Who Is at Risk for Problematic Video Gaming? Risk Factors in Problematic Video Gaming in Clinically Referred Canadian Children and Adolescents
Abstract
:1. Introduction
1.1. Prevalence Estimates of Problematic Video Gaming
1.2. Risk Factors in Problematic Video Gaming
1.3. Study Objective
2. Materials and Methods
2.1. Participants
2.2. Outcome Variables
- None: The child/youth does not play video games or there is no effect on the child’s/youth’s functioning or day-to-day routines due to video gaming.
- Minimal: Video gaming results in some disruption for day-to-day social activities, but the child/youth has no difficulties completing normal day-to-day activities, chores, homework, and attending school.
- Moderate: Due to problems with excessive video gaming, reduced attention to personal needs (e.g., hygiene, sleeping, eating) is reported. The child/youth has difficulties with day-to-day activities, which may include limiting social activity outside of video gaming interactions, not completing homework, skipping school, and scholastic performance declining in terms of productivity and attendance at school due to video gaming.
- Severe: Child/youth does not attend to personal needs and video gaming heavily interferes with daily functioning (i.e., neglects participation for social and household activities, not attending to personal needs, not attending school or at serious risk of failing school or workplace dismissal).
2.3. Predictors
- Internalizing Mental Health Scale: The Internalizing Mental Health Scale is a multidimensional, 12-item measure that assesses three facets of depressive symptoms (e.g., expressions of hopelessness, expressions of guilt/shame, self-deprecation, made negative comments), anxiety (e.g., repetitive anxious complaints or concerns, unrealistic fears, episodes of panic, hypervigilance), and anhedonia (e.g., decreased energy, lack of motivation, withdrawal from activities of interest, anhedonia). Scale scores range from 0 to 36, with higher scores indicating high degree of internalizing problems. The measure demonstrated excellent psychometric properties and strong reliability and validity [54]. In this sample, Cronbach’s alpha for the full scale is 0.84, and Cronbach’s alpha values in subscales of anxiety, anhedonia, and depression are 0.70, 0.78 for 0.82 respectively.
- Externalizing Mental Health Scale: The Externalizing Mental Health Scale is a multidimensional, 12-item measure that assesses 2 facets of proactive aggression (e.g., stealing, bullying peers, violence to others, intimidation of others or threatened violence; Cronbach’s alpha for the subscale = 0.77) and reactive aggression (e.g., argumentative, outburst of anger, verbal abuse; Cronbach’s alpha for subscale = 0.84). Scale scores range from 0 to 12, with higher scores indicating high degree of externalizing symptoms. The measure demonstrated excellent psychometric properties and strong reliability and validity [54]. Cronbach’s alpha for the full scale in this sample is 0.85.
- Extreme Shyness: Extreme Shyness [48] is measured using one item that assesses a child’s/youth’s pervasive pattern of severe inhibition in social situations where shyness or apprehension is not warranted, whether it is present at the home, at school, or during recreation activities. The clinician codes the item based on the presence or absence of this behaviour. In this sample, 825 children/youth (14.2%) exhibited symptoms of extreme shyness.
- Relational Strengths Scale: The interRAI Relational Strength Scale [48] measures the quantity of strengths present in the child’s/youth’s ability to relate to others. Scale scores range from 0 to 6, with higher scores indicating lower degree of relational strengths. Each item measures the dichotomous presence or absence of supporting relationships within the child’s/youth’s environment (e.g., reports having a confidant, school engagement, strong and supportive relationship with family, strong and supportive relationship with peers, has one friend who visits or plays with regularly, social inclusion by peers; Cronbach’s alpha = 0.65).
- Demographics: Age at time of assessment (i.e., four to 18 years) and sex (i.e., male vs. female) were examined as predictors. Note that unspecified/other sex category was removed as it less than 0.3% of the sample.
2.4. Statistical Analyses
3. Results
3.1. Participant Demographics
3.2. Results of the Regression Models
4. Discussion
The Strengths and Limitations of the Study
5. Conclusions
Author Contributions
Acknowledgments
Conflicts of Interest
Appendix A. Correlations between Study Variables
Video Game | Sex | Age | Relational Strengths | Extreme Shyness | Internalizing Symptoms | Externalizing Symptoms | |
---|---|---|---|---|---|---|---|
Video Game | 1 | ||||||
Sex (Male = 1; Female = 2) | −0.206 ** | 1 | |||||
Age | 0.057 ** | 0.217 ** | 1 | ||||
Relational Strengths | 0.125 ** | −0.103 ** | −0.10 | 1 | |||
Extreme Shyness | 0.076 ** | 0.006 | −0.037 ** | 0.109 ** | 1 | ||
Internalizing Symptoms | 0.138 ** | 0.122 ** | 0.189 ** | 0.142 ** | 0.145 ** | 1 | |
Externalizing Symptoms | 0.176 ** | −0.233 ** | −0.146 ** | 0.258 ** | −0.045 ** | 0.189 ** | 1 |
References
- Lenhart, A.; Kahne, J.; Middaugh, E.; Macgill, A.R.; Evans, C.; Vitak, J. Teens, Video Games, and Civics. Teens’ Gaming Experiences are Diverse and Include Significant Social Interaction and Civic Engagement. Pew Research Center, 2008. Available online: http://www.pewinternet.org/2008/09/16/teens-video-games-and-civics/ (accessed on 1 March 2018).
- Olson, C.K. Children’s motivations for video game play in the context of normal development. Rev. Gen. Psychol. 2010, 14, 180–187. [Google Scholar] [CrossRef]
- De Argaez, E. Internet World Users by Language, 2013. Internet World Stats. Available online: https://www.internetworldstats.com/stats7.htm (accessed on 1 March 2018).
- Boak, A.; Hamilton, H.A.; Adlaf, E.M.; Henderson, J.L.; Mann, R.E. The Mental Health and Well-Being of Ontario Students. CAMH Res. Doc. 2016, 43, 1–41. Available online: https://www.camh.ca/en/research/news_and_publications/ontario-student-drug-use-and-health-survey/Documents/2015%20OSDUHS%20Documents/2015OSDUHS_Highlights_MentalHealthReport.pdf (accessed on 9 April 2018).
- Lobel, A.; Granic, I.; Stone, L.L.; Engels, R.C. Associations between children’s video game playing and psychosocial health: Information from both parent and child reports. Cyberpsychol. Behav. Soc. Netw. 2014, 17, 639–643. [Google Scholar] [CrossRef] [PubMed]
- Adachi, P.J.C.; Willoughby, T. Do video games promote positive youth development? J. Adolesc. Res. 2012, 28, 155–165. [Google Scholar] [CrossRef]
- Jackson, L.A.; Witt, E.A.; Games, A.I.; Fitzgerald, H.E.; von Eye, A.; Zhao, Y. Information technology use and creativity: Findings from the Children and Technology Project. Comput. Hum. Behav. 2012, 28, 370–376. [Google Scholar] [CrossRef]
- Kuss, D.; Griffiths, M.; Karila, L.; Billieux, J. Internet addiction: A systematic review of epidemiological research for the last decade. Curr. Pharm. Des. 2014, 20, 4026–4052. [Google Scholar] [CrossRef] [PubMed]
- Kuss, D.J.; Griffiths, M.D. Internet gaming addiction: A systematic review of empirical research. Int. J. Ment. Heal. Addict. 2012, 10, 278–296. [Google Scholar] [CrossRef]
- Van Rooij, A.J.; Schoenmakers, T.M.; Vermulst, A.A.; Van Den Eijnden, R.J.; Van De Mheen, D. Online video game addiction: Identification of addicted adolescent gamers. Addiction 2011, 106, 205–212. [Google Scholar] [CrossRef] [PubMed]
- Gentile, D.A.; Choo, H.; Liau, A.; Sim, T.; Li, D.; Fung, D.; Khoo, A. Pathological video game use among youths: A two-year longitudinal study. Pediatrics 2011, 127, e319–e329. [Google Scholar] [CrossRef] [PubMed]
- Tao, R.; Huang, X.; Wang, J.; Zhang, H.; Zhang, Y.; Li, M. Proposed diagnostic criteria for internet addiction. Addiction 2010, 105, 556–564. [Google Scholar] [CrossRef] [PubMed]
- American Psychiatric Association. Diagnostic and Statistical Manual of Mental Disorders: DSM-5TM, 5th ed.; American Psychiatric Publishing, Inc.: Arlington, TX, USA, 2013; pp. 795–798. ISBN 978-0523232010. [Google Scholar]
- World Health Organization. 6C51 Gaming Disorder. ICD-11 Beta Draft. Available online: https://icd.who.int/dev11/l-m/en#/http%3a%2f%2fid.who.int%2ficd%2fentity%2f1448597234 (accessed on 9 April 2018).
- Kuss, D.J.; Griffiths, M.D.; Pontes, H.M. DSM-5 diagnosis of internet gaming disorder: Some ways forward in overcoming issues and concerns in the gaming studies field. J. Behav. Addict. 2017, 6, 133–141. [Google Scholar] [CrossRef] [PubMed]
- Kuss, D.J.; Griffiths, M.D.; Pontes, H.M. Chaos and confusion in DSM-5 diagnosis of internet gaming disorder: Issues, concerns, and recommendations for clarity in the field. J. Behav. Addict. 2017, 6, 103–109. [Google Scholar] [CrossRef] [PubMed]
- Aarseth, E.; Bean, A.M.; Boonen, H.; Colder Carras, M.; Coulson, M.; Das, D.; Deleuze, J.; Dunkels, E.; Edman, J.; Ferguson, C.J.; Haagsma, M.C. Scholars’ open debate paper on the World Health Organization ICD-11 Gaming Disorder proposal. J. Behav. Addict. 2017, 6, 267–270. [Google Scholar] [CrossRef] [PubMed]
- Young, K.S. Internet addiction: The emergence of a new clinial disorder. Cyberpsychol. Behav. 1998, 1, 237–244. [Google Scholar] [CrossRef] [Green Version]
- Wölfling, K.; Müller, K.W.; Beutel, M. Reliability and validity of the scale for the assessment of pathological computer-gaming (CSV-S). Psychother. Psychosom. Med. Psychol. 2011, 61, 216–224. [Google Scholar] [CrossRef] [PubMed]
- Griffiths, M.D.; Pontes, H.M. Internet addiction disorder and internet gaming disorder are not the same. J. Addict. Res. Ther. 2014, 5, e124. [Google Scholar] [CrossRef]
- Pontes, H.M.; Kuss, D.J.; Griffiths, M.D. The clinical psychology of internet addiction: A review of its conceptualization, prevalence, neuronal processes, and implications for treatment. Neurosci. Neuroecon. 2015, 4, 11–23. [Google Scholar] [CrossRef]
- Rumpf, H.J.; Vermulst, A.A.; Bischof, A.; Kastirke, N.; Guertler, D.; Bischof, G.; Meyer, C. Occurrence of internet addiction in a general population sample: A latent class analysis. Eur. Psychiatry 2014, 20, 159–166. [Google Scholar] [CrossRef]
- Tejeiro Salguero, R.A.; Morán, R.M.B. Measuring problem video game playing in adolescents. Addiction 2002, 97, 1601–1606. [Google Scholar] [CrossRef] [PubMed]
- Gentile, D. Pathological video-game use among youth ages 8 to 18: A national study. Psychol. Sci. 2009, 20, 594–602. [Google Scholar] [CrossRef] [PubMed]
- Gentile, D.A.; Swing, E.L.; Lim, C.G.; Khoo, A. Video game playing, attention problems, and impulsiveness: Evidence of bidirectional causality. Psychol. Pop. Media Cult. 2012, 1, 62–70. [Google Scholar] [CrossRef]
- Griffiths, M.D.; Hunt, N. Dependence on computer games by adolescents. Psychol. Rep. 1998, 82, 475–480. [Google Scholar] [CrossRef] [PubMed]
- Grüsser, S.M.; Thalemann, R.; Albrecht, U.; Thalemann, C.N. Exzessive computernutzung im kindesalter—Ergebnisse einer psychometrischen erhebung. Wien. Klin. Wochenschr. 2005, 117, 188–195. [Google Scholar] [PubMed]
- Batthyány, D.; Müller, K.W.; Benker, F.; Wölfling, K. Computer game playing: Clinical characteristics of dependence and abuse among adolescents. Wien. Klin. Wochenschr. 2009, 121, 502–509. [Google Scholar] [CrossRef] [PubMed]
- Thomas, N.J.; Martin, D.F.H. Video-arcade game, computer game and internet activities of Australian students: Participation habits and prevalence of addiction. Aust. J. Psychol. 2010, 62, 59–66. [Google Scholar] [CrossRef]
- Rehbein, F.; Kleimann, M.; Mössle, T. Prevalence and risk factors of video game dependency in adolescence: Results of a German nationwide survey. Cyberpsychol. Behav. Soc. Netw. 2010, 13, 269–277. [Google Scholar] [CrossRef] [PubMed]
- Yen, J.-Y.; Yen, C.-F.; Chen, C.-S.; Tang, T.-C.; Ko, C.-H. The association between adult ADHD symptoms and internet addiction among college students: The gender difference. Cyberpsychol. Behav. 2009, 12, 187–191. [Google Scholar] [CrossRef] [PubMed]
- Chiu, S.-I.; Lee, J.-Z.; Huang, D.-H. Video game addiction in children and teenagers in Taiwan. Cyberpsychol. Behav. 2004, 7, 571–581. [Google Scholar] [CrossRef] [PubMed]
- Mehroof, M.; Griffiths, M.D. Online gaming addiction: The role of sensation seeking, self-control, neuroticism, aggression, state anxiety, and trait anxiety. Cyberpsychol. Behav. Soc. Netw. 2010, 13, 313–316. [Google Scholar] [CrossRef] [PubMed]
- Caplan, S.; Williams, D.; Yee, N. Problematic internet use and psychosocial well-being among MMO players. Comput. Hum. Behav. 2009, 25, 1312–1319. [Google Scholar] [CrossRef]
- Kim, E.J.; Namkoong, K.; Ku, T.; Kim, S.J. The relationship between online game addiction and aggression, self-control and narcissistic personality traits. Eur. Psychiatry 2008, 23, 212–218. [Google Scholar] [CrossRef] [PubMed]
- Bavelier, D.; Green, C.S.; Han, D.H.; Renshaw, P.F.; Merzenich, M.M.; Gentile, D.A. Brains on video games. Nat. Rev. Neurosci. 2011, 12, 763–768. [Google Scholar] [CrossRef] [PubMed]
- Mentzoni, R.A.; Brunborg, G.S.; Molde, H.; Myrseth, H.; Skouverøe, K.J.M.; Hetland, J.; Pallesen, S. Problematic video game use: Estimated prevalence and associations with mental and physical health. Cyberpsychol. Behav. Soc. Netw. 2011, 14, 591–596. [Google Scholar] [CrossRef] [PubMed]
- Porter, G.; Starcevic, V.; Berle, D.; Fenech, P. Recognizing problem video game use. Aust. N. Z. J. Psychiatry 2010, 44, 120–128. [Google Scholar] [CrossRef] [PubMed]
- Cole, S.H.; Hooley, J.M. Clinical and personality correlates of MMO gaming: Anxiety and absorption in problematic internet use. Soc. Sci. Comput. Rev. 2013, 31, 424–436. [Google Scholar] [CrossRef]
- Guillot, C.R.; Bello, M.S.; Tsai, J.Y.; Huh, J.; Leventhal, A.M.; Sussman, S. Longitudinal associations between anhedonia and internet-related addictive behaviors in emerging adults. Comput. Hum. Behav. 2016, 62, 475–479. [Google Scholar] [CrossRef] [PubMed]
- Bauer, D.J.; Curran, P.J. Probing interactions in fixed and multilevel regression: Inferential and graphical techniques. Multivar. Behav. Res. 2005, 40, 373–400. [Google Scholar] [CrossRef] [PubMed]
- Müller, K.W.; Koch, A.; Beutel, M.E.; Dickenhorst, U.; Medenwaldt, J.; Wölfling, K. Internet addiction as a co-morbid disorder among patients of German addiction rehabilitation facilities: An exploratory investigation of clinical prevalence. Psychiatr. Prax. 2012, 39, 286–292. [Google Scholar] [CrossRef] [PubMed]
- Wittek, C.T.; Finserås, T.R.; Pallesen, S.; Mentzoni, R.A.; Hanss, D.; Griffiths, M.D.; Molde, H. Prevalence and predictors of video game addiction: A study based on a national representative sample of gamers. Int. J. Ment. Heal. Addict. 2016, 14, 672–686. [Google Scholar] [CrossRef] [PubMed]
- Yen, J.-Y.; Liu, T.-L.; Wang, P.-W.; Chen, C.-S.; Yen, C.-F.; Ko, C.-H. Association between Internet gaming disorder and adult attention deficit and hyperactivity disorder and their correlates: Impulsivity and hostility. Addict. Behav. 2017, 64, 308–313. [Google Scholar] [CrossRef] [PubMed]
- Ferguson, C.J. Do angry birds make for angry children? A meta-analysis of video game influences on children’s and adolescents’ aggression, mental health, prosocial behavior, and academic performance. Perspect. Psychol. Sci. 2015, 10, 646–666. [Google Scholar] [CrossRef] [PubMed]
- Griffiths, M.D.; Kuss, D.K.; King, D.K. Video game addiction: Past, present and future. Curr. Psychiatry Rev. 2012, 8, 308–318. [Google Scholar] [CrossRef]
- Lewis, A.; Griffiths, M.D. Confronting gender representation: A qualitative study of the experiences and motivations of female casual-gamers. Rev. Psicol. Ciències l’Educació i l’Esport 2011, 28, 245–272. [Google Scholar]
- Stewart, S.L.; Hirdes, J.P.; Curtin-Telegdi, N.; Perlman, C.M.; McKnight, M.; MacLeod, K.; Ninam, A.; Currie, M.; Carson, S. interRAI Child and Youth Mental Health (ChYMH) Assessment Form and User’s Manual: For Use with in-Patient and Community-Based Assessments, version 9.3; interRAI: Washington, DC, USA, 2015; ISBN 978-1-62255-029-6. [Google Scholar]
- Lau, C.; Stewart, S.L.; Saklofske, D.H.; Tremblay, P.F.; Hirdes, J. Psychometric evaluation of the interRAI Child and Youth Mental Health Disruptive/Aggression Behaviour Scale (DABS) and Hyperactive/Distraction Scale (HDS). Child Psychiatry Hum. Dev. 2018, 49, 279–289. [Google Scholar] [CrossRef] [PubMed]
- Martin, L.; Hirdes, J.P.; Fries, B.E.; Smith, T.F. Development and psychometric properties of an assessment for persons with intellectual disability—The interRAI ID. J. Policy Pract. Intellect. Disabil. 2007, 4, 23–29. [Google Scholar] [CrossRef]
- Morris, J.N.; Carpenter, I.; Berg, K.; Jones, R.N. Outcome measures for use with home care clients. Can. J. Aging 2000, 19, 87–105. [Google Scholar] [CrossRef]
- Stewart, S.L.; Hamza, C.A. The Child and Youth Mental Health Assessment (ChYMH): An examination of the psychometric properties of an integrated assessment developed for clinically referred children and youth. BMC Health Serv. Res. 2017, 17, 82. [Google Scholar] [CrossRef] [PubMed]
- Hirdes, J.P.; Ljunggren, G.; Morris, J.N.; Frijters, D.H.M.; Finne-Soveri, H.; Gray, L.; Bjorkgren, M.; Gilgen, R. Reliability of the interRAI suite of assessment instruments: A 12-country study of an integrated health information system. BMC Health Serv. Res. 2008, 8, 277. [Google Scholar] [CrossRef] [PubMed]
- Lau, C. Development and Psychometric Validation of the interRAI Internalizing and Externalizing Subscales. Master’s Thesis, University of Western Ontario, London, ON, Canada, 2017. [Google Scholar]
- Chen, H.; Cohen, P.; Chen, S. How big is a big odds ratio? Interpreting the magnitudes of odds ratios in epidemiological studies. Commun. Stat. Simul. Comput. 2010, 39, 860–864. [Google Scholar] [CrossRef]
- Cho, S.M.; Sung, M.J.; Shin, K.M.; Lim, K.Y.; Shin, Y.M. Does psychopathology in childhood predict internet addiction in male adolescents? Child Psychiatry Hum. Dev. 2013, 44, 549–555. [Google Scholar] [CrossRef] [PubMed]
- Ko, C.H.; Yen, J.Y.; Chen, C.S.; Yeh, Y.C.; Yen, C.F. Predictive values of psychiatric symptoms for internet addiction in adolescents: A 2-year prospective study. Arch. Pediatr. Adolesc. Med. 2009, 163, 937–943. [Google Scholar] [CrossRef] [PubMed]
- Van den Eijnden, R.J.; Meerkerk, G.J.; Vermulst, A.A.; Spijkerman, R.; Engels, R.C. Online communication, compulsive Internet use, and psychosocial well-being among adolescents: A longitudinal study. Dev. Psychol. 2008, 44, 655–665. [Google Scholar] [CrossRef] [PubMed]
- Dong, G.; Hu, Y.; Lin, X.; Lu, Q. What makes internet addicts continue playing online even when faced by severe negative consequences? Possible explanations from an fMRI study. Biol. Psychol. 2013, 94, 282–289. [Google Scholar] [CrossRef] [PubMed]
- Gentile, D.A.; Anderson, C.A.; Yukawa, S.; Ihori, N.; Saleem, M.; Ming, L.K.; Shibuya, A.; Liau, A.K.; Khoo, A.; Bushman, B.J.; et al. The effects of prosocial video games on prosocial behaviors: International evidence from correlational, longitudinal, and experimental studies. Personal. Soc. Psychol. Bull. 2009, 35, 752–763. [Google Scholar] [CrossRef] [PubMed]
- Markey, P.M.; Scherer, K. An examination of psychoticism and motion capture controls as moderators of the effects of violent video games. Comput. Hum. Behav. 2009, 25, 407–411. [Google Scholar] [CrossRef]
- Ferguson, C.J.; Olson, C.K. Video game violence use among “vulnerable” populations: The impact of violent games on delinquency and bullying among children with clinically elevated depression or attention deficit symptoms. J. Youth Adolesc. 2014, 43, 127–136. [Google Scholar] [CrossRef] [PubMed]
- Greenberg, B.S.; Sherry, J.; Lachlan, K.; Lucas, K.; Holmstrom, A. Orientations to video games among gender and age groups. Simul. Gaming 2010, 41, 238–259. [Google Scholar] [CrossRef]
- Van Rooij, A.J.; Kuss, D.J.; Griffiths, M.D.; Shorter, G.W.; Schoenmakers, T.M.; Van De Mheen, D. The (co-)occurrence of problematic video gaming, substance use, and psychosocial problems in adolescents. J. Behav. Addict. 2014, 3, 157–165. [Google Scholar] [CrossRef] [PubMed]
- Ko, C.-H.; Yen, J.-Y.; Chen, C.-C.; Chen, S.-H.; Yen, C.-F. Gender differences and related factors affecting online gaming addiction among Taiwanese adolescents. J. Nerv. Ment. Dis. 2005, 193, 273–277. [Google Scholar] [CrossRef] [PubMed]
- Young, K.S. Treatment outcomes using CBT-IA with internet-addicted patients. J. Behav. Addict. 2013, 2, 209–215. [Google Scholar] [CrossRef] [PubMed]
- Liu, Q.-X.; Fang, X.-Y.; Yan, N.; Zhou, Z.-K.; Yuan, X.-J.; Lan, J.; Liu, C.-Y. Multi-family group therapy for adolescent internet addiction: Exploring the underlying mechanisms. Addict. Behav. 2015, 42, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Young, K.S. Cognitive behavior therapy with Internet addicts: Treatment outcomes and implications. Cyberpsychol. Behav. 2007, 10, 671–679. [Google Scholar] [CrossRef] [PubMed]
- King, D.; Delfabbro, P.; Wu, A.; Doh, Y.; Kuss, D.; Pallesen, S.; Mentzoni, R.; Carragher, N.; Sakuma, H. Treatment of internet gaming disorder: An international systematic review and CONSORT evaluation. Clin. Psychol. Rev. 2017, 54, 123–133. [Google Scholar] [CrossRef] [PubMed]
Demographics | Number (% of Sample) |
---|---|
Total | 5820 |
Sex | |
Male | 3482 (59.8%) |
Female | 2329 (40.0%) |
Unspecified/other | 9 (0.2%) |
Patient type | |
Inpatient | 473 (8.1%) |
Outpatient | 5347 (91.9%) |
interRAI Assessment Method | |
In-person | 3900 (67.0%) |
Phone | 1805 (31.0%) |
Video | 4 (0.1%) |
Other | 111 (1.9%) |
Legal Guardianship | |
Both parents | 3248 (55.8%) |
Only mother | 1715 (29.5%) |
Only father | 232 (4.0%) |
Other relative(s) or non-relative(s) | 303 (5.2%) |
Child protection agency (e.g., CAS) | 276 (4.7%) |
Public guardian or child/youth cares for self | 45 (0.8%) |
Predictor | B (S.E.) | Wald χ2 | OR (95% CI) |
---|---|---|---|
Age | 0.09 (0.01) | 52.84 | 1.10 (1.07–1.11) * |
Sex (male = RC) | |||
Female | −1.66 (0.11) | 213.35 | 0.19 (0.15–0.24) * |
Relational strengths | 0.17 (0.03) | 46.64 | 1.19 (1.13–1.25) * |
Extreme shyness (absence = RC) | |||
Presence | 0.47 (0.11) | 19.44 | 1.60 (1.30–1.98) * |
Internalizing symptoms | 0.04 (0.01) | 65.10 | 1.04 (1.03–1.05) * |
Externalizing symptoms | 0.10 (0.01) | 54.02 | 1.11 (1.08–1.14) * |
Constant | −3.99 (0.19) | 445.23 | 0.018 |
Predictor | B (S.E.) | Wald χ2 | OR (95% CI) |
---|---|---|---|
Age | 0.07 (0.01) | 27.54 | 1.06 (1.04–1.09) ** |
Sex (male = RC) | |||
Female | −1.64 (0.11) | 207.00 | 0.19 (0.16–0.24) ** |
Relational strengths | 0.15 (0.03) | 34.97 | 1.16 (1.11–1.26) ** |
Extreme shyness (absence = RC) | |||
Presence | 0.41 (0.11) | 13.95 | 1.51 (1.22–1.87) ** |
Externalizing symptoms | |||
Reactive Aggression | 0.19 (0.03) | 32.28 | 1.20 (1.13–1.28) ** |
Proactive Aggression | 0.06 (0.02) | 6.03 | 1.07 (1.02–1.12) * |
Internalizing symptoms | |||
Anxiety | <0.00 (0.01) | <0.001 | 1.00 (0.98–1.02) |
Anhedonia | 0.12 (0.01) | 100.16 | 1.13 (1.10–1.15) ** |
Depression | −0.01 (0.01) | 0.45 | 0.99 (0.97–1.02) |
Constant | −3.92 (0.23) | 293.61 | 0.20 |
Sex | Predictor | B (S.E.) | Wald χ2 | OR (95% CI) |
---|---|---|---|---|
Male | Age | 0.10 (0.02) | 42.63 | 1.10 (1.07–1.14) ** |
Relational Strengths | 0.15 (0.03) | 26.77 | 1.16 (1.10–1.22) ** | |
Extreme shyness (absence = RC) | ||||
Presence | 0.40 (0.12) | 10.66 | 1.50 (1.18–1.91) ** | |
Internalizing Symptoms | ||||
Anxiety | −0.01 (0.01) | 0.20 | 0.99 (0.97–1.02) | |
Anhedonia | 0.12 (0.01) | 76.23 | 1.124 (1.10–1.15) ** | |
Depression | <0.00 (0.01) | 0.06 | 1.00 (0.97–1.02) | |
Externalizing Symptoms | ||||
Proactive Aggression | 0.06 (0.03) | 6.08 | 1.07 (1.01–1.12) * | |
Reactive Aggression | 0.19 (0.04) | 25.77 | 1.21 (1.12–1.30) ** | |
Constant | −4.22(0.26) | 267.07 | 0.02 | |
Female | Age | −0.06 (0.03) | 3.96 | 0.94 (0.88–1.00) |
Relational Strengths | 0.18 (0.06) | 8.60 | 1.20 (1.06–1.36) * | |
Extreme shyness (absence = RC) | ||||
Presence | 0.38 (0.24) | 2.47 | 1.46 (0.91–2.35) | |
Internalizing Symptoms | ||||
Anxiety | 0.03 (0.03) | 1.07 | 1.03 (0.98–1.08) | |
Anhedonia | 0.13 (0.03) | 23.65 | 1.14 (1.08–1.20) ** | |
Depression | −0.01 (0.03) | 0.08 | 0.99 (0.94–1.05) | |
Externalizing Symptoms | ||||
Proactive Aggression | 0.03 (0.06) | 0.21 | 1.03 (0.91–1.16) | |
Reactive Aggression | 0.18 (0.07) | 5.74 | 1.19 (1.03–1.37) * | |
Constant | −3.96 (0.51) | 59.58 | 0.019 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lau, C.; Stewart, S.L.; Sarmiento, C.; Saklofske, D.H.; Tremblay, P.F. Who Is at Risk for Problematic Video Gaming? Risk Factors in Problematic Video Gaming in Clinically Referred Canadian Children and Adolescents. Multimodal Technol. Interact. 2018, 2, 19. https://doi.org/10.3390/mti2020019
Lau C, Stewart SL, Sarmiento C, Saklofske DH, Tremblay PF. Who Is at Risk for Problematic Video Gaming? Risk Factors in Problematic Video Gaming in Clinically Referred Canadian Children and Adolescents. Multimodal Technologies and Interaction. 2018; 2(2):19. https://doi.org/10.3390/mti2020019
Chicago/Turabian StyleLau, Chloe, Shannon L. Stewart, Catalina Sarmiento, Donald H. Saklofske, and Paul F. Tremblay. 2018. "Who Is at Risk for Problematic Video Gaming? Risk Factors in Problematic Video Gaming in Clinically Referred Canadian Children and Adolescents" Multimodal Technologies and Interaction 2, no. 2: 19. https://doi.org/10.3390/mti2020019
APA StyleLau, C., Stewart, S. L., Sarmiento, C., Saklofske, D. H., & Tremblay, P. F. (2018). Who Is at Risk for Problematic Video Gaming? Risk Factors in Problematic Video Gaming in Clinically Referred Canadian Children and Adolescents. Multimodal Technologies and Interaction, 2(2), 19. https://doi.org/10.3390/mti2020019