinnison, J.; Padmala, S.; Gullapalli, R.P.; Pessoa, L. Altered segregation between task-positive and task-negative regions in mild traumatic brain injury. Brain Imaging Behav. 2018, 12, 697–709. [Google Scholar] [CrossRef] [PubMed]
- Bernier, R.A.; Roy, A.; Venkatesan, U.M.; Grossner, E.C.; Brenner, E.K.; Hillary, F.G. Dedifferentiation does not account for hyperconnectivity after traumatic brain injury. Front. Neurol. 2017, 8, 297. [Google Scholar] [CrossRef] [PubMed]
- Carron, S.F.; Alwis, D.S.; Rajan, R. Traumatic Brain Injury and Neuronal Functionality Changes in Sensory Cortex. Front. Syst. Neurosci. 2016, 10, 47. [Google Scholar] [CrossRef] [PubMed]
- Hunt, R.F.; Scheff, S.W.; Smith, B.N. Synaptic Reorganization of Inhibitory Hilar Interneuron Circuitry after Traumatic Brain Injury in Mice. J. Neurosci. 2011, 31, 6880–6890. [Google Scholar] [CrossRef] [PubMed]
- Krivitzky, L.S.; Roebuck-Spencer, T.M.; Roth, R.M.; Blackstone, K.; Johnson, C.P.; Gioia, G. Functional magnetic resonance imaging of working memory and response inhibition in children with mild traumatic brain injury. J. Int. Neuropsychol. Soc. 2011, 17, 1143. [Google Scholar] [CrossRef]
- Spiegel, D.P.; Lague-Beauvais, M.; Sharma, G.; Farivar, R. Inter-hemispheric wave propagation failures in traumatic brain injury are indicative of callosal damage. Vision Res. 2015, 109, 38–44. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ruiz, T.; Brown, S.; Farivar, R. Graph Analysis of the Visual Cortical Network during Naturalistic Movie Viewing Reveals Increased Integration and Decreased Segregation Following Mild TBI. Vision 2024, 8, 33. https://doi.org/10.3390/vision8020033
Ruiz T, Brown S, Farivar R. Graph Analysis of the Visual Cortical Network during Naturalistic Movie Viewing Reveals Increased Integration and Decreased Segregation Following Mild TBI. Vision. 2024; 8(2):33. https://doi.org/10.3390/vision8020033
Chicago/Turabian StyleRuiz, Tatiana, Shael Brown, and Reza Farivar. 2024. "Graph Analysis of the Visual Cortical Network during Naturalistic Movie Viewing Reveals Increased Integration and Decreased Segregation Following Mild TBI" Vision 8, no. 2: 33. https://doi.org/10.3390/vision8020033
APA StyleRuiz, T., Brown, S., & Farivar, R. (2024). Graph Analysis of the Visual Cortical Network during Naturalistic Movie Viewing Reveals Increased Integration and Decreased Segregation Following Mild TBI. Vision, 8(2), 33. https://doi.org/10.3390/vision8020033