Measuring the Pupillary Light Reflex Using Portable Instruments in Applied Settings
Abstract
:1. Introduction
1.1. The Pupillary Light Reflex
1.2. Parasympathetic Nervous System and Health
1.3. Measuring the PLR
1.4. Components of the PLR
1.5. Age
1.6. Anxiety and Trauma
1.7. Aims
2. Methods
Participants
3. Materials
3.1. NeuroLight
3.2. iPhone
3.3. Anxiety
3.4. Trauma Symptomology
3.5. Procedure
3.6. Data Analysis and Statistical Analysis
4. Results
4.1. Reliability of Measures
4.2. Correlations between the Instruments and Parameters
4.3. Effect of Age
4.4. Effect of Anxiety
4.5. Effect of PTSD Symptomology
5. Discussion
5.1. Age
5.2. Anxiety and PTSD Symptomology
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Hess, E.H. Attitude and pupil size. Sci. Am. 1965, 212, 46–54. [Google Scholar] [CrossRef] [PubMed]
- Fan, X.; Miles, J.H.; Takahashi, N.; Yao, G. Abnormal transient pupillary light reflex in individuals with autism spectrum disorders. J. Autism Dev. Disord. 2009, 39, 1499–1508. [Google Scholar] [CrossRef] [PubMed]
- Kaltsatou, A.; Kouidi, E.; Fotiou, D.; Deligiannis, P. The use of pupillometry in the assessment of cardiac autonomic function in elite different type trained athletes. Eur. J. Appl. Physiol. 2011, 111, 2079–2087. [Google Scholar] [CrossRef] [PubMed]
- Kaifie, A.; Reugels, M.; Kraus, T.; Kursawe, M. The pupillary light reflex (PLR) as a marker for the ability to work or drive–a feasibility study. J. Occup. Med. Toxicol. 2021, 16, 1–11. [Google Scholar] [CrossRef]
- Lussier, B.L.; Olson, D.M.; Aiyagari, V. Automated pupillometry in neurocritical care: Research and practice. Curr. Neurol. Neurosci. Rep. 2019, 19, 71. [Google Scholar] [CrossRef]
- Lerner, A.G.; Bernabé-Ortiz, A.; Ticse, R.; Hernandez, A.; Huaylinos, Y.; Pinto, M.E.; Málaga, G.; Checkley, W.; Gilman, R.H.; Miranda, J.J.; et al. Type 2 diabetes and cardiac autonomic neuropathy screening using dynamic pupillometry. Diabet. Med. 2015, 32, 1470–1478. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Zekveld, A.A.; Naylor, G.; Ohlenforst, B.; Jansma, E.P.; Lorens, A.; Lunner, T.; Kramer, S.E. Parasympathetic Nervous System dysfunction, as identified by pupil light reflex, and its possible connection to hearing impairment. PLoS ONE 2016, 11, e0153566. [Google Scholar] [CrossRef]
- McCall, W.V.; Sareddy, S.; Youssef, N.A.; Miller, B.J.; Rosenquist, P.B. The pupillary light reflex as a point-of-care test for suicide risk: Preliminary results. Psychiatry Res. 2021, 295, 113582. [Google Scholar] [CrossRef]
- Hall, C.A.; Chilcott, R.P. Eyeing up the future of the pupillary light reflex in neurodiagnostics. Diagnostics 2018, 8, 19. [Google Scholar] [CrossRef]
- Lowenstein, O.; Loewenfeld, I.E. Role of sympathetic and parasympathetic systems in reflex dilatation of the pupil: Pupillographic studies. Arch. Neurol. Psychiatry 1950, 64, 313–340. [Google Scholar] [CrossRef]
- Lowenstein, O.; Loewenfeld, I.E. Mutual role of sympathetic and parasympathetic in shaping of the pupillary reflex to light: Pupillographic studies. Arch. Neurol. Psychiatry 1950, 64, 341–377. [Google Scholar] [CrossRef] [PubMed]
- Thayer, J.F.; Åhs, F.; Fredrikson, M.; Sollers, I.I.I.J.J.; Wager, T.D. A meta-analysis of heart rate variability and neuroimaging studies: Implications for heart rate variability as a marker of stress and health. Neurosci. Biobehav. Rev. 2012, 36, 747–756. [Google Scholar] [CrossRef] [PubMed]
- Beauchaine, T.P.; Thayer, J.F. Heart rate variability as a transdiagnostic biomarker of psychopathology. Int. J. Psychophysiol. 2015, 98, 338–350. [Google Scholar] [CrossRef] [PubMed]
- Kemp, A.H.; Quintana, D.S.; Felmingham, K.L.; Matthews, S.; Jelinek, H.F. Depression, comorbid anxiety disorders, and heart rate variability in physically healthy, unmedicated patients: Implications for cardiovascular risk. PLoS ONE 2012, 7, e30777. [Google Scholar] [CrossRef]
- Kircanski, K.; Waugh, C.E.; Camacho, M.C.; Gotlib, I.H. Aberrant parasympathetic stress responsivity in pure and co-occurring major depressive disorder and generalized anxiety disorder. J. Psychopathol. Behav. Assess. 2016, 38, 5–19. [Google Scholar] [CrossRef]
- Agorastos, A.; Boel, J.A.; Heppner, P.S.; Hager, T.; Moeller-Bertram, T.; Haji, U.; Motazedi, A.; Yanagi, M.A.; Baker, D.G.; Stiedl, O. Diminished vagal activity and blunted diurnal variation of heart rate dynamics in posttraumatic stress disorder. Stress 2013, 16, 300–310. [Google Scholar] [CrossRef]
- Wang, Y.; Zekveld, A.A.; Wendt, D.; Lunner, T.; Naylor, G.; Kramer, S.E. Pupil light reflex evoked by light-emitting diode and computer screen: Methodology and association with need for recovery in daily life. PLoS ONE 2018, 13, e0197739. [Google Scholar] [CrossRef]
- Streeter, C.C.; Gerbarg, P.L.; Saper, R.B.; Ciraulo, D.A.; Brown, R.P. Effects of yoga on the autonomic nervous system, gamma-aminobutyric-acid, and allostasis in epilepsy, depression, and post-traumatic stress disorder. Med. Hypotheses 2012, 78, 571–579. [Google Scholar] [CrossRef]
- Kirk, U.; Axelsen, J.L. Heart rate variability is enhanced during mindfulness practice: A randomized controlled trial involving a 10-day online-based mindfulness intervention. PLoS ONE 2020, 15, e0243488. [Google Scholar] [CrossRef]
- Muppidi, S.; Adams-Huet, B.; Tajzoy, E.; Scribner, M.; Blazek, P.; Spaeth, E.B.; Frohman, E.; Davis, S.; Vernino, S. Dynamic pupillometry as an autonomic testing tool. Clin. Auton. Res. 2013, 23, 297–303. [Google Scholar] [CrossRef]
- McAnany, J.J.; Smith, B.M.; Garland, A.; Kagen, S.L. iPhone-based pupillometry: A novel approach for assessing the pupillary light reflex. Optom. Vis. Sci. 2018, 95, 953. [Google Scholar] [CrossRef] [PubMed]
- Larson, M.D.; Behrends, M. Portable infrared pupillometry: A review. Anesth. Analg. 2015, 120, 1242–1253. [Google Scholar] [CrossRef] [PubMed]
- McKay, R.E.; Kohn, M.A.; Schwartz, E.S.; Larson, M.D. Evaluation of two portable pupillometers to assess clinical utility. Concussion 2020, 5, CNC82. [Google Scholar] [CrossRef] [PubMed]
- Solyman, O.; Abushanab, M.M.I.; Carey, A.R.; Henderson, A.D. Pilot study of smartphone infrared pupillography and pupillometry. Clin. Ophthalmol. 2022, 16, 303. [Google Scholar] [CrossRef] [PubMed]
- Peters, T.; Grüner, C.; Durst, W.; Hütter, C.; Wilhelm, B. Sleepiness in professional truck drivers measured with an objective alertness test during routine traffic controls. Int. Arch. Occup. Environ. Health 2014, 87, 881–888. [Google Scholar] [CrossRef]
- Loewenfeld, I.E. The Pupil: Anatomy, Physiology, and Clinical Applications; Iowa State University Press: Ames, IA, USA, 1993. [Google Scholar]
- Winn, B.; Whitaker, D.; Elliott, D.B.; Phillips, N.J. Factors affecting light-adapted pupil size in normal human subjects. Investig. Ophthalmol. Vis. Sci. 1994, 35, 1132–1137. [Google Scholar]
- Straub, R.H.; Thies, U.; Kerp, L. The pupillary light reflex. 1. Age-dependent and age-independent parameters in normal subjects. Ophthalmologica 1992, 204, 134–142. [Google Scholar] [CrossRef]
- Fotiou, D.; Brozou, C.G.; Tsiptsios, D.; Fotiou, A.; Kabitsi, A.; Nakou, M.; Giantselidis, C.; Goula, A. Effect of age on pupillary light reflex: Evaluation of pupil mobility for clinical practice and research. Electromyogr. Clin. Neurophysiol. 2007, 47, 11. [Google Scholar]
- Tekin, K.; Sekeroglu, M.A.; Kiziltoprak, H.; Doguizi, S.; Inanc, M.; Yilmazbas, P. Static and dynamic pupillometry data of healthy individuals. Clin. Exp. Optom. 2018, 101, 659–665. [Google Scholar] [CrossRef]
- Piha, S.J.; Halonen, J.-P. Infrared pupillometry in the assessment of autonomic function. Diabetes Res. Clin. Pract. 1994, 26, 61–66. [Google Scholar] [CrossRef]
- Rickmann, A.; Waizel, M.; Kazerounian, S.; Szurman, P.; Wilhelm, H.; Boden, K.T. Digital pupillometry in normal subjects. Neuro-Ophthalmology 2017, 41, 12–18. [Google Scholar] [CrossRef] [PubMed]
- Bakes, A.; Bradshaw, C.M.; Szabadi, E. Attenuation of the pupillary light reflex in anxious patients. Br. J. Clin. Pharmacol. 1990, 30, 377–381. [Google Scholar] [CrossRef] [PubMed]
- Bitsios, P.; Szabadi, E.; Bradshaw, C. Relationship of the ‘fear-inhibited light reflex’to the level of state/trait anxiety in healthy subjects. Int. J. Psychophysiol. 2002, 43, 177–184. [Google Scholar] [CrossRef] [PubMed]
- Nagai, M.; Wada, M.; Sunaga, N. Trait anxiety affects the pupillary light reflex in college students. Neurosci. Lett. 2002, 328, 68–70. [Google Scholar] [CrossRef]
- Shioiri, T.; Kuwabara, H.; Abe, R.; Iijima, A.; Kojima-Maruyama, M.; Kitamura, H.; Bando, T.; Someya, T. Lack of a relationship between the pupillary light reflex response and state/trait anxiety in remitted patients with panic disorder. J. Affect. Disord. 2006, 95, 159–164. [Google Scholar] [CrossRef]
- McKinnon, A.I.; Gray, N.S.; Snowden, R.J. Enhanced emotional response to both negative and positive images in post-traumatic stress disorder: Evidence from pupillometry. Biol. Psychol. 2020, 154, 107922. [Google Scholar] [CrossRef]
- Spielberger, C.D. Manual for the State-Trait-Anxiety Inventory: STAI (form Y); Consulting Psychologists Press: Palo Alto, CA, USA, 1983. [Google Scholar]
- Cloitre, M.; Shevlin, M.; Brewin, C.R.; Bisson, J.I.; Roberts, N.P.; Maercker, A.; Karatzias, T.; Hyland, P. The International Trauma Questionnaire: Development of a self-report measure of ICD-11 PTSD and complex PTSD. Acta Psychiatr. Scand. 2018, 138, 536–546. [Google Scholar] [CrossRef]
- Aiken, L.S.; West, S.G. Multiple Regression: Testing and Interpreting Interactions; Sage: London, UK, 1991. [Google Scholar]
- Fotiou, F.; Fountoulakis, K.; Goulas, A.; Alexopoulos, L.; Palikaras, A. Automated standardized pupillometry with optical method for purposes of clinical practice and research. Clin. Physiol. 2000, 20, 336–347. [Google Scholar] [CrossRef]
- Bergamin, O.; Kardon, R.H. Latency of the pupil light reflex: Sample rate, stimulus intensity, and variation in normal subjects. Investig. Ophthalmol. Vis. Sci. 2003, 44, 1546–1554. [Google Scholar] [CrossRef]
- Bitsios, P.; Prettyman, R.; Szabadi, E. Changes in autonomic function with age: A study of pupillary kinetics in healthy young and old people. Age Ageing 1996, 25, 432–438. [Google Scholar] [CrossRef]
- Sharma, S.; Baskaran, M.; Rukmini, A.V.; Nongpiur, M.E.; Htoon, H.; Cheng, C.-Y.; Perera, S.A.; Gooley, J.J.; Aung, T.; Milea, D. Factors influencing the pupillary light reflex in healthy individuals. Graefe’s Arch. Clin. Exp. Ophthalmol. 2016, 254, 1353–1359. [Google Scholar] [CrossRef] [PubMed]
- Pfeifer, M.A.; Weinberg, C.R.; Cook, D.; Best, J.D.; Reenan, A.; Halter, J.B. Differential changes of autonomic nervous system function with age in man. Am. J. Med. 1983, 75, 249–258. [Google Scholar] [CrossRef] [PubMed]
- Chang, H.-A.; Chang, C.-C.; Tzeng, N.-S.; Kuo, T.B.; Lu, R.-B.; Huang, S.-Y. Generalized anxiety disorder, comorbid major depression and heart rate variability: A case-control study in Taiwan. Psychiatry Investig. 2013, 10, 326. [Google Scholar] [CrossRef] [PubMed]
- Minassian, A.; Geyer, M.A.; Baker, D.G.; Nievergelt, C.M.; O’connor, D.T.; Risbrough, V.B. Heart rate variability characteristics in a large group of active-duty marines and relationship to posttraumatic stress. Psychosom. Med. 2014, 76, 292. [Google Scholar] [CrossRef] [PubMed]
- Williams, D.P.; Feeling, N.R.; Hill, L.K.; Spangler, D.P.; Koenig, J.; Thayer, J.F. Resting heart rate variability, facets of rumination and trait anxiety: Implications for the perseverative cognition hypothesis. Front. Hum. Neurosci. 2017, 11, 520. [Google Scholar] [CrossRef]
- Miu, A.C.; Heilman, R.M.; Miclea, M. Reduced heart rate variability and vagal tone in anxiety: Trait versus state, and the effects of autogenic training. Auton. Neurosci. 2009, 145, 99–103. [Google Scholar] [CrossRef]
- Minassian, A.; Maihofer, A.X.; Baker, D.G.; Nievergelt, C.M.; Geyer, M.A.; Risbrough, V.B. Marine Resiliency Study Team. Association of predeployment heart rate variability with risk of postdeployment posttraumatic stress disorder in active-duty marines. JAMA Psychiatry 2015, 72, 979–986. [Google Scholar] [CrossRef]
N | Age | BPD | CL | CA | RCA | CV | |
---|---|---|---|---|---|---|---|
Straub et al. [26] | 103 (48♀) | 14–75 | −0.61 * | 0.42 * | - | - | −0.41 * |
Piha & Halonen [29] | 81 (44♀) | 18–47 | −0.44 * | - | - | −0.22 | −0.52 * |
Fotiou et al. [27] | 100 (48♀) | 18–81 | −0.68 * | 0.14 | - | −0.39 * | −0.56 *a |
Muddipi et al. [18] | 79 (?♀) | 20–84 b | Negative *c | - | Negative * | Positive * | Negative* |
Tekin et al. [28] | 155 (86♀) | 6–64 | −0.63 * | 0.29 * | −0.08 | - | −0.35 * |
NeuroLight | iPhone | |||||
---|---|---|---|---|---|---|
Mean | SD | Reliability | Mean | SD | Reliability | |
Baseline pupil diameter (mm) | 5.64 | 1.13 | 0.97 ** | 5.53 | 1.09 | 0.93 ** |
Constriction latency (ms) | 265.3 | 41.4 | 0.65 ** | 202.8 | 27.6 | 0.10 |
Constriction amplitude (mm) | 1.95 | 0.59 | 0.92 ** | 1.41 | 0.66 | 0.85 ** |
Relative constriction amplitude (%) | 34.0 | 6.6 | 0.90 ** | 24.5 | 8.2 | 0.78 ** |
Constriction velocity (mm/s) or maximum constriction velocity (mm/s2) | 4.53 | 1.17 | 0.78 ** | 12.96 | 7.47 | 0.78 ** |
1. | 2. | 3. | 4. | 5. | |
---|---|---|---|---|---|
1. Baseline pupil diameter | 0.66 ** | 0.03 | 0.81 ** | 0.33 ** | 0.48 ** |
2. Constriction latency | −0.09 | 0.07 | −0.07 | −0.15 | −0.19 |
3. Constriction amplitude | 0.76 ** | −0.10 | 0.45 ** | 0.81 ** | 0.76 ** |
4. Relative constriction amplitude | 0.47 ** | −0.10 | 0.92 ** | 0.21 | 0.67 ** |
5. Constriction velocity or maximum constriction velocity | 0.47 ** | 0.01 | 0.77 ** | 0.74 ** | 0.34 * |
NeuroLight | iPhone | |
---|---|---|
Baseline pupil diameter (mm) | −0.67 ** | −0.37 ** |
Constriction latency (ms) | 0.05 | −0.15 |
Constriction amplitude (mm) | −0.57 ** | −0.33 ** |
Relative constriction amplitude (%) | −0.27 * | −0.26 * |
Constriction velocity or maximum constriction velocity | −0.47 ** | −0.32 * |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gray, N.S.; Price, M.; Pink, J.; O’Connor, C.; Antunes, A.; Snowden, R.J. Measuring the Pupillary Light Reflex Using Portable Instruments in Applied Settings. Vision 2024, 8, 60. https://doi.org/10.3390/vision8040060
Gray NS, Price M, Pink J, O’Connor C, Antunes A, Snowden RJ. Measuring the Pupillary Light Reflex Using Portable Instruments in Applied Settings. Vision. 2024; 8(4):60. https://doi.org/10.3390/vision8040060
Chicago/Turabian StyleGray, Nicola S., Menna Price, Jennifer Pink, Chris O’Connor, Ana Antunes, and Robert J. Snowden. 2024. "Measuring the Pupillary Light Reflex Using Portable Instruments in Applied Settings" Vision 8, no. 4: 60. https://doi.org/10.3390/vision8040060
APA StyleGray, N. S., Price, M., Pink, J., O’Connor, C., Antunes, A., & Snowden, R. J. (2024). Measuring the Pupillary Light Reflex Using Portable Instruments in Applied Settings. Vision, 8(4), 60. https://doi.org/10.3390/vision8040060