Potential Designs for Miniature Distributed Optical Fiber Smart Sensors Systems for Use in Aerospace Flight Vehicles
Abstract
:1. Introduction
1.1. Real-Time, High-Speed Sensing in Aerospace
1.2. Conventional System Integration Challenges
1.3. FBG Technology and Distributed Sensing
1.4. Aim and Objectives
- Miniaturization and Packaging: To assess the feasibility of miniaturizing and packaging FBG interrogation systems for aerospace applications.
- Benefits of FBG Technology: To explore the advantages of FBG technology, including immunity to electromagnetic interference, high sensitivity, and accuracy, in aerospace environments.
- Challenges in Extreme Environments: To address the challenges associated with deploying conventional interrogation systems in extreme aerospace conditions, such as temperature fluctuations, vibration, and space constraints.
- Innovations in Photonic Devices: To discuss advancements in photonic devices, fabrication, and packaging that facilitate the development of compact and robust FBG interrogation systems.
- Integrated Photonic Circuits: To propose potential designs for integrated photonic circuits in FBG interrogation systems, emphasizing thermal stability and vibration resistance.
- Trade-offs in Miniaturization: To evaluate the trade-offs between miniaturization and performance in integrated photonic circuits for FBG interrogation, considering factors like sensitivity, resolution, and durability.
- Future Research Directions: To outline future research directions aimed at enhancing the sensitivity, resolution, and robustness of FBG interrogators while enabling miniaturization and multifunctionality.
2. FBG-Based DOFSS
3. Potential Systems
3.1. System Components
3.2. System Challenges
4. Innovations
4.1. Photonic Devices
4.2. Fabrication and Packaging
5. Proposed Designs
5.1. Interrogator
5.1.1. Spectral Receiver Detection
5.1.2. Spectral Source Detection
5.1.3. Comparison
5.2. Thermal Stability and Vibration Resistance
6. Discussion
6.1. Feasibility Assessment
6.2. Trade-Offs
6.3. Future and Further Research
7. Conclusions
Funding
Data Availability Statement
Conflicts of Interest
References
- Pollock, L.; Kleine, H.; Neely, A.; Wild, G. Optical Fiber Bragg Grating-Based Measurement of Fluid-Structure Interaction on a Cantilever Panel in High-Speed Flow. IEEE Access 2024, 12, 101106–101120. [Google Scholar] [CrossRef]
- Pollock, L.; Wild, G. An examination of high-speed aircraft—Part 1: Past, Present, and Future. Transp. Eng. 2024, 18, 100290. [Google Scholar] [CrossRef]
- Wild, G.; Pollock, L.; Abdelwahab, A.K.; Murray, J. The Need for Aerospace Structural Health Monitoring: A review of aircraft fatigue accidents. Int. J. Progn. Health Manag. 2021, 12, 1–16. [Google Scholar] [CrossRef]
- Tutty, M.G.; Joiner, K. A T&E Code of Practice. In AIAA SCITECH 2025 Forum; AIAA SciTech Forum; American Institute of Aeronautics and Astronautics: Reston, VA, USA, 2025. [Google Scholar]
- Kimmel, R.L.; Prabhu, D.K. HIFiRE-1 Turbulent Shock Boundary Layer Interaction-Flight Data and Computations. In Proceedings of the 45th AIAA Fluid Dynamics Conference, Dallas, TX, USA, 22–26 June 2015; AIAA AVIATION Forum. American Institute of Aeronautics and Astronautics: Reston, VA, USA, 2015. [Google Scholar]
- Solé, M.; Wolf, J.; Rodriguez, I.; Jover, A.; Trompouki, M.M.; Kosmidis, L.; Steenari, D. Evaluation of the Multicore Performance Capabilities of the Next Generation Flight Computers. In Proceedings of the 2023 IEEE/AIAA 42nd Digital Avionics Systems Conference (DASC), Barcelona, Spain, 1–5 October 2023; pp. 1–10. [Google Scholar]
- Ciminello, M.; Sikorski, B.; Galasso, B.; Pellone, L.; Mercurio, U.; Concilio, A.; Apuleo, G.; Cozzolino, A.; Kressel, I.; Shoham, S.; et al. Preliminary Results of a Structural Health Monitoring System Application for Real-Time Debonding Detection on a Full-Scale Composite Spar. Sensors 2023, 23, 455. [Google Scholar] [CrossRef] [PubMed]
- Iadicicco, A.; Natale, D.; Di Palma, P.; Spinaci, F.; Apicella, A.; Campopiano, S. Strain Monitoring of a Composite Drag Strut in Aircraft Landing Gear by Fiber Bragg Grating Sensors. Sensors 2019, 19, 2239. [Google Scholar] [CrossRef]
- Pollock, L.; Wild, G. An Exploration of Structural Health Monitoring for Hypersonic Vehicles. In AIAA AVIATION Forum and ASCEND 2024; AIAA Aviation Forum and ASCEND Co-Located Conference Proceedings; American Institute of Aeronautics and Astronautics: Reston, VA, USA, 2024. [Google Scholar]
- Giannelis, N.F.; Luppino, J.; Cousens, S.; Eldridge, M.; Smith, J.; Van Pelt, H.; Wild, G.; Neely, A.J.; Beinke, S.K.; Gorin, S. The Common Front End: A Testbed Concept for High-Speed Technology Maturation. In AIAA SCITECH 2025 Forum; AIAA SciTech Forum; American Institute of Aeronautics and Astronautics: Reston, VA, USA, 2025. [Google Scholar]
- Guru Prasad, A.S.; Sharath, U.; Nagarjun, V.; Hegde, G.M.; Asokan, S. Measurement of temperature and pressure on the surface of a blunt cone using FBG sensor in hypersonic wind tunnel. Meas. Sci. Technol. 2013, 24, 095302. [Google Scholar] [CrossRef]
- Reimer, T.; Di Martino, G.; Petkov, I.; Dauth, L.; Baier, L.; Gülhan, A. Design, Manufacturing and Assembly of the STORT Hypersonic Flight Experiment Thermal Protection System. In Proceedings of the 25th AIAA International Space Planes and Hypersonic Systems and Technologies Conference, Bengaluru, India, May 28–June 1 2023; International Space Planes and Hypersonic Systems and Technologies Conferences. American Institute of Aeronautics and Astronautics: Reston, VA, USA, 2023. [Google Scholar]
- Guo, J.; Wang, J.; Guo, Z.; Su, Y. Attitude optimization control of hypersonic flight vehicle considering partially unknown control direction. T I Meas. Control 2022, 45, 1337–1350. [Google Scholar] [CrossRef]
- Wild, G. Airbus A32x Versus Boeing 737 Safety Occurrences. IEEE Aerospace and Electronic Systems Magazine, 22 May 2023; pp. 4–12. [Google Scholar] [CrossRef]
- Pollock, L.; Wild, G. An initial review of hypersonic vehicle accidents. In Proceedings of the 19th Australian International Aerospace Congress, Melbourne, Australia, 29 November–2 December 2021. [Google Scholar]
- Clark, S. Falcon 9 Rocket Failure Due to Sensor Issue. 28 August 2014. Available online: https://spaceflightnow.com/news/n1408/28falcon9r/ (accessed on 1 March 2025).
- Kremer, K. Defective Deformed Sensor Caused Soyuz Launch Failure. 4 November 2018. Available online: https://www.spaceupclose.com/2018/11/defective-deformed-sensor-caused-soyuz/ (accessed on 1 March 2025).
- Orr, J.S.; Statler, I.C.; Barshi, I. The X-15 3-65 Accident: An Aircraft Systems and Flight Control Perspective. In Proceedings of the Space Safety Is No Accident, Friedrichshafen, Germany, 22–24 October 2014; Springer International Publishing: Cham, Switzerland, 2015; pp. 249–257. Available online: https://ntrs.nasa.gov/citations/20190001985 (accessed on 1 March 2025).
- Ogunleye, R.O.; Rusnáková, S.; Javořík, J.; Žaludek, M.; Kotlánová, B. Advanced Sensors and Sensing Systems for Structural Health Monitoring in Aerospace Composites. Adv. Eng. Mater. 2024, 26, 2401745. [Google Scholar] [CrossRef]
- Chilelli, S.K.; Schomer, J.J.; Dapino, M.J. Detection of Crack Initiation and Growth Using Fiber Bragg Grating Sensors Embedded into Metal Structures through Ultrasonic Additive Manufacturing. Sensors 2019, 19, 4917. [Google Scholar] [CrossRef]
- Wang, G.; Zeng, J.; Mu, H.; Liang, D. Fiber Bragg grating sensor network optimization. Photonic Sens. 2015, 5, 116–122. [Google Scholar] [CrossRef]
- Hegde, G.; Himakar, B.; Rao, S.; Hegde, G.; Asokan, S. Simultaneous measurement of pressure and temperature in a supersonic ejector using FBG sensors. Meas. Sci. Technol. 2022, 33, 125111. [Google Scholar] [CrossRef]
- Wang, T.; He, D.; Wang, Z.; Quan, Y.; Wang, P.; Wang, Y. Strain Test of Metalwork Using FBG and FEA. In Proceedings of the 2011 International Conference on Electronics, Communications and Control (ICECC), Ningbo, China, 9–11 September 2011; pp. 2857–2860. [Google Scholar]
- Karatas, C.; Degerliyurt, B.; Yaman, Y.; Sahin, M. Fibre Bragg grating sensor applications for structural health monitoring. Aircr. Eng. Aerosp. Technol. 2018, 92, 355–367. [Google Scholar] [CrossRef]
- Nicolas, M.J.; Sullivan, R.W.; Richards, W.L. Large Scale Applications Using FBG Sensors: Determination of In-Flight Loads and Shape of a Composite Aircraft Wing. Aerospace 2016, 3, 18. [Google Scholar] [CrossRef]
- Ankita, R.; Ghorai, S.K.; Sengupta, S. Vehicle flow indication and identification using FBG sensors. Phys. Scr. 2024, 99, 125543. [Google Scholar] [CrossRef]
- Chen, S.-Z.; Feng, D.-C.; Han, W.-S. Comparative Study of Damage Detection Methods Based on Long-Gauge FBG for Highway Bridges. Sensors 2020, 20, 3623. [Google Scholar] [CrossRef] [PubMed]
- Soman, R.; Balasubramaniam, K.; Golestani, A.; Karpiński, M.; Malinowski, P. A Two-Step Guided Waves Based Damage Localization Technique Using Optical Fiber Sensors. Sensors 2020, 20, 5804. [Google Scholar] [CrossRef]
- Liu, B.; Zhang, S.; He, J. Deformation Measurement of Glass Structure Using FBG Sensor. Photonic Sens. 2019, 9, 367–375. [Google Scholar] [CrossRef]
- Yu, Y.; Liu, B.; Xia, F. Design Optimization of Sensitivity-Enhanced Structure for Fiber Bragg Grating Acoustic Emission Sensor Based on Additive Manufacturing. Sensors 2022, 22, 416. [Google Scholar] [CrossRef]
- Zhong, H.; Liu, X.; Fu, C.; Xu, B.; He, J.; Li, P.; Meng, Y.; Du, C.; Chen, L.; Tang, J.; et al. Quasi-Distributed Temperature and Strain Sensors Based on Series-Integrated Fiber Bragg Gratings. Nanomaterials 2022, 12, 1540. [Google Scholar] [CrossRef]
- Wild, G.; Hinckley, S. Acousto-Ultrasonic Optical Fiber Sensors: Overview and State-of-the-Art. Sens. J. IEEE 2008, 8, 1184–1193. [Google Scholar] [CrossRef]
- Maiti, S.; Singh, V. Performance Analysis of Apodized Fiber Bragg Gratings for Sensing Applications. Silicon 2022, 14, 581–587. [Google Scholar] [CrossRef]
- Othonos, A.; Kalli, Κ. Fiber Bragg Gratings: Fundamentals and Applications in Telecommunications and Sensing; Artech House: Norwood, MA, USA, 1999. [Google Scholar]
- Wild, G.; Hinckley, S. Distributed Optical Fibre Smart Sensors for Structural Health Monitoring: A Smart Transducer Interface Module. In Proceedings of the 2009 International Conference on Intelligent Sensors, Sensor Networks and Information Processing (ISSNIP), Melbourne, VIC, Australia, 7–10 December 2009; pp. 373–378. [Google Scholar]
- Wild, G.; Allwood, G.; Hinckley, S. Distributed Sensing, Communications, and Power in Optical Fibre Smart Sensor Networks for Structural Health Monitoring. In Proceedings of the 2010 Sixth International Conference on Intelligent Sensors, Sensor Networks and Information Processing, Brisbane, QLD, Australia, 7–10 December 2010; pp. 139–144. [Google Scholar]
- Porins, J.; Bobrovs, V.; Spolitis, S.; Braunfelds, J. Fiber Bragg Grating Sensors Integration in Fiber Optical Systems. In Application of Optical Fiber in Engineering; Harun, S.W., Ed.; IntechOpen: Rijeka, Croatia, 2020. [Google Scholar]
- Sahota, J.K.; Gupta, N.; Dhawan, D. Fiber Bragg grating sensors for monitoring of physical parameters: A comprehensive review. Opt. Eng. 2020, 59, 060901. [Google Scholar] [CrossRef]
- Kim, J.-H.; Park, Y.; Kim, Y.-Y.; Shrestha, P.; Kim, C.-G. Aircraft health and usage monitoring system for in-flight strain measurement of a wing structure. Vtt Symp. 2015, 24, 105003. [Google Scholar] [CrossRef]
- Guo, H.; Xiao, G.; Mrad, N.; Yao, J. Fiber Optic Sensors for Structural Health Monitoring of Air Platforms. Sensors 2011, 11, 3687–3705. [Google Scholar] [CrossRef]
- Dvorak, M.; Kabrt, M.; Růžička, M. The Use of Fiber Bragg Grating Sensors during the Static Load Test of a Composite Wing Structure. Appl. Mech. Mater. 2013, 486, 102–105. [Google Scholar] [CrossRef]
- Krenz, A.; Koch, J.; Reimer, V.; Doering, A.; Guehlke, P.; Waltermann, C. Methods for fbg Sensor Integration for rtm Process Monitoring and shm of the Final cfrp Component. In Proceedings of the 10th ECCOMAS Thematic Conference on Smart Structures and Materials, Patras, Greece, 3–5 July 2023; pp. 1839–1850. [Google Scholar]
- Aimasso, A.; Dalla Vedova, M.D.L.; Maggiore, P.; Quattrocchi, G. Study of FBG-based optical sensors for thermal measurements in aerospace applications. J. Phys. Conf. Ser. 2022, 2293, 012006. [Google Scholar] [CrossRef]
- Sun, J.X.; Ji, Y.D.; Wang, J.H.; Yin, Y.Z.; Tian, H. Impact Damage Monitoring of Laminated Composites Using FBG Sensors. Adv. Mater. Res. 2011, 239–242, 259–262. [Google Scholar] [CrossRef]
- Wild, G. Optical fiber bragg grating sensors applied to gas turbine engine instrumentation and monitoring. In Proceedings of the IEEE Sensors Applications Symposium (SAS), Galveston, TX, USA, 19–21 February 2013; pp. 188–192. [Google Scholar]
- Pechstedt, R.; Hemsley, D. Fiber Optical Sensors for Monitoring Industrial Gas Turbines. In Handbook of Optoelectronics; Dakin, J.P., Brown, R.G.W., Eds.; CRC Press: Boca Raton, FL, USA, 2017. [Google Scholar]
- Pakmehr, M.; Costa, J.; Lu, G.; Behbahani, A. Optical exhaust gas temperature (EGT) sensor and instrumentation for gas turbine engines. In Proceedings of the NATO STO Meeting: Transitioning Gas Turbine Instrumentation from Test Cells to On-Vehicle Applications STO-MP-AVT-306, Athens, Greece, 10–12 December 2018. [Google Scholar]
- Murugan, M.; Walock, M.; Ghoshal, A.; Knapp, R.; Caesley, R. Embedded Temperature Sensor Evaluations for Turbomachinery Component Health Monitoring. Energies 2021, 14, 852. [Google Scholar] [CrossRef]
- Sadık, Ş.A.; Durak, F.E.; Altuncu, A. Fiber Bragg Grating Sensor Interrogation Using Tunable Erbium-Doped Fiber Ring Laser Source. Sak. Univ. J. Sci. 2021, 25, 349–356. [Google Scholar] [CrossRef]
- Lobo Ribeiro, A.B.; Ferreira, L.A.; Santos, J.L.; Jackson, D.A. Analysis of the reflective-matched fiber Bragg grating sensing interrogationscheme. Appl Opt. 1997, 36, 934–939. [Google Scholar] [CrossRef]
- Chan, C.C.; Jin, W.; Demokan, M.S. Experimental investigation of a 4-FBG TDM sensor array with a tunable laser source. Microw. Opt. Techn Let. 2002, 33, 435–437. [Google Scholar] [CrossRef]
- Huang, Y.H.; Chao, L.; Wai, P.K.A.; Tam, H.Y. Fast FBG sensor interrogation system using vertical cavity surface emitting laser source. In Proceedings of the 2009 14th OptoElectronics and Communications Conference, Hong Kong, China, 13–17 July 2009; pp. 1–2. [Google Scholar]
- Wild, G.; Richardson, S. Analytical modeling of power detection-based interrogation methods for fiber Bragg grating sensors for system optimization. Opt. Eng. 2015, 54, 097109. [Google Scholar] [CrossRef]
- Muhammad, F.D.; Zulkifli, M.Z.; Harun, S.W.; Ahmad, H. High resolution interrogation system for fiber Bragg grating (FBG) sensor application using radio frequency spectrum analyser. Aip Conf. Proc. 2013, 1528, 444–449. [Google Scholar] [CrossRef]
- Hervás, J.; Tosi, D.; García-Miquel, H.; Barrera, D.; Fernández-Pousa, C.R.; Sales, S. KLT-Based Interrogation Technique for FBG Multiplexed Sensor Tracking. J. Light. Technol. 2017, 35, 3387–3392. [Google Scholar] [CrossRef]
- Tosi, D. Improved KLT Algorithm for High-Precision Wavelength Tracking of Optical Fiber Bragg Grating Sensors. J. Sens. 2017, 2017, 5412825. [Google Scholar] [CrossRef]
- Li, D.-S.; Sui, Q.-M.; Cao, Y.-Q. Linearity optimization of edge filter demodulators in FBGs. Optoelectron. Lett. 2008, 4, 193–195. [Google Scholar] [CrossRef]
- Aimasso, A.; Dalla Vedova, M.D.L.; Bertone, M.; Maggiore, P. Preliminary design and performance evaluation of optical fiber-based load sensor for aerospace systems. J. Phys. Conf. Ser. 2024, 2802, 012010. [Google Scholar] [CrossRef]
- Brewer, R. High Reliability Electronics for Demanding Aircraft Applications—An Overview. In Proceedings of the International Conference on High Temperature Electronics, Albuquerque, NM, USA, 10–12 May 2016; pp. 11–17. [Google Scholar]
- Marin, Y.; Celik, A.; Faralli, S.; Adelmini, L.; Kopp, C.; Di Pasquale, F.; Oton, C.J. Silicon Photonic Chip for Dynamic Wavelength Division Multiplexed FBG Sensors Interrogation. In Proceedings of the 26th International Conference on Optical Fiber Sensors, Lausanne, Switzerland, 24 September 2018; p. ThE45. [Google Scholar]
- Luo, X.; Hu, R.; Xie, B. Thermal Management for Opto-Electronics Packaging and Applications; Wiley: Hoboken, NJ, USA, 2024. [Google Scholar]
- Bütow, J.; Eismann, J.S.; Sharma, V.; Brandmüller, D.; Banzer, P. Generating free-space structured light with programmable integrated photonics. Nat. Photonics 2024, 18, 243–249. [Google Scholar] [CrossRef]
- Wild, G. Novel Photonics Sensing and Systems for Military Metrology. In Proceedings of the Metrology for Aerospace (MetroAeroSpace), Benevento, Italy, 4–5 June 2015; IEEE: Piscataway, NJ, USA, 2015; pp. 129–134. [Google Scholar]
- Rees, A.V.; Tsong, W.; Vlekkert, I.V.D.; Farjana, F.; Lammerink, R.E.M.; Visscher, I.; Roeloffzen, C.G.H.; Musa, S.; Geskus, D. High-power 150 mW extended cavity Si3N4 tunable narrow-linewidth laser. In Optical Interconnects XXIV; SPIE: Bellingham, WA, USA, 2024; p. 128920J. [Google Scholar]
- Fan, Y.; van Rees, A.; van der Slot, P.J.M.; Mak, J.; Oldenbeuving, R.M.; Hoekman, M.; Geskus, D.; Roeloffzen, C.G.H.; Boller, K.-J. Hybrid integrated InP-Si3N4 diode laser with a 40-Hz intrinsic linewidth. Opt. Express 2020, 28, 21713–21728. [Google Scholar] [CrossRef]
- Li, N.; Vermeulen, D.; Su, Z.; Magden, E.S.; Xin, M.; Singh, N.; Ruocco, A.; Notaros, J.; Poulton, C.V.; Timurdogan, E.; et al. Monolithically integrated erbium-doped tunable laser on a CMOS-compatible silicon photonics platform. Opt. Express 2018, 26, 16200–16211. [Google Scholar] [CrossRef]
- Kita, T.; Yamamoto, N.; Matsumoto, A.; Kawanishi, T.; Yamada, H. Heterogeneous quantum dot/silicon photonics-based wavelength-tunable laser diode with a 44 nm wavelength-tuning range. Jpn J. Appl. Phys. 2016, 55, 04EH11. [Google Scholar] [CrossRef]
- Wang, Y.; Yang, D.; Gao, S.; Zhang, X.; Drevensek-Olenik, I.; Wu, Q.; Chemingui, M.; Chen, Z.; Xu, J. Topological Interface-state Lasing in a Polymer-Cholesteric Liquid Crystal Superlattice. arXiv 2022, arXiv:2205.06536. [Google Scholar]
- Kamp, M.; Scherer, H.; Janiak, K.; Heidrich, H.; Brenot, R.; Duan, G.H.; Benisty, H.; Forchel, A. Nanophotonic integrated lasers. In Integrated Optics: Devices, Materials, and Technologies XI; SPIE: Bellingham, WA, USA, 2007; p. 64750Z. [Google Scholar]
- Gersborg-Hansen, M.; Kristensen, A. Tunable Optofluidic Third Order DFB Dye Laser. In Proceedings of the 2007 Conference on Lasers and Electro-Optics (CLEO), Baltimore, MD, USA, 6–11 May 2007; pp. 1–2. [Google Scholar]
- Feng, H.; Zhang, J.; Shu, W.; Bai, X.; Song, L.; Chen, Y. Highly Accurate Pneumatically Tunable Optofluidic Distributed Feedback Dye Lasers. Micromachines 2024, 15, 68. [Google Scholar] [CrossRef] [PubMed]
- Liu, A.Q.; Zhang, X.M. Photonic MEMS: From Laser Physics to Cell Biology. In Proceedings of the TRANSDUCERS 2007-2007 International Solid-State Sensors, Actuators and Microsystems Conference, Lyon, France, 10–14 June 2007; pp. 2485–2488. [Google Scholar]
- Du, H.; Chau, F.S.; Zhou, G. Mechanically-Tunable Photonic Devices with On-Chip Integrated MEMS/NEMS Actuators. Micromachines 2016, 7, 69. [Google Scholar] [CrossRef]
- Tomimura, Y.; Satou, A.; Kita, T. Generation of Millimeter Waves and Sub-Terahertz Waves Using a Two-Wavelength Tunable Laser for a Terahertz Wave Transceiver. Photonics 2024, 11, 811. [Google Scholar] [CrossRef]
- Roelkens, G.; Abassi, A.; Cardile, P.; Dave, U.; De Groote, A.; De Koninck, Y.; Dhoore, S.; Fu, X.; Gassenq, A.; Hattasan, N.; et al. III-V-on-Silicon Photonic Devices for Optical Communication and Sensing. Photonics 2015, 2, 969–1004. [Google Scholar] [CrossRef]
- De Groote, A.; Peters, J.D.; Davenport, M.L.; Heck, M.J.R.; Baets, R.; Roelkens, G.; Bowers, J.E. Heterogeneously integrated III–V-on-silicon multibandgap superluminescent light-emitting diode with 290 nm optical bandwidth. Opt. Lett. 2014, 39, 4784–4787. [Google Scholar] [CrossRef]
- Liu, B.W.; Hu, M.L.; Fang, X.H.; Wu, Y.Z.; Song, Y.J.; Chai, L.; Wang, C.Y.; Zheltikov, A.M. High-power wavelength-tunable photonic-crystal-fiber-based oscillator-amplifier-frequency-shifter femtosecond laser system and its applications for material microprocessing. Laser Phys. Lett. 2009, 6, 44. [Google Scholar] [CrossRef]
- Fedotov, A.B.; Sidorov-Biryukov, D.A.; Ivanov, A.A.; Alfimov, M.V.; Beloglazov, V.I.; Skibina, N.B.; Sun, C.-K.; Zheltikov, A.M. Soft-glass photonic-crystal fibers for frequency shifting and white-light spectral superbroadening of femtosecond Cr:forsterite laser pulses. J. Opt. Soc. Am. B 2006, 23, 1471–1477. [Google Scholar] [CrossRef]
- Eggleton, B. Stimulated Brillouin scattering in photonic integrated circuits: Fundamentals and applications. In Proceedings of the 2015 IEEE Summer Topicals Meeting Series (SUM), Nassau, Bahamas, 13–15 July 2015; pp. 84–85. [Google Scholar]
- Signorini, S.; Finazzer, M.; Bernard, M.; Ghulinyan, M.; Pucker, G.; Pavesi, L. Silicon Photonics Chip for Inter-modal Four Wave Mixing on a Broad Wavelength Range. Aip Conf. Proc. 2019, 7, 128. [Google Scholar] [CrossRef]
- Kowligy, A.S.; Hickstein, D.D.; Lind, A.; Carlson, D.R.; Timmers, H.; Nader, N.; Maser, D.L.; Westly, D.; Srinivasan, K.; Papp, S.B.; et al. Tunable mid-infrared generation via wide-band four-wave mixing in silicon nitride waveguides. Opt. Lett. 2018, 43, 4220–4223. [Google Scholar] [CrossRef]
- Du, Q.; Luo, Z.; Zhong, H.; Zhang, Y.; Huang, Y.; Du, T.; Zhang, W.; Gu, T.; Hu, J. Chip-scale broadband spectroscopic chemical sensing using an integrated supercontinuum source in a chalcogenide glass waveguide. Photon. Res. 2018, 6, 506–510. [Google Scholar] [CrossRef]
- Benedikt, W.G.; Zhi, J.; Haohua, T.; Stephen, A.B.M.D. Dual-spectrum laser source based on fiber continuum generation for integrated optical coherence and multiphoton microscopy. J. Biomed. Opt. 2009, 14, 034019. [Google Scholar] [CrossRef]
- Subramanian, A.Z.; Ryckeboer, E.; Dhakal, A.; Peyskens, F.; Malik, A.; Kuyken, B.; Zhao, H.; Pathak, S.; Ruocco, A.; De Groote, A.; et al. Silicon and silicon nitride photonic circuits for spectroscopic sensing on-a-chip [Invited]. Photon. Res. 2015, 3, B47–B59. [Google Scholar] [CrossRef]
- Tang, J.; Zhu, B.; Zhang, W.; Li, M.; Pan, S.; Yao, J. Hybrid Fourier-domain mode-locked laser for ultra-wideband linearly chirped microwave waveform generation. Nat. Commun. 2020, 11, 3814. [Google Scholar] [CrossRef] [PubMed]
- Kole, M.R.; Reddy, R.K.; Schulmerich, M.V.; Gelber, M.K.; Bhargava, R. Discrete Frequency Infrared Microspectroscopy and Imaging with a Tunable Quantum Cascade Laser. Anal. Chem. 2012, 84, 10366–10372. [Google Scholar] [CrossRef] [PubMed]
- Xia, D.; Huang, Y.; Zhang, B.; Zeng, P.; Zhao, J.; Yang, Z.; Sun, S.; Luo, L.; Hu, G.; Liu, D.; et al. Engineered Raman Lasing in Photonic Integrated Chalcogenide Microresonators. Laser Photonics Rev. 2022, 16, 2100443. [Google Scholar] [CrossRef]
- Shi, J.; Li, Y.; Kang, M.; He, X.; Halas, N.J.; Nordlander, P.; Zhang, S.; Xu, H. Efficient Second Harmonic Generation in a Hybrid Plasmonic Waveguide by Mode Interactions. Nano Lett. 2019, 19, 3838–3845. [Google Scholar] [CrossRef]
- Zhang, Z.; Huang, B.; Zhang, Z.; Chen, H. On-Chip Reconstructive Spectrometer Based on Parallel Cascaded Micro-Ring Resonators. Appl. Sci. 2024, 14, 4886. [Google Scholar] [CrossRef]
- Zhang, C.; Zhang, C.; Li, Y.; Shi, Y.; Chao, J.; Zhao, Y.; Yang, H.; Fu, B. Wavelength-tunable broadband lasers based on nanomaterials. Nanotechnology 2023, 34, 492001. [Google Scholar] [CrossRef]
- Zhang, W.; Yao, J.; Zhao, Y.S. Organic Micro/Nanoscale Lasers. Acc. Chem. Res. 2016, 49, 1691–1700. [Google Scholar] [CrossRef]
- Guo, J.; Huang, D.; Zhang, Y.; Yao, H.; Wang, Y.; Zhang, F.; Wang, R.; Ge, Y.; Song, Y.; Guo, Z.; et al. 2D GeP as a Novel Broadband Nonlinear Optical Material for Ultrafast Photonics. Laser Photonics Rev. 2019, 13, 1900123. [Google Scholar] [CrossRef]
- Zhao, X.; Jin, H.; Liu, J.; Chao, J.; Liu, T.; Zhang, H.; Wang, G.; Lyu, W.; Wageh, S.; Al-Hartomy, O.A.; et al. Integration and Applications of Nanomaterials for Ultrafast Photonics. Laser Photonics Rev. 2022, 16, 2200386. [Google Scholar] [CrossRef]
- Jiang, R.; Mou, D.; Wu, Y.; Huang, L.; McMillen, C.D.; Kolis, J.; Giesber, H.G., III; Egan, J.J.; Kaminski, A. Tunable vacuum ultraviolet laser based spectrometer for angle resolved photoemission spectroscopy. Rev. Sci. Instrum. 2014, 85, 033902. [Google Scholar] [CrossRef] [PubMed]
- Henning, S.; Julian, S.; Gunnar, B.; Vanessa, Z. Hybrid photonic system integration using thin glass platform technology. J. Opt. Microsyst. 2021, 1, 033501. [Google Scholar] [CrossRef]
- Shainline, J.M.; Buckley, S.M.; Nader, N.; Gentry, C.M.; Cossel, K.C.; Cleary, J.W.; Popović, M.; Newbury, N.R.; Nam, S.W.; Mirin, R.P. Room-temperature-deposited dielectrics and superconductors for integrated photonics. Opt. Express 2017, 25, 10322–10334. [Google Scholar] [CrossRef]
- Carroll, L.; Lee, J.-S.; Scarcella, C.; Gradkowski, K.; Duperron, M.; Lu, H.; Zhao, Y.; Eason, C.; Morrissey, P.; Rensing, M.; et al. Photonic Packaging: Transforming Silicon Photonic Integrated Circuits into Photonic Devices. Appl. Sci. 2016, 6, 426. [Google Scholar] [CrossRef]
- Lee, J.S.; Carroll, L.; Scarcella, C.; Pavarelli, N.; Menezo, S.; Bernabé, S.; Temporiti, E.; Brien, P.O. Meeting the Electrical, Optical, and Thermal Design Challenges of Photonic-Packaging. IEEE J. Sel. Top. Quant. 2016, 22, 409–417. [Google Scholar] [CrossRef]
- Parnika, G.; Amit, T.; Xiuyun, H.; Kamil, G.; Kafil, M.R.; Padraic, E.M.; Peter, O.B. Substrate integrated micro-thermoelectric coolers in glass substrate for next-generation photonic packages. J. Opt. Microsyst. 2024, 4, 011006. [Google Scholar] [CrossRef]
- Misiakos, K.; Makarona, E.; Hoekman, M.; Fyrogenis, R.; Tukkiniemi, K.; Jobst, G.; Petrou, P.S.; Kakabakos, S.E.; Salapatas, A.; Goustouridis, D.; et al. All-Silicon Spectrally Resolved Interferometric Circuit for Multiplexed Diagnostics: A Monolithic Lab-on-a-Chip Integrating All Active and Passive Components. ACS Photonics 2019, 6, 1694–1705. [Google Scholar] [CrossRef]
- Lv, Z.; Zhu, B.; Lu, L.; Yuan, P.; Lou, X.; Dong, M.; Zhu, L. Miniature and low-power high-precision FBG interrogator with self-temperature compensation. Opt. Express 2025, 33, 10289–10301. [Google Scholar] [CrossRef]
- Trita, A.; Vickers, G.; Mayordomo, I.; van Thourhout, D.; Vermeiren, J. Design, Integration, and Testing of a Compact FBG Interrogator, Based on an AWG Spectrometer; SPIE: Bellingham, WA, USA, 2014; Volume 9133. [Google Scholar]
- Li, K.; Dong, M.; Yuan, P.; Lu, L.; Sun, G.; Zhu, L. Review of fiber Bragg grating interrogation techniques based on array waveguide gratings. Acta Phys. Sin. 2022, 71, 094207. [Google Scholar] [CrossRef]
- Chen, L.R.; Comanici, M.-I.; Moslemi, P.; Hu, J.; Kung, P. A Review of Recent Results on Simultaneous Interrogation of Multiple Fiber Bragg Grating-Based Sensors Using Microwave Photonics. Appl. Sci. 2019, 9, 298. [Google Scholar] [CrossRef]
- Lin, Z.; Shi, W. Photonic integrated circuit-based fiber-optic temperature and strain sensing system. Opt. Lett. 2022, 47, 3620–3623. [Google Scholar] [CrossRef] [PubMed]
- Bogaerts, W.; Xing, Y.; Ye, Y.; Khan, U.; Dong, J.; Geessels, J.; Fiers, M.; Spina, D.; Dhaene, T. Predicting Yield of Photonic Circuits With Wafer-scale Fabrication Variability: Invited Paper. In Proceedings of the 2019 IEEE MTT-S International Conference on Numerical Electromagnetic and Multiphysics Modeling and Optimization (NEMO), Boston, MA, USA, 29–31 May 2019; pp. 1–3. [Google Scholar]
- Chen, X.; Lin, J.; Wang, K. A Review of Silicon-Based Integrated Optical Switches. Laser Photonics Rev. 2023, 17, 2200571. [Google Scholar] [CrossRef]
- Yi, D.; Luan, J.; Wang, Y.; Tsang, H.K. Reconfigurable polarization processor based on coherent four-port micro-ring resonator. Nanophotonics 2023, 12, 4127–4136. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; An, Z.; Zhang, S.; Zuo, S.; Zhu, W.; Zhang, S.; Huang, B.; Cao, L.; Zhang, C.; Zhang, Z.; et al. Fully Photonic Integrated Wearable Optical Interrogator. ACS Photonics 2021, 8, 3607–3618. [Google Scholar] [CrossRef]
- Chen, X.; Milosevic, M.M.; Stanković, S.; Reynolds, S.; Bucio, T.D.; Li, K.; Thomson, D.J.; Gardes, F.; Reed, G.T. The Emergence of Silicon Photonics as a Flexible Technology Platform. Proc. IEEE 2018, 106, 2101–2116. [Google Scholar] [CrossRef]
- Credence Research. Photonic Integrated Circuits Market Size & Forecast to 2032. 2024. Available online: https://www.credenceresearch.com/report/photonic-integrated-circuits-market (accessed on 1 March 2025).
- Zhang, W.; Li, Y.; Jin, B.; Ren, F.; Wang, H.; Dai, W. A Fiber Bragg Grating Interrogation System with Self-Adaption Threshold Peak Detection Algorithm. Sensors 2018, 18, 1140. [Google Scholar] [CrossRef]
- Quélène, J.-B.; Pohl, D.; Bitauld, D.; Hassan, K.; Laffont, G. Experimental study of a tunable hybrid III-V-on-silicon laser for spectral characterization of fiber Bragg grating sensors. In Semiconductor Lasers and Laser Dynamics X; SPIE: Bellingham, WA, USA, 2022; p. 1214105. [Google Scholar]
- Marin, Y.E.; Nannipieri, T.; Oton, C.J.; Pasquale, F.D. Current Status and Future Trends of Photonic-Integrated FBG Interrogators. J. Light. Technol. 2018, 36, 946–953. [Google Scholar] [CrossRef]
- Marin, Y.E.; Nannipieri, T.; Oton, C.J.; Pasquale, F.D. Integrated FBG Sensors Interrogation Using Active Phase Demodulation on a Silicon Photonic Platform. J. Light. Technol. 2017, 35, 3374–3379. [Google Scholar] [CrossRef]
- Elaskar, J.; Bontempi, F.; Velha, P.; Ayaz, R.M.A.; Tozzetti, L.; Faralli, S.; Pasquale, F.D.; Oton, C.J. Ultracompact Microinterferometer-Based Fiber Bragg Grating Interrogator on a Silicon Chip. J. Light. Technol. 2023, 41, 4397–4404. [Google Scholar] [CrossRef]
- Li, K.; Yuan, P.; Lu, L.; Dong, M.; Zhu, L. PLC-Based Arrayed Waveguide Grating Design for Fiber Bragg Grating Interrogation System. Nanomaterials 2022, 12, 2938. [Google Scholar] [CrossRef] [PubMed]
- Zhuang, Y.; Zou, J.; Zhang, J.; Zhang, L.; Zhang, J.; Meng, L.; Yang, Q. On-Chip Sub-Picometer Continuous Wavelength Fiber-Bragg-Grating Interrogator. Photonic Sens. 2024, 14, 240126. [Google Scholar] [CrossRef]
- Xiao, G.; Mrad, N.; Sun, F.; Zhang, Z.; Liu, J.; Lu, Z. Miniaturized Optical Fiber Sensor Interrogation Systems for Potential Aerospace Applications; SPIE: Bellingham, WA, USA, 2007; Volume 6619. [Google Scholar]
- Xiao, G.; Mrad, N.; Wu, F.; Zhang, Z.; Sun, F. Miniaturized Optical Fiber Sensor Interrogation System Employing Echelle Diffractive Gratings Demultiplexer for Potential Aerospace Applications. IEEE Sens. J. 2008, 8, 1202–1207. [Google Scholar] [CrossRef]
- Jansz, P.; Richardson, S.; Wild, G.; Hinckley, S. Modeling of low coherence interferometry using broadband multi-Gaussian light sources. Photonic Sens. 2012, 2, 247–258. [Google Scholar] [CrossRef]
- Jansz, P.V.; Richardson, S.; Wild, G.; Hinckley, S. Characterizing the resolvability of real superluminescent diode sources for application to optical coherence tomography using a low coherence interferometry model. J. Biomed. Opt. 2014, 19, 085003. [Google Scholar] [CrossRef]
- Wild, G.; Richardson, S. Numerical modeling of intensity-based optical fiber Bragg grating sensor interrogation systems. Opt. Eng. 2013, 52, 024404. [Google Scholar] [CrossRef]
- Roth, J.M.; Klisiewicz, D.; Briggs, I.J.; Ramakrishnan, S.; Langlois, C.M.; Malinsky, B.G.; Scalesse, V. Dual-control technique for temperature stabilization and tunability of narrowband fiber Bragg gratings. In Free-Space Laser Communications XXXV; SPIE: Bellingham, WA, USA, 2023; p. 1241317. [Google Scholar]
- Rosolem, J.B.; Argentato, M.C.; Bassan, F.R.; Penze, R.S.; Floridia, C.; Silva, A.d.A.; Vasconcelos, D.; Ramos Junior, M.A. Demonstration of a Filterless, Multi-Point, and Temperature-Independent Fiber Bragg Grating Dynamical Demodulator Using Pulse-Width Modulation. Sensors 2020, 20, 5825. [Google Scholar] [CrossRef]
- Cao, Z.; Liang, X.; Deng, Y.; Zha, X.; Zhu, R.; Leng, J. Novel Semi-Analytical Solutions for the Transient Behaviors of Functionally Graded Material Plates in the Thermal Environment. Materials 2019, 12, 4084. [Google Scholar] [CrossRef]
- Baravelli, E.; Carrara, M.; Ruzzene, M. High stiffness, high damping chiral metamaterial assemblies for low-frequency applications. In Health Monitoring of Structural and Biological Systems; SPIE: Bellingham, WA, USA, 2013; p. 86952K. [Google Scholar]
- Liu, Y.; Liu, Z.; Huang, A.; Wang, J.; Xin, C. Theoretical modeling and simulation of fiber Bragg grating sensor interrogator based on linear variable filter. Opt. Express 2023, 31, 5777–5793. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.; Liu, Y.; Huang, A. Errors modeling of fiber Bragg grating sensor interrogator with linear variable filter. In Proceedings of the 14th International Photonics and Optoelectronics Meetings (POEM 2022), Wuhan, China, 18–20 December 2022; SPIE: Bellingham, WA, USA, 2023; p. 126140H. [Google Scholar]
- Ranno, L.; Gupta, P.; Gradkowski, K.; Bernson, R.; Weninger, D.; Serna, S.; Agarwal, A.M.; Kimerling, L.C.; Hu, J.; Obrien, P. Integrated Photonics Packaging: Challenges and Opportunities. ACS Photonics 2022, 9, 3467–3485. [Google Scholar] [CrossRef]
- Millar, R.C. Integrated Instrumentation and Sensor Systems Enabling Condition-Based Maintenance of Aerospace Equipment. Int. J. Aerosp. Eng. 2012, 2012, 804747. [Google Scholar] [CrossRef]
- Li, H.; Ma, X.; Cui, B.; Wang, Y.; Zhang, C.; Zhao, J.; Zhang, Z.; Tang, C.; Li, E. Chip-scale demonstration of hybrid III–V/silicon photonic integration for an FBG interrogator. Optica 2017, 4, 692–700. [Google Scholar] [CrossRef]
- Fernández, M.P.; Bulus Rossini, L.A.; Cruz, J.L.; Andrés, M.V.; Costanzo Caso, P.A. High-speed and high-resolution interrogation of FBG sensors using wavelength-to-time mapping and Gaussian filters. Opt. Express 2019, 27, 36815–36823. [Google Scholar] [CrossRef]
- Marrazzo, V.R.; Fienga, F.; Riccio, M.; Irace, A.; Breglio, G. Multichannel Approach for Arrayed Waveguide Grating-Based FBG Interrogation Systems. Sensors 2021, 21, 6214. [Google Scholar] [CrossRef]
- Falak, P.; Sun, Q.; Vettenburg, T.; Lee, T.; Phillips, D.B.; Brambilla, G.; Beresna, M. Low-cost fiber Bragg grating interrogation with a femtosecond laser written scattering chip. In Laser Applications in Microelectronic and Optoelectronic Manufacturing (LAMOM) XXVIII; SPIE: Bellingham, WA, USA, 2023; p. 1240806. [Google Scholar]
- Liu, F.; Gu, T.; Chen, W. A Multiplexing Optical Temperature Sensing System for Induction Motors Using Few-Mode Fiber Spatial Mode Diversity. Electronics 2024, 13, 1932. [Google Scholar] [CrossRef]
- Weng, S.; Yuan, P.; Zhuang, W.; Zhang, D.; Luo, F.; Zhu, L. SOI-Based Multi-Channel AWG with Fiber Bragg Grating Sensing Interrogation System. Photonics 2021, 8, 214. [Google Scholar] [CrossRef]
- Xu, H.; Qin, Y.; Hu, G.; Tsang, H.K. Breaking the resolution-bandwidth limit of chip-scale spectrometry by harnessing a dispersion-engineered photonic molecule. Light Sci. Appl. 2023, 12, 64. [Google Scholar] [CrossRef]
- Zhang, Z.; Song, Q.; Xiao, S.; Xu, K. Single-Shot on-Chip Diffractive Speckle Spectrometer with High Spectral Channel Density. Laser Photonics Rev. 2025, 2401987. [Google Scholar] [CrossRef]
- Voronkov, G.; Zakoyan, A.; Ivanov, V.; Iraev, D.; Stepanov, I.; Yuldashev, R.; Grakhova, E.; Lyubopytov, V.; Morozov, O.; Kutluyarov, R. Design and Modeling of a Fully Integrated Microring-Based Photonic Sensing System for Liquid Refractometry. Sensors 2022, 22, 9553. [Google Scholar] [CrossRef]
- Sherman, J.; Rosborough, V.; Gans, R.; Ramirez, J.; Kebort, D.; Sitwell, G.; Musolf, J.; Garrett, H.; Liu, T.; McEwen, C.; et al. Enabling Space-Qualified Opto-Electronic Systems Through Photonic Wirebonding; SPIE: Bellingham, WA, USA, 2024; Volume 13062. [Google Scholar]
- He, P.; Du, T.; Zhao, K.; Dong, J.; Liang, Y.; Zhang, Q. Lightweight 3D Graphene Metamaterials with Tunable Negative Thermal Expansion. Adv. Mater. 2023, 35, 2208562. [Google Scholar] [CrossRef] [PubMed]
- Prechtl, M.; Parhizkar, S.; Hartwig, O.; Lee, K.; Biba, J.; Stimpel-Lindner, T.; Gity, F.; Schels, A.; Bolten, J.; Suckow, S.; et al. Hybrid Devices by Selective and Conformal Deposition of PtSe2 at Low Temperatures. Adv. Funct. Mater. 2021, 31, 2103936. [Google Scholar] [CrossRef]
- Niu, W.; Cao, X.; Wang, Y.; Yao, B.; Zhao, Y.; Cheng, J.; Wu, S.; Zhang, S.; He, X. Photonic Vitrimer Elastomer with Self-Healing, High Toughness, Mechanochromism, and Excellent Durability based on Dynamic Covalent Bond. Adv. Funct. Mater. 2021, 31, 2009017. [Google Scholar] [CrossRef]
- Falak, P.; Lee, T.; Zahertar, S.; Shi, B.; Moog, B.; Brambilla, G.; Holmes, C.; Beresna, M. Compact high-resolution FBG strain interrogator based on laser-written 3D scattering structure in flat optical fiber. Sci. Rep. 2023, 13, 8805. [Google Scholar] [CrossRef]
- Rudloff, G.; Soto, M.A. Multipeak Wavelength Detection of Spectrally Overlapped Fiber Bragg Grating Sensors Through a CNN-Based Autoencoder. IEEE Sens. J. 2024, 24, 20674–20687. [Google Scholar] [CrossRef]
- Tian, W.; Bas, B.; Harmsen, D.; Williams, K.; Leijtens, X. Temperature Sensing Diode in InP-Based Photonic Integration Technology. IEEE Photonics J. 2024, 16, 6600808. [Google Scholar] [CrossRef]
- Hendricks, J.; Ahmed, Z.; Barker, D.; Douglass, K.; Eckel, S.; Fedchak, J.; Klimov, N.; Ricker, J.; Scherschligt, J. Quantum-Based Photonic Sensors for Pressure, Vacuum, and Temperature Measurements: A Vison of the Future with NIST on a Chip. Meas. Sens. 2021, 7, 10–5162. [Google Scholar] [CrossRef]
- Toet, P.; Hagen, R.A.; Hakkesteegt, H.; Lugtenburg, J.; Maniscalco, M. Miniature and Low Cost FIBER Bragg Grating Interrogator for Structural Monitoring in Nano-Satellites. In Proceedings of the International Conference on Space Optics—ICSO 2014, Tenerife, Spain, 6–10 October 2017. [Google Scholar]
- Shaker, L.M.; Al-Amiery, A.; Isahak, W.N.R.W.; Al-Azzawi, W.K. Integrated photonics: Bridging the gap between optics and electronics for enhancing information processing. J. Opt. 2023. [Google Scholar] [CrossRef]
- Lihachev, G.; Riemensberger, J.; Weng, W.; Liu, J.; Tian, H.; Siddharth, A.; Snigirev, V.; Shadymov, V.; Voloshin, A.; Wang, R.N.; et al. Low-noise frequency-agile photonic integrated lasers for coherent ranging. Nat. Commun. 2022, 13, 3522. [Google Scholar] [CrossRef]
- Mosses, A.; Joe Prathap, P.M. Analysis and codesign of electronic–photonic integrated circuit hardware accelerator for machine learning application. J. Comput. Electron. 2024, 23, 94–107. [Google Scholar] [CrossRef]
- Islam, M.R.; Ali, M.M.; Lai, M.-H.; Lim, K.-S.; Ahmad, H. Chronology of Fabry-Perot Interferometer Fiber-Optic Sensors and Their Applications: A Review. Sensors 2014, 14, 7451–7488. [Google Scholar] [CrossRef] [PubMed]
- Bado, M.F.; Casas, J.R. A Review of Recent Distributed Optical Fiber Sensors Applications for Civil Engineering Structural Health Monitoring. Sensors 2021, 21, 1818. [Google Scholar] [CrossRef] [PubMed]
- Bakhoum, E.G.; Zhang, C.; Cheng, M.H. Real Time Measurement of Airplane Flutter via Distributed Acoustic Sensing. Aerospace 2020, 7, 125. [Google Scholar] [CrossRef]
Type | Common Failures | Hypersonic Flight Challenges | Optical Fiber Advantages |
---|---|---|---|
Inertial | Bias, drift, scaling, noise | Additional errors induced by penetrating acoustic radiation from propulsion, forced precession of components due to acoustic fields, increased errors due to intense fuselage vibration. | High precision and stability, resistance to vibration and acoustic noise, lower drift rates, and enhanced accuracy in dynamic environments. |
Pressure | Bias, drift, blockage, mechanical damage | Extreme temperatures potentially exceeding operating limits, inaccurate readings due to high-temperature gas expansion, potential for thermal shock. | High accuracy and stability under extreme conditions, resistance to thermal shock, and ability to measure pressure changes with high resolution. |
Temperature | Bias, drift, degradation, corrosion | Extreme temperatures potentially exceeding material limits, thermoelectric drift, increased rates of oxidation and corrosion. | High temperature tolerance, resistance to corrosion and oxidation, fast response time, and high accuracy. |
RF | Signal loss, noise | Interference from plasma sheath causing signal attenuation or reflection, potential for communication blackouts. | Immunity to electromagnetic interference, ability to operate in plasma environments, and high bandwidth for data transmission. |
Applications | Advantages | Technical Properties |
---|---|---|
SHM | Real-time data, damage detection | Embedded in composites, spatial measurements |
Temperature | High sensitivity, accurate readings | Reflects specific wavelengths, shifts with temperature |
Pressure | Precise measurements, challenging conditions | Reflects specific wavelengths, shifts with pressure |
General | Immunity to EMI, lightweight, compact | Optical signals, multiplexing capability |
Interrogator Type/Model | Resolution | Sampling Rate | Spectral Tuning Method |
---|---|---|---|
SmartScan (smart fibers) | 1 pm | 25 kHz * | Tunable Laser |
SmartScope (smart fibers) | 0.04 pm (0.2 pm) | 0.1 Hz (5 Hz) | Tunable Laser |
QuantumX MXFS (HBM) | 0.5 pm | 2 kHz | Tunable Laser |
FS22 Industrial BraggMETER (HBM) | 0.5 pm | 1 kHz | Tunable Laser |
FSI M4 Interrogator (femto sensing) | 10 pm | 1 kHz | Tunable Laser |
WaveCapture (advanced energy) | 1 pm | 4 kHz | Spectrometer |
I-MON 256 USB (Ibsen) | 0.5 pm | 6 kHz | Spectrometer |
I-MON 256 High Speed (Ibsen) | 0.5 pm | 32.5 kHz | Spectrometer |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wild, G. Potential Designs for Miniature Distributed Optical Fiber Smart Sensors Systems for Use in Aerospace Flight Vehicles. Designs 2025, 9, 38. https://doi.org/10.3390/designs9020038
Wild G. Potential Designs for Miniature Distributed Optical Fiber Smart Sensors Systems for Use in Aerospace Flight Vehicles. Designs. 2025; 9(2):38. https://doi.org/10.3390/designs9020038
Chicago/Turabian StyleWild, Graham. 2025. "Potential Designs for Miniature Distributed Optical Fiber Smart Sensors Systems for Use in Aerospace Flight Vehicles" Designs 9, no. 2: 38. https://doi.org/10.3390/designs9020038
APA StyleWild, G. (2025). Potential Designs for Miniature Distributed Optical Fiber Smart Sensors Systems for Use in Aerospace Flight Vehicles. Designs, 9(2), 38. https://doi.org/10.3390/designs9020038