Overview of Identified Challenges in the Development Process of Superconducting Accelerator Magnets
Abstract
:1. Introduction
2. Background
- Modeling the design process, including all related resources like products, knowledge, and organization.
- Deriving design support based on the created models to improve design practice.
- A design methodology is a general, well-defined approach to producing designs for a particular class of systems. A design methodology describes design activities and their sequence, including methods, information artifacts, the management process, and priorities in design thinking.
- A design process is a series of organized and planned activities to develop a design or solution to a specific problem. The design process is defined within a design methodology. It typically includes phases such as research, ideation, prototyping, testing, and refinement and provides a systematic approach to creating and improving the system design.
- A design method is a specific technique or approach used to achieve a desired outcome within the design process. Design methods guide how to perform tasks, use information, and sequence actions to solve a problem.
- A guideline is a recommendation or principle that guides or advises approaching a particular task, situation, or decision. It is a standard and facilitates an information-based decision-making process following best practices.
- A tool is a physical or digital object that helps perform design-related tasks and create design elements. These tools can be tailored to specific methods, guidelines, processes, or approaches.
3. Methods
- What are the challenges in the domain of superconducting accelerator magnets?
- What are the challenges during the development process of accelerator magnets at CERN?
3.1. Systematic Literature Review
3.2. Explorative Expert Interviews
4. Analysis of the Magnet Development Process
4.1. General Domain Challenges
4.1.1. Change of Technology
4.1.2. Long Lead Times
4.1.3. Large Scale Infrastructure and Investment
4.1.4. Maturity of Technology
4.1.5. Continuous, Cross-Domain Teams
4.1.6. International Collaboration
4.1.7. Parallelized R&D Efforts
4.1.8. Cross-Cutting Activities
4.1.9. Production Scale
4.1.10. Multi-Physics Model
4.1.11. Standardization of Simulations
4.1.12. Usability of Tools
4.1.13. Knowledge Management
4.2. Development Process Challenges
- “What problems/challenges occur to you during a typical project at CERN?”
- “Which problems/questions are important to you to solve?”
5. Discussion
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
BSCCO | Bismuth Strontium Calcium Copper Oxide |
CAD | Computer-Aided Design |
CAM | Computer-Aided Manufacturing |
DRM | Design Research Methodology |
EAM | Enterprise Asset Management |
EDMS | Engineering & Equipment Data Management Service |
FCC | Future Circular Collider |
HEP | High-Energy Physics |
HTS | High-Temperature Superconductor(s) |
LHC | Large Hadron Collider |
MBSE | Model-Based Systems Engineering |
Nb–Ti | Niobium–Titanium |
Niobium-Tin | |
NMR | Nuclear Magnetic Resonance |
PLM | Product Lifecycle Management |
R&D | Research and Development |
REBCO | Rare-Earth Barium Copper Oxide |
ROXIE | Routine for the Optimization of magnet X-sections, |
Inverse field calculation and coil End design |
References
- Kalmus, P.I.P. Options for Machines and Experiments in the Future. Proc. R. Soc. Lond. Ser. Math. Phys. Sci. 1986, 404, 285–298. [Google Scholar]
- The CEPC Study Group. CEPC Technical Design Report—Accelerator. arXiv 2023, arXiv:2312.14363. [Google Scholar]
- The VLHC Design Study Group. Design Study for a Staged Very Large Hadron Collider. In Proceedings of the APS/DPF/DPB Summer Study on the Future of Particle Physics, Snowmass, CO, USA, 30 June–21 July 2001. [Google Scholar] [CrossRef]
- McIntyre, P.M.; Bannert, S.P.; Breitschopf, J.; Gerity, J.; Kellams, J.N.; Sattarov, A.; Aamp, T.; University, M.; Station, C. Collider in the Sea: Vision for a 500 TeV World Laboratory. In Proceedings of the NAPAC2016, Chicago, IL, USA, 9–14 October 2016. [Google Scholar]
- Barzi, E.; Zlobin, A.V. Nb3Sn wires and cables for high-field accelerator magnets. In Nb3Sn Accelerator Magnets; Springer: Cham, Switzerland, 2019; pp. 23–51. [Google Scholar]
- Todesco, E.; Bajas, H.; Bajko, M.; Ballarino, A.; Bermudez, S.I.; Bordini, B.; Bottura, L.; Rijk, G.D.; Devred, A.; Ramos, D.D.; et al. The High Luminosity LHC interaction region magnets towards series production. Supercond. Sci. Technol. 2021, 34, 053001. [Google Scholar] [CrossRef]
- Ferracin, P.; Ambrosio, G.; Anerella, M.; Arbelaez, D.; Brouwer, L.; Barzi, E.; Cooley, L.D.; Cozzolino, J.; Garcia Fajardo, L.; Gupta, R.; et al. Conceptual Design of 20 T Hybrid Accelerator Dipole Magnets. IEEE Trans. Appl. Supercond. 2023, 33, 1–7. [Google Scholar] [CrossRef]
- The FCC Collaboration; Abada, A.; Abbrescia, M.; AbdusSalam, S.S.; Abdyukhanov, I.; Abelleira Fernandez, J.; Abramov, A.; Aburaia, M.; Acar, A.O.; Adzic, P.R.; et al. FCC-hh: The Hadron Collider: Future Circular Collider Conceptual Design Report Volume 3. Eur. Phys. J. Spec. Top. 2019, 228, 755–1107. [Google Scholar] [CrossRef]
- Prestemon, S.; Amm, K.; Cooley, L.; Gourlay, S.; Larbalestier, D.; Velev, G.; Zlobin, A. The 2020 Updated Roadmaps for the US Magnet Development Program. arXiv 2020, arXiv:2011.09539. [Google Scholar]
- Ferchow, J. Additive Manufacturing towards Industrial Series Production: Post-Processing Strategies and Design. Ph.D. Thesis, ETH Zurich, Zurich, Switzerland, 2021. [Google Scholar]
- Barna, D.; Giunchi, G.; Novák, M.; Brunner, K.; Német, A.; Petrone, C.; Atanasov, M.; Bajas, H.; Feuvrier, J. An MgB_2 superconducting shield prototype for the future circular collider septum magnet. IEEE Trans. Appl. Supercond. 2019, 29, 1–10. [Google Scholar] [CrossRef]
- Ferrentino, V. Analysis of Thermal Transients in a Superconducting Combined Function Magnet for Hadron Therapy Gantry. Ph.D. Thesis, Naples University, Napoli, Italy, 2020. [Google Scholar]
- Hoell, S. Characterization of the Thermal Contraction of Superconducting Magnet Coils for the High-Luminosity Upgrade of the Large Hadron Collider (HL-LHC). Ph.D. Thesis, KIT-Karlsruhe Institute of Technology (DE), Karlsruhe, Germany, 2022. [Google Scholar]
- Russenschuck, S. Field Computation for Accelerator Magnets: Analytical and Numerical Methods for Electromagnetic Design and Optimization, 1st ed.; Wiley-VCH: Weinheim, Germany, 2010. [Google Scholar] [CrossRef]
- Russenschuck, S. A Computer Program for the Design of Superconducting Accelerator Magnets. In Proceedings of the 11th Annual Review of Progress in Applied Computational Electromagnetics, ACES’95, Monterey, CA, USA, 20–24 March 1995. [Google Scholar]
- Boyer, C.; Delamare, C.; Mallon-Amerigo, S.; Manola-Poggioli, E.; Martel, P.; Mottier, M.; Muller, J.; Pettersson, T.; Rousseau, B.; Petit, S.; et al. The Cern Edms—Engineering and Equipment Data Management System. In Proceedings of the EPAC 2002, Paris, France, 3–7 June 2002; pp. 2697–2699. [Google Scholar]
- Wardzinska, A.; Petit, S.; Bray, R.; Delamare, C.; Arza, G.G.; Krastev, T.; Pater, K.; Suwalska, A.; Widegren, D. The Evolution of CERN EDMS. J. Phys. Conf. Ser. 2015, 664, 032032. [Google Scholar] [CrossRef]
- Collier, P. The technical challenges of the Large Hadron Collider. Philos. Trans. R. Soc. Math. Phys. Eng. Sci. 2015, 373, 20140044. [Google Scholar] [CrossRef]
- CERN. Destination Universe; CERN: Geneva, Switzerland, 2008. [Google Scholar]
- Dumitrescu, R.; Albers, A.; Riedel, O.; Stark, R.; Gausemeier, J. Advanced Systems Engineering: Wertschöpfung im Wandel; Fraunhofer IEM: Paderborn, Germany, 2021. [Google Scholar]
- Maciejewski, M.; Auchmann, B.; Araujo, D.M.; Vallone, G.; Leuthold, J.; Smajic, J. Model-Based System Engineering Framework for Superconducting Accelerator Magnet Design. IEEE Trans. Appl. Supercond. 2023, 33, 1–5. [Google Scholar] [CrossRef]
- Madni, A.M.; Sievers, M. Model-based systems engineering: Motivation, current status, and research opportunities. Syst. Eng. 2018, 21, 172–190. [Google Scholar] [CrossRef]
- Raghu, S.L.; Tudor, M.; Thomas, L.D.; Wang, G. MBSE Utilization for Additive Manufactured Rocket Propulsion Components. In Proceedings of the 2022 IEEE Aerospace Conference (AERO), Big Sky, MT, USA, 5–12 March 2022; pp. 1–14. [Google Scholar] [CrossRef]
- Wang, W.; Hou, J.; Mao, Y.; Jinjie; Lu, Z. Application and development of MBSE in aerospace. J. Phys. Conf. Ser. 2022, 2235, 012021. [Google Scholar] [CrossRef]
- Sales, D.; Buss Becker, L. Systematic Literature Review of System Engineering Design Methods. In Proceedings of the 2018 VIII Brazilian Symposium on Computing Systems Engineering (SBESC), Salvador, Brazil, 5–8 November 2018; pp. 213–218. [Google Scholar] [CrossRef]
- Berschik, M.C.; Schumacher, T.; Laukotka, F.N.; Krause, D.; Inkermann, D. MBSE within the Engineering Design Community—An Exploratory Study. Proc. Des. Soc. 2023, 3, 2595–2604. [Google Scholar] [CrossRef]
- Blessing, L.T.; Chakrabarti, A. DRM, a Design Research Methodology; Springer: London, UK, 2009. [Google Scholar] [CrossRef]
- Gerrike, K.; Eckert, C.; Stacey, M. What do we need to say about a design method? In Proceedings of the 21st International Conference on Engineering Design (ICED 2017), Vancouver, BC, Canada, 21–25 August 2017. [Google Scholar]
- Zorn, V.; Baschin, J.; Reining, N.; Inkermann, D.; Vietor, T.; Kauffeld, S. Team- und Projektarbeit in der digitalisierten Produktentwicklung. In Projekt- und Teamarbeit in der Digitalisierten Arbeitswelt: Herausforderungen, Strategien und Empfehlungen; Mütze-Niewöhner, S., Hacker, W., Hardwig, T., Kauffeld, S., Latniak, E., Nicklich, M., Pietrzyk, U., Eds.; Springer: Berlin/Heidelberg, Germany, 2021; pp. 155–178. [Google Scholar] [CrossRef]
- Xiao, Y.; Watson, M. Guidance on Conducting a Systematic Literature Review. J. Plan. Educ. Res. 2019, 39, 93–112. [Google Scholar] [CrossRef]
- Bottura, L.; Auchmann, B.; Ballarino, A.; Devred, A.; Izquierdo-Bermudez, S.; De Rijk, G.; Rossi, L.; Savary, F.; Schoerling, D.; CEA, H.F.; et al. High Field Magnet Development for HEP in Europe—A proposal. 2021. Available online: https://indico.cern.ch/event/999657/contributions/4207478/attachments/2179743/3681623/Snomass_HFM_LoI_v1.pdf (accessed on 11 November 2023).
- Izquierdo Bermudez, S.; Sabbi, G.; Zlobin, A. Accelerator Technology Magnets; Technical Report; Lawrence Berkeley National Lab. (LBNL): Berkeley, CA, USA, 2022. [Google Scholar]
- Shen, T.; Fajardo, L.G.; Myers, C.; Hafalia, A., Jr.; Fernández, J.L.R.; Arbelaez, D.; Brouwer, L.; Caspi, S.; Ferracin, P.; Gourlay, S.; et al. Design, fabrication, and characterization of a high-field high-temperature superconducting Bi-2212 accelerator dipole magnet. Phys. Rev. Accel. Beams 2022, 25, 13. [Google Scholar] [CrossRef]
- Wang, X.; Yahia, A.B.; Bosque, E.; Ferracin, P.; Gourlay, S.; Gupta, R.; Higley, H.; Kashikhin, V.; Kumar, M.; Lombardo, V.; et al. REBCO—A silver bullet for our next high-field magnet and collider budget? arXiv 2022, arXiv:2203.08736. [Google Scholar]
- Bottura, L.; Prestemon, S.; Rossi, L.; Zlobin, A.V. Superconducting magnets and technologies for future colliders. Front. Phys. 2022, 10, 935196. [Google Scholar] [CrossRef]
- Védrine, P.; Rossi, L.; Shepherd, B.; Rochepault, E.; Noe, M.; Auchmann, B.; Baudouy, B.; Fazilleau, P.; Senatore, C.; Prestemon, S.; et al. CERN: Chapter 2: High-field magnets. CERN Yellow Rep. Monogr. 2022, 1, 9–59. [Google Scholar]
- Shiltsev, V.; Zimmermann, F. Modern and future colliders. Rev. Mod. Phys. 2021, 93, 015006. [Google Scholar] [CrossRef]
- Adolphsen, C.; Angal-Kalinin, D.; Arndt, T.; Arnold, M.; Assmann, R.; Auchmann, B.; Aulenbacher, K.; Ballarino, A.; Baudouy, B.; Baudrenghien, P.; et al. European strategy for particle Physics—Accelerator R&D roadmap. arXiv 2022, arXiv:2201.07895. [Google Scholar]
- Ambrosio, G.; Apollinari, G.; Baldini, M.; Carcagno, R.; Boffo, C.; Claypool, B.; Feher, S.; Hays, S.; Hoang, D.; Kashikhin, V.; et al. White Paper on Leading-Edge technology and Feasibility-directed (LEAF) Program aimed at readiness demonstration for Energy Frontier Circular Colliders by the next decade. arXiv 2022, arXiv:2203.07654. [Google Scholar]
- Ambrosio, G.; Amm, K.; Anerella, M.; Apollinari, G.; Arbelaez, D.; Auchmann, B.; Balachandran, S.; Baldini, M.; Ballarino, A.; Barua, S.; et al. A strategic approach to advance magnet technology for next generation colliders. arXiv 2022, arXiv:2203.13985. [Google Scholar]
- Gourlay, S.; Raubenheimer, T.; Shiltsev, V.; Arduini, G.; Assmann, R.; Barbier, C.; Bai, M.; Belomestnykh, S.; Bermudez, S.; Bhat, P.; et al. Snowmass’ 21 accelerator frontier report. arXiv 2022, arXiv:2209.14136. [Google Scholar]
- Bordini, B.; Bottura, L.; Devred, A.; Fiscarelli, L.; Karppinen, M.; de Rijk, G.; Rossi, L.; Savary, F.; Willering, G. Nb3Sn 11 T Dipole for the High Luminosity LHC (CERN). In Nb3Sn Accelerator Magnets: Designs, Technologies and Performance; Springer: Cham, Switzerland, 2019; pp. 223–258. [Google Scholar]
- Lebrun, P.; Taylor, T. Managing the Laboratory and Large Projects. In Technology Meets Research; World Scientific: Singapore, 2015; Volume 27, pp. 393–422. [Google Scholar] [CrossRef]
- Troitino, J.F.; Bajas, H.; Bianchi, L.; Castaldo, B.; Ferracin, P.; Guinchard, M.; Izquierdo, S.; Lorenzo, J.; Mangiarotti, F.; Perez, J.; et al. A methodology for the analysis of the three-dimensional mechanical behavior of a Nb3Sn superconducting accelerator magnet during a quench. Supercond. Sci. Technol. 2021, 34, 084003. [Google Scholar] [CrossRef]
- Brouwer, L.; Arbelaez, D.; Auchmann, B.; Bortot, L.; Stubberud, E. User defined elements in ANSYS for 2D multiphysics modeling of superconducting magnets. Supercond. Sci. Technol. 2019, 32, 095011. [Google Scholar] [CrossRef]
- Maciejewski, M. Co-Simulation of Transient Effects in Superconducting Accelerator Magnets. Ph.D. Thesis, Lodz University of Technology, Łódź, Poland, 2019. [Google Scholar]
- Garcia, I.C. Mathematical Analysis and Simulation of Field Models in Accelerator Circuits; Springer Nature: Cham, Switzerland, 2021. [Google Scholar]
- Biedron, S.; Brouwer, L.; Bruhwiler, D.; Cook, N.; Edelen, A.; Filippetto, D.; Huang, C.K.; Huebl, A.; Kuklev, N.; Lehe, R.; et al. Snowmass21 accelerator modeling community white paper. arXiv 2022, arXiv:2203.08335. [Google Scholar]
Question 1 * | Question 2 ** | ||||
---|---|---|---|---|---|
Challenge | Absolute | Relative | Absolute | Relative | |
Knowledge Management | |||||
Process Quality | 11 | 79% | 8 | 57% | |
Knowledge/data transfer | 6 | 43% | 8 | 57% | |
Unclear and/or changing requirement | 6 | 43% | 3 | 21% | |
Lessons learned/ improvement implementation | 4 | 29% | 5 | 36% | |
Missing and/or low-quality documentation | 9 | 65% | 9 | 65% | |
Problems with historic data/documents | 9 | 65% | 12 | 86% | |
General | |||||
Communication problems | 8 | 57% | 4 | 29% | |
Unclear staff onboarding and turnover process | 6 | 43% | 3 | 21% | |
Frequent staff turnover | 6 | 43% | 2 | 14% | |
Problems related to standards and best-practices | 10 | 71% | 5 | 36% | |
Planning difficulties | 6 | 43% | 3 | 21% | |
Unclear responsibilities | 6 | 43% | 1 | 7% | |
Inconventient and/or inefficient tools | 3 | 21% | 9 | 65% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kaeske, J.; Fiscarelli, L.; Albers, A.; Russenschuck, S. Overview of Identified Challenges in the Development Process of Superconducting Accelerator Magnets. Designs 2024, 8, 13. https://doi.org/10.3390/designs8010013
Kaeske J, Fiscarelli L, Albers A, Russenschuck S. Overview of Identified Challenges in the Development Process of Superconducting Accelerator Magnets. Designs. 2024; 8(1):13. https://doi.org/10.3390/designs8010013
Chicago/Turabian StyleKaeske, Jens, Lucio Fiscarelli, Albert Albers, and Stephan Russenschuck. 2024. "Overview of Identified Challenges in the Development Process of Superconducting Accelerator Magnets" Designs 8, no. 1: 13. https://doi.org/10.3390/designs8010013
APA StyleKaeske, J., Fiscarelli, L., Albers, A., & Russenschuck, S. (2024). Overview of Identified Challenges in the Development Process of Superconducting Accelerator Magnets. Designs, 8(1), 13. https://doi.org/10.3390/designs8010013