A Classification of Aperiodic Architected Cellular Materials
Abstract
:1. Introduction
2. Types of Aperiodic Cellular Materials
3. Toward a Comprehensive Classification of Aperiodic Cellular Materials
3.1. Gradation
3.1.1. Feature
3.1.2. Method: Parameter
3.1.3. Method: Pattern
3.2. Perturbation
3.2.1. Feature
3.2.2. Method
3.3. Hybridization
3.3.1. Feature
3.3.2. Method
4. Discussion
4.1. Degree of Aperiodicity
4.2. Combining Approaches
4.3. Properties
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
References
- du Plessis, A.; Mohammad Javad Razavi, S.; Benedetti, M.; Murchio, S.; Leary, M.; Watson, M.; Bhate, D.; Berto, F. Properties and applications of additively manufactured metallic cellular materials: A review. Prog. Mater. Sci. 2021, 125, 100918. [Google Scholar] [CrossRef]
- Gibson, L.; Ashby, M. Cellular Solids: Structure and Properties, 2nd ed.; Cambridge University Press: Cambridge, UK, 1999. [Google Scholar]
- Ashby, M.F.; Evans, A.G.; Fleck, N.A.; Gibson, L.J.; Hutchinson, J.W.; Wadley, H.N.G. Metal Foams: A Design Guide; Butterworth Heinemann: Oxford, UK, 2010. [Google Scholar]
- Bhate, D. Four Questions in Cellular Material Design. Materials 2019, 12, 1060. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bhate, D.; Penick, C.; Ferry, L.; Lee, C. Classification and Selection of Cellular Materials in Mechanical Design: Engineering and Biomimetic Approaches. Designs 2019, 3, 19. [Google Scholar] [CrossRef] [Green Version]
- Li, R.; Bowerman, B. Symmetry breaking in biology. Cold Spring Harb. Perspect. Biol. 2010, 2, a003475. [Google Scholar] [CrossRef]
- Liu, Z.; Meyers, M.A.; Zhang, Z.; Ritchie, R.O. Functional gradients and heterogeneities in biological materials: Design principles, functions, and bioinspired applications. Prog. Mater. Sci. 2017, 88, 467–498. [Google Scholar] [CrossRef]
- Smith, M.L.; Napp, N.; Petersen, K.H. Imperfect comb construction reveals the architectural abilities of honeybees. Proc. Natl. Acad. Sci. USA 2021, 118, e2103605118. [Google Scholar] [CrossRef] [PubMed]
- Restrepo, D.; Mankame, N.D.; Zavattieri, P.D. Programmable materials based on periodic cellular solids. Part I: Experiments. Int. J. Solids Struct. 2016, 100–101, 485–504. [Google Scholar] [CrossRef]
- Restrepo, D.; Mankame, N.D.; Zavattieri, P.D. Programmable materials based on periodic cellular solids. Part II: Numerical analysis. Int. J. Solids Struct. 2016, 100–101, 505–522. [Google Scholar] [CrossRef]
- Rahman, O.; Uddin, K.Z.; Muthulingam, J.; Youssef, G.; Shen, C.; Koohbor, B. Density-Graded Cellular Solids: Mechanics, Fabrication, and Applications. Adv. Eng. Mater. 2022, 24, 2100646. [Google Scholar] [CrossRef]
- Wang, J.; Callanan, J.; Ogunbodede, O.; Rai, R. Hierarchical combinatorial design and optimization of non-periodic metamaterial structures. Addit. Manuf. 2021, 37, 101710. [Google Scholar] [CrossRef]
- Carbon. Enabling Custom Mechanical Responses Using Spatially Varying Lattices; Carbon, Inc.: Redwood City, CA, USA, 2022. [Google Scholar]
- Groth, J.-H.; Anderson, C.; Magnini, M.; Tuck, C.; Clare, A. Five simple tools for stochastic lattice creation. Addit. Manuf. 2022, 49, 102488. [Google Scholar] [CrossRef]
- NTopology. Platform; NTopology Inc.: New York, NY, USA, 2020. [Google Scholar]
- Wong, W. Principles of Form and Design, 1st ed.; Wiley: Hoboken, NJ, USA, 1993. [Google Scholar]
- Weyl, H. Symmetry, 1st ed.; Princeton University Press: Princeton, NJ, USA, 1952. [Google Scholar]
- Du Sautoy, M. Symmetry: A Journey into the Patterns of Nature; Harper: New York, NY, USA, 2008; ISBN 0060789409. [Google Scholar]
- Al-Ketan, O. Programmed plastic deformation in mathematically-designed architected cellular materials. Metals 2021, 11, 1622. [Google Scholar] [CrossRef]
- Wu, J.; Aage, N.; Westermann, R.; Sigmund, O. Infill Optimization for Additive Manufacturing—Approaching Bone-like Porous Structures. IEEE Trans. Vis. Comput. Graph. 2018, 24, 1127–1140. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Panesar, A.; Abdi, M.; Hickman, D.; Ashcroft, I. Strategies for functionally graded lattice structures derived using topology optimisation for Additive Manufacturing. Addit. Manuf. 2018, 19, 81–94. [Google Scholar] [CrossRef]
- Ren, F.; Zhang, C.; Liao, W.; Liu, T.; Li, D.; Shi, X.; Jiang, W.; Wang, C.; Qi, J.; Chen, Y.; et al. Transition boundaries and stiffness optimal design for multi-TPMS lattices. Mater. Des. 2021, 210, 110062. [Google Scholar] [CrossRef]
- Rajeev, A.; Grishin, A.; Agrawal, V.; Santhanam, B.; Goss, D.; Niverty, S.; Cope, G.; Penick, C.A.; Chawla, N.; Shyam, V.; et al. Parametric optimization of corner radius in hexagonal honeycombs under in-plane compression. J. Manuf. Process. 2022, 79, 35–46. [Google Scholar] [CrossRef]
- Storm, J.; Abendroth, M.; Kuna, M. Influence of curved struts, anisotropic pores and strut cavities on the effective elastic properties of open-cell foams. Int. J. Mech. Mater. 2015, 86, 1–10. [Google Scholar] [CrossRef]
- Silva, M.J.; Hayes, W.C.; Gibson, L.J. The Effects of Non-Periodic Microstructure on the Elastic Properties of Two-Dimensional Cellular Solids. Int. J. Mech. Sci. 1995, 37, 1161–1177. [Google Scholar] [CrossRef]
- Zhu, H.X.; Hobdell, J.R.; Windle, A.H. Effects of cell irregularity on the elastic properties of open-cell foams. Acta Mater. 2000, 48, 4893–4900. [Google Scholar] [CrossRef]
- Van der Burg, M.; Shulmeister, V.; Van der Geissen, E.; Marissen, R. On the linear elastic properties of regular and random open-cell foam models. J. Cell. Plast. 1997, 33, 31–54. [Google Scholar] [CrossRef]
- Martínez, J.; Song, H.; Dumas, J.; Lefebvre, S. Orthotropic k-nearest foams for additive manufacturing. ACM Trans. Graph. 2017, 36, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Martínez, J.; Dumas, J.; Lefebvre, S. Procedural voronoi foams for additive manufacturing. ACM Trans. Graph. 2016, 35, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Roberts, A.P.; Garboczi, E.J. Elastic properties of model random three-dimensional open-cell solids. J. Mech. Phys. Solids 2002, 50, 33–55. [Google Scholar] [CrossRef]
- Zheng, L.; Kumar, S.; Kochmann, D.M. Data-driven topology optimization of spinodoid metamaterials with seamlessly tunable anisotropy. Comput. Methods Appl. Mech. Eng. 2021, 383, 113894. [Google Scholar] [CrossRef]
- Kumar, S.; Tan, S.; Zheng, L.; Kochmann, D.M. Inverse-designed spinodoid metamaterials. NPJ Comput. Mater. 2020, 6, 1–10. [Google Scholar] [CrossRef]
- Casanova, L.; Vijayan Anitha, V.; Kadway, N.; Gandhi, A.; Le, T.; Lee, C.; Bhate, D. On the Mechanical Behavior of Additively Manufactured Asymmetric Honeycombs. In Proceedings of the 2018 International Solid Freeform Fabrication Symposium, Austin, TX, USA, 13–15 August 2018. [Google Scholar]
- Liu, C.; Lertthanasarn, J.; Pham, M.S. The origin of the boundary strengthening in polycrystal-inspired architected materials. Nat. Commun. 2021, 12, 1–10. [Google Scholar] [CrossRef]
- Sotomayor, O.E.; Tippur, H.V. Role of cell regularity and relative density on elastoplastic compression response of 3-D open-cell foam core sandwich structure generated using Voronoi diagrams. Acta Mater. 2014, 78, 301–313. [Google Scholar] [CrossRef]
- Sharma, R. An Investigation into the Stiffness Response of Lattice Shapes under Various Loading Conditions. Master’s Thesis, Arizona State University, Tempe, AZ, USA, 2019. [Google Scholar]
- Al-Ketan, O.; Lee, D.W.; Rowshan, R.; Abu Al-Rub, R.K. Functionally graded and multi-morphology sheet TPMS lattices: Design, manufacturing, and mechanical properties. J. Mech. Behav. Biomed. Mater. 2020, 102, 103520. [Google Scholar] [CrossRef]
- Maskery, I.; Hussey, A.; Panesar, A.; Aremu, A.; Tuck, C.; Ashcroft, I.; Hague, R. An investigation into reinforced and functionally graded lattice structures. J. Cell. Plast. 2017, 53, 151–165. [Google Scholar] [CrossRef] [Green Version]
- Yu, S.; Sun, J.; Bai, J. Investigation of functionally graded TPMS structures fabricated by additive manufacturing. Mater. Des. 2019, 182, 108021. [Google Scholar] [CrossRef]
- Zhao, M.; Zhang, D.Z.; Liu, F.; Li, Z.; Ma, Z.; Ren, Z. Mechanical and energy absorption characteristics of additively manufactured functionally graded sheet lattice structures with minimal surfaces. Int. J. Mech. Sci. 2020, 167, 105262. [Google Scholar] [CrossRef]
- Zhong, M.; Zhou, W.; Xi, H.; Liang, Y.; Wu, Z. Double-level energy absorption of 3d printed tpms cellular structures via wall thickness gradient design. Materials 2021, 14, 6262. [Google Scholar] [CrossRef]
- Shi, X.; Liao, W.; Liu, T.; Zhang, C.; Li, D.; Jiang, W.; Wang, C.; Ren, F. Design optimization of multimorphology surface-based lattice structures with density gradients. Int. J. Adv. Manuf. Technol. 2021, 117, 2013–2028. [Google Scholar] [CrossRef]
- Liebenstein, S.; Sandfeld, S.; Zaiser, M. Size and disorder effects in elasticity of cellular structures: From discrete models to continuum representations. Int. J. Solids Struct. 2018, 146, 97–116. [Google Scholar] [CrossRef] [Green Version]
- Sotomayor, O.E.; Tippur, H.V. Role of cell regularity and relative density on elasto-plastic compression response of random honeycombs generated using Voronoi diagrams. Int. J. Solids Struct. 2014, 51, 3776–3786. [Google Scholar] [CrossRef] [Green Version]
- Luxner, M.H.; Stampfl, J.; Pettermann, H.E. Numerical simulations of 3D open cell structures—Influence of structural irregularities on elasto-plasticity and deformation localization. Int. J. Solids Struct. 2007, 44, 2990–3003. [Google Scholar] [CrossRef] [Green Version]
- Rahman, O.; Koohbor, B. Optimization of energy absorption performance of polymer honeycombs by density gradation. Compos. Part C Open Access 2020, 3, 100052. [Google Scholar] [CrossRef]
- Pham, M.-S.; Liu, C.; Todd, I.; Lertthanasarn, J. Damage-tolerant architected materials inspired by crystal microstructure. Nature 2019, 565, 305–311. [Google Scholar] [CrossRef]
- Al-Ketan, O.; Lee, D.W.; Abu Al-Rub, R.K. Mechanical properties of additively-manufactured sheet-based gyroidal stochastic cellular materials. Addit. Manuf. 2021, 48, 102418. [Google Scholar] [CrossRef]
- White, B.C.; Garland, A.; Alberdi, R.; Boyce, B.L. Interpenetrating lattices with enhanced mechanical functionality. Addit. Manuf. 2021, 38, 101741. [Google Scholar] [CrossRef]
- Wang, X.; Zheng, Z.; Yu, J.; Wang, C. Impact resistance and energy absorption of functionally graded cellular structures. Appl. Mech. Mater. 2011, 69, 73–78. [Google Scholar] [CrossRef]
Main Type | Feature | Method | Unit Cell Type | Stated Benefit Relative to Periodic [Ref.] |
---|---|---|---|---|
Gradation | Unit Cell | Proportion–Uniform | TPMS Gyroid | Direction-dependent modulus under compression [37] |
Gradation | Unit Cell | Proportion–Field-driven | Arbitrary (bone-like) | Higher stiffness at lower mass [20] |
Gradation | Member | Proportion–Uniform | BCC Lattice | Improvement in energy absorption per unit volume [38] |
Gradation | Member | Proportion–Uniform | TPMS Schwarz-P and Gyroid | Higher energy absorption for Schwarz-P under quasi-static compression [39] |
Gradation | Member | Proportion–Uniform | TPMS Schwarz-P and Gyroid | Higher energy absorption under quasi-static compression [40] |
Gradation | Member | Proportion–Uniform; and Proportion–Alternation | TPMS Schwarz-P | Two stress plateaus under quasi-static compression [41] |
Gradation | Member | Proportion–Field-driven | TPMS (several) | Improvements in cantilever bending strength [42] |
Perturbation | Nucleus | Voronoi algorithm | Honeycomb | Structural stiffness dependent on formation of force chains [43] |
Perturbation | Nucleus | Voronoi algorithm | Honeycomb | Degree of perturbation significantly influences elastic-plastic response under compression, and plastic-collapse strength decreases with increasing perturbation [44] |
Perturbation | Node | Spatially random distribution | Simple cubic and Kelvin lattices | Reduction in anisotropy for simple cubic; moderate reduction in Young’s modulus in all directions for Kelvin [45] |
Perturbation | Member | Proportion–Uniform | Hexagonal Honeycomb | Improved densification strain and energy absorption under in-plane compression [46] |
Hybridization | Unit Cell | Allocation | FCC Lattice (different orientations) | Modulates failure band formation under compression [34,47] |
Hybridization | Unit Cell | Allocation | Stochastic + Gyroid | Stretch-dominated behavior with no shear band formation [48] |
Hybridization | Unit Cell | Allocation | TPMS (Schwarz-P + gyroid + Schoen) | Improved stiffness and strength under bending [22] |
Hybridization | Unit Cell | Interpenetration | Rhombic Dodecahedron + FCC; BCC + fiber | Improved toughness, multi-stable/negative stiffness behavior, and electromechanical coupling [49] |
Hybridization | Member | Deletion | Square honeycomb | Improves specific energy absorption under in-plane compression [33] |
Combination: Gradation and Perturbation | Unit Cell | Nucleus–Voronoi (Perturbation)–Proportion–Uniform (Gradation) | Honeycomb (Voronoi) | Improved energy absorption in compression at low impact velocities [50] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ramirez-Chavez, I.E.; Anderson, D.; Sharma, R.; Lee, C.; Bhate, D. A Classification of Aperiodic Architected Cellular Materials. Designs 2022, 6, 63. https://doi.org/10.3390/designs6040063
Ramirez-Chavez IE, Anderson D, Sharma R, Lee C, Bhate D. A Classification of Aperiodic Architected Cellular Materials. Designs. 2022; 6(4):63. https://doi.org/10.3390/designs6040063
Chicago/Turabian StyleRamirez-Chavez, Irving E., Daniel Anderson, Raghav Sharma, Christine Lee, and Dhruv Bhate. 2022. "A Classification of Aperiodic Architected Cellular Materials" Designs 6, no. 4: 63. https://doi.org/10.3390/designs6040063
APA StyleRamirez-Chavez, I. E., Anderson, D., Sharma, R., Lee, C., & Bhate, D. (2022). A Classification of Aperiodic Architected Cellular Materials. Designs, 6(4), 63. https://doi.org/10.3390/designs6040063