A Survey on Psycho-Physiological Analysis & Measurement Methods in Multimodal Systems
Abstract
:1. Introduction
2. Psycho-Physiological Signals and Analysis
3. Measurement Methods
3.1. Electrocardiogram
3.2. Photoplethysmography
3.3. Heart Rate and Heart Rate Variability
3.4. Skin Conductance
3.5. Electroencephalography
4. Latest Research in Psycho-Physiological Analysis
4.1. Emotion/Affect Recognition in HCI
4.2. Cognitive States Assessment in HCI
4.2.1. Game Systems
4.2.2. Human Robot Interaction (HRI) Studies
4.2.3. The Other HCI Systems
5. Conclusions
- The interaction time increases significantly when an assistance is provided.
- Auditory and visual stimuli are the best ways to elicit emotions in a controlled experimental settings.
- Violent games increase the cardiovascular activity compared to non-violent games.
- Psycho-physiological measures shows a strong correlation with the self-reported data.
- An increase in and -bands of EEG signals was observed during high intensity events.
- A decrease in stress level was found while interacting with a social robot.
- Psycho-physiological measure has the capability to mine the underlying fact that cannot be found using traditional methods.
- Ill-design web pages increase the stress level of the user.
- Virtual reality simulations can be used to study the relationship between brain responses and stress levels.
- Multimedia presentations such as video and image elicit positive emotion more than text presentation, which induces a higher cognitive load.
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Cacioppo, J.T.; Tassinary, L.G.; Berntson, G.G. Psychophysiological science: Interdisciplinary approaches to classic questions about the mind. In Handbook of Psychophysiology; Cambridge University Press: New York, NY, USA, 2007; pp. 1–16. [Google Scholar]
- Poels, K.; De Kort, Y.; Ijsselsteijn, W. It is always a lot of fun!: Exploring dimensions of digital game experience using focus group methodology. In Proceedings of the 2007 Conference on Future Play, Toronto, ON, Canada, 14–17 November 2007; ACM: New York, NY, USA, 2007; pp. 83–89. [Google Scholar]
- Jaimes, A.; Sebe, N. Multimodal human–computer interaction: A survey. Comput. Vis. Image Understand. 2007, 108, 116–134. [Google Scholar] [CrossRef]
- Maxwell, S.E.; Delaney, H.D. Designing Experiments and Analyzing Data: A Model Comparison Perspective; Psychology Press: New York, NY, USA, 2004; Volume 1. [Google Scholar]
- Field, A. Discovering Statistics Using IBM SPSS Statistics; Sage Publications: London, UK, 2013. [Google Scholar]
- Gratch, J.; Marsella, S. A domain-independent framework for modeling emotion. Cogn. Syst. Res. 2004, 5, 269–306. [Google Scholar] [CrossRef]
- Cacioppo, J.T.; Tassinary, L.G.; Berntson, G. Handbook of Psychophysiology; Cambridge University Press: New York, NY, USA, 2007. [Google Scholar]
- Bradley, M.M.; Lang, P.J. Measuring emotion: The self-assessment manikin and the semantic differential. J. Behav. Ther. Exp. Psychiatry 1994, 25, 49–59. [Google Scholar] [CrossRef]
- Glynn, L.M.; Christenfeld, N.; Gerin, W. The role of rumination in recovery from reactivity: Cardiovascular consequences of emotional states. Psychosom. Med. 2002, 64, 714–726. [Google Scholar] [PubMed]
- Ekman, P. Facial expression and emotion. Am. Psychol. 1993, 48, 384. [Google Scholar] [CrossRef] [PubMed]
- Holmqvist, K.; Nyström, M.; Andersson, R.; Dewhurst, R.; Jarodzka, H.; Van de Weijer, J. Eye Tracking: A Comprehensive Guide to Methods and Measures; OUP Oxford: Oxford, UK, 2011. [Google Scholar]
- McKee, M.G. Biofeedback: An overview in the context of heart-brain medicine. Clevel. Clin. J. Med. 2008, 75, S31. [Google Scholar] [CrossRef]
- Sterelny, K. Thought in a Hostile World: The Evolution of Human Cognition; Wiley-Blackwell: London, UK, 2003. [Google Scholar]
- Albulbul, A. Evaluating major electrode types for idle biological signal measurements for modern medical technology. Bioengineering 2016, 3, 20. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Li, J.; Liu, Y.; Zhang, Z.; Wang, Z.; Luo, D.; Zhou, X.; Zhu, M.; Salman, W.; Hu, G.; et al. Design of a fatigue detection system for high-speed trains based on driver vigilance using a wireless wearable EEG. Sensors 2017, 17, 486. [Google Scholar] [CrossRef] [PubMed]
- Reeves, W. System for Simultaneously Producing and Synchronizing Spectral Patterns of Heart Sounds and an ECG Signal. U.S. Patent 5,337,752, 16 August 1994. [Google Scholar]
- Data Acquisition, Loggers, Amplifiers, Transducers, Electrodes|BIOPAC. Available online: https://www.biopac.com/ (accessed on 21 May 2019).
- Lin, C.T.; Ko, L.W.; Chang, M.H.; Duann, J.R.; Chen, J.Y.; Su, T.P.; Jung, T.P. Review of wireless and wearable electroencephalogram systems and brain-computer interfaces—A mini-review. Gerontology 2010, 56, 112–119. [Google Scholar] [CrossRef] [PubMed]
- Scherr, D.; Dalal, D.; Henrikson, C.A.; Spragg, D.D.; Berger, R.D.; Calkins, H.; Cheng, A. Prospective comparison of the diagnostic utility of a standard event monitor versus a “leadless” portable ECG monitor in the evaluation of patients with palpitations. J. Interv. Card. Electrophysiol. 2008, 22, 39–44. [Google Scholar] [CrossRef]
- Jabaudon, D.; Sztajzel, J.; Sievert, K.; Landis, T.; Sztajzel, R. Usefulness of ambulatory 7-day ECG monitoring for the detection of atrial fibrillation and flutter after acute stroke and transient ischemic attack. Stroke 2004, 35, 1647–1651. [Google Scholar] [CrossRef] [PubMed]
- Park, C.; Chou, P.H.; Bai, Y.; Matthews, R.; Hibbs, A. An ultra-wearable, wireless, low power ECG monitoring system. In Proceedings of the 2006 IEEE Biomedical Circuits and Systems Conference, London, UK, 29 November–1 December 2006; pp. 241–244. [Google Scholar]
- Fiolet, E. NeuroSky MindWave Brings Brain-Computer Interface to Education. Available online: https://www.ubergizmo.com/2011/03/neurosky-mindwave/ (accessed on 21 May 2019).
- Grozea, C.; Voinescu, C.D.; Fazli, S. Bristle-sensors—Low-cost flexible passive dry EEG electrodes for neurofeedback and BCI applications. J. Neural Eng. 2011, 8, 025008. [Google Scholar] [CrossRef] [PubMed]
- Emotiv, E. Neuroheadset. 2012. Available online: https://www.emotiv.com/ (accessed on 23 April 2019).
- Hunter, D.B.; McCarraher, K.B.; Fratto, K.P.; Brueggman, R.M.; Stenstrom, T.J.; Gustafson, H.I., Jr. Headset for EEG Measurements. U.S. Patent 6,154,669, 28 November 2000. [Google Scholar]
- Amores, J.; Benavides, X.; Maes, P. Psychicvr: Increasing mindfulness by using virtual reality and brain computer interfaces. In Proceedings of the 2016 CHI Conference Extended Abstracts on Human Factors in Computing Systems, San Jose, CA, USA, 7–12 May 2016; p. 2. [Google Scholar]
- Burton, D. Vigilance Monitoring System. U.S. Patent 6,575,902, 10 Junuary 2003. [Google Scholar]
- Alam, M.; Azad, A. Development of biomedical data acquisition system in Hard Real-Time Linux environment. In Proceedings of the 2012 International Conference on Biomedical Engineering (ICoBE), Penang, Malaysia, 27–28 February 2012; pp. 436–440. [Google Scholar]
- Wong, C.; Zhang, Z.Q.; Lo, B.; Yang, G.Z. Wearable sensing for solid biomechanics: A review. IEEE Sens. J. 2015, 15, 2747–2760. [Google Scholar]
- Ishimaru, S.; Kunze, K.; Uema, Y.; Kise, K.; Inami, M.; Tanaka, K. Smarter eyewear: Using commercial EOG glasses for activity recognition. In Proceedings of the 2014 ACM International Joint Conference on Pervasive and Ubiquitous Computing: Adjunct Publication, Seattle, WA, USA, 13–17 September 2014; pp. 239–242. [Google Scholar]
- Eye Tracking Solutions by SMI. Available online: https://www.smivision.com/ (accessed on 21 May 2019).
- Garbarino, M.; Lai, M.; Bender, D.; Picard, R.W.; Tognetti, S. Empatica E3—A wearable wireless multi-sensor device for real-time computerized biofeedback and data acquisition. In Proceedings of the 2014 EAI 4th International Conference on Wireless Mobile Communication and Healthcare (Mobihealth), Athens, Greece, 3–5 November 2014; pp. 39–42. [Google Scholar]
- Burns, A.; Greene, B.R.; McGrath, M.J.; O’Shea, T.J.; Kuris, B.; Ayer, S.M.; Stroiescu, F.; Cionca, V. SHIMMER™—A wireless sensor platform for noninvasive biomedical research. IEEE Sens. J. 2010, 10, 1527–1534. [Google Scholar] [CrossRef]
- Panigrahy, S.K.; Jena, S.K.; Turuk, A.K. Study and Analysis of Human Stress Detection using Galvanic Skin Response (GSR) Sensor inWired and Wireless Environments. Res. J. Pharmacy Technol. 2017, 10, 545–550. [Google Scholar] [CrossRef]
- McKenzie, J.; Osgood, D. Validation of a new telemetric core temperature monitor. J. Ther. Biol. 2004, 29, 605–611. [Google Scholar] [CrossRef]
- Bonarini, A.; Matteucci, M.; Tognetti, S. Chest expansion reconstruction from respiration sound by using artificial neural networks. In Proceedings of the 4th IET International Conference on Advances in Medical, Signal and Information Processing—MEDSIP 2008, Santa Margherita Ligure, Italy, 14–16 July 2008. [Google Scholar]
- Jones, V.; Van Halteren, A.; Dokovsky, N.; Koprinkov, G.; Peuscher, J.; Bults, R.; Konstantas, D.; Herzog, R. Mobihealth: Mobile services for health professionals. In M-Health; Springer: Boston, MA, USA, 2006; pp. 237–246. [Google Scholar]
- McSharry, P.E.; Clifford, G.D.; Tarassenko, L.; Smith, L.A. A dynamical model for generating synthetic electrocardiogram signals. IEEE Trans. Biomed. Eng. 2003, 50, 289–294. [Google Scholar] [CrossRef] [PubMed]
- Allen, J. Photoplethysmography and its application in clinical physiological measurement. Physiol. Meas. 2007, 28, R1. [Google Scholar] [CrossRef]
- Barreto, A.; Zhai, J.; Adjouadi, M. Non-intrusive physiological monitoring for automated stress detection in human-computer interaction. In International Workshop on Human-Computer Interaction; Springer: Berlin/Heidelberg, Germany, 2007; pp. 29–38. [Google Scholar]
- Healey, J. Physiological sensing of emotion. In The Oxford Handbook of Affective Computing; Oxford University Press: Oxford, UK, 2014; pp. 204–216. [Google Scholar]
- Berntson, G.G. and interpretive caveats. Psychophysiology 1997, 34, 623–648. [Google Scholar] [CrossRef]
- van Ravenswaaij-Arts, C.M.; Kollee, L.A.; Hopman, J.C.; Stoelinga, G.B.; van Geijn, H.P. Heart rate variability. Ann. Internal Med. 1993, 118, 436–447. [Google Scholar] [CrossRef]
- Rowe, D.W.; Sibert, J.; Irwin, D. Heart rate variability: Indicator of user state as an aid to human-computer interaction. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, Los Angeles, CA, USA, 18–23 April 1998; ACM Press/Addison-Wesley Publishing Co.: New York, NY, USA, 1998; pp. 480–487. [Google Scholar]
- Akselrod, S.; Gordon, D.; Ubel, F.A.; Shannon, D.C.; Berger, A.; Cohen, R.J. Power spectrum analysis of heart rate fluctuation: a quantitative probe of beat-to-beat cardiovascular control. Science 1981, 213, 220–222. [Google Scholar] [CrossRef] [PubMed]
- Itoh, H.; Takeda, K.; Nakamura, K.; Fujita, H.; Uchida, A.; Kuwahara, T.; Takenaka, K.; Tanaka, M.; Nakata, T.; Sasaki, S.; et al. Young borderline hypertensives are hyperreactive to mental arithmetic stress: Spectral analysis of RR intervals. J. Auton. Nerv. Syst. 1995, 54, 155–162. [Google Scholar] [CrossRef]
- Cacioppo, J.T.; Berntson, G.G.; Larsen, J.T.; Poehlmann, K.M.; Ito, T.A. The psychophysiology of emotion. In Handbook of Emotions; Guilford Press: New York, NY, USA, 1993; pp. 119–142. [Google Scholar]
- Jung, C.G. Studies in Word-Association; Taylor & Francis: Abingdon, UK, 1969. [Google Scholar]
- Marston, W.M. The Lie Detector Test; American Polygraph Association: Severna Park, MD, USA, 1989. [Google Scholar]
- Boucsein, W. Electrodermal Activity; Springer Science & Business Media: New York, NY, USA, 2012. [Google Scholar]
- Healey, J. Gsr sock: A new e-textile sensor prototype. In Proceedings of the 2011 15th Annual International Symposium on Wearable Computers, San Francisco, CA, USA, 12–15 June 2011; pp. 113–114. [Google Scholar]
- Picard, R.W.; Healey, J. Affective wearables. Pers. Technol. 1997, 1, 231–240. [Google Scholar] [CrossRef]
- Healey, J. Recording affect in the field: Towards methods and metrics for improving ground truth labels. In Proceedings of the International Conference on Affective Computing and Intelligent Interaction, Memphis, TN, USA, 9–12 October 2011; Springer: Berlin/Heidelberg, Germany, 2011; pp. 107–116. [Google Scholar]
- Coan, J.A.; Allen, J.J. Frontal EEG asymmetry as a moderator and mediator of emotion. Biol. Psychol. 2004, 67, 7–50. [Google Scholar] [CrossRef] [PubMed]
- Baig, M.Z.; Javed, E.; Ayaz, Y.; Afzal, W.; Gillani, S.O.; Naveed, M.; Jamil, M. Classification of left/right hand movement from EEG signal by intelligent algorithms. In Proceedings of the 2014 IEEE Symposium on Computer Applications and Industrial Electronics (ISCAIE), Penang, Malaysia, 7–8 April 2014; pp. 163–168. [Google Scholar]
- Levinthal, C.F. Introduction to Physiological Psychology; Prentice-Hall, Inc.: Upper Saddle River, NJ, USA, 1990. [Google Scholar]
- Baig, M.Z.; Aslam, N.; Shum, H.P.; Zhang, L. Differential evolution algorithm as a tool for optimal feature subset selection in motor imagery EEG. Expert Syst. Appl. 2017, 90, 184–195. [Google Scholar] [CrossRef]
- Spapé, M.M.; Filetti, M.; Eugster, M.J.; Jacucci, G.; Ravaja, N. Human computer interaction meets psychophysiology: A critical perspective. In Proceedings of the International Workshop on Symbiotic Interaction, Berlin, Germany, 7–8 October 2015; Springer: Berlin/Heidelberg, Germany, 2015; pp. 145–158. [Google Scholar]
- Ganglbauer, E.; Schrammel, J.; Schwarz, S.; Tscheligi, M. Applying Psychophysiological Methods for Measuring User Experience: Possibilities, Challenges and Feasibility. In Workshop on User Experience Evaluation Methods in Product Development; CiteSeerX: University Park, PA, USA, 2009. [Google Scholar]
- Horlings, R.; Datcu, D.; Rothkrantz, L.J. Emotion recognition using brain activity. In Proceedings of the 9th International Conference on Computer Systems and Technologies and Workshop for PhD Students in Computing, Gabrovo, Bulgaria, 12–13 June 2008; p. 6. [Google Scholar]
- Ekman, P.E.; Davidson, R.J. The Nature of Emotion: Fundamental Questions; Oxford University Press: Oxford, UK, 1994. [Google Scholar]
- Russel, J.A.; Weiss, A.; Mendelsohn, G.A. Affect grid: A single-item scale of pleasure and arousal. J. Pers. Soc. Psychol. 1989, 57, 493–502. [Google Scholar] [CrossRef]
- Lang, P.J. The emotion probe: Studies of motivation and attention. Am. Psychol. 1995, 50, 372. [Google Scholar] [CrossRef]
- Lang, P.J.; Bradley, M.M.; Cuthbert, B.N. International Affective Picture System (IAPS): Technical Manual and Affective Ratings; NIMH Center for the Study of Emotion and Attention: Gainesville, FL, USA, 1997; pp. 39–58. [Google Scholar]
- Partala, T.; Surakka, V. The effects of affective interventions in human–computer interaction. Interact. Comput. 2004, 16, 295–309. [Google Scholar] [CrossRef]
- Norman, D. Emotion & design: Attractive things work better. Interactions 2002, 9, 36–42. [Google Scholar]
- Haag, A.; Goronzy, S.; Schaich, P.; Williams, J. Emotion recognition using bio-sensors: First steps towards an automatic system. In Proceedings of the Tutorial and Research Workshop on Affective Dialogue Systems, Kloster Irsee, Germany, 14–16 June 2004; Springer: Berlin/Heidelberg, Germany, 2004; pp. 36–48. [Google Scholar]
- Klein, J.; Moon, Y.; Picard, R.W. This computer responds to user frustration: Theory, design, and results. Interact. Comput. 2002, 14, 119–140. [Google Scholar] [CrossRef]
- Partala, T.; Surakka, V. Pupil size variation as an indication of affective processing. Int. J. Hum.-Comput. Stud. 2003, 59, 185–198. [Google Scholar] [CrossRef]
- Frijda, N.H. The Emotions: Studies in Emotion and Social Interaction; Cambridge University Press: Cambridge, UK, 1986. [Google Scholar]
- Mandryk, R.L.; Atkins, M.S. A fuzzy physiological approach for continuously modeling emotion during interaction with play technologies. Int. J. Hum.-Comput. Stud. 2007, 65, 329–347. [Google Scholar] [CrossRef]
- Juma, L. The Role of Secondary Emotions in Action Selection and Its Effects on the Believability of a Character. Master’s Thesis, Aalborg University Copenhagen, København, Denmark, 2008. [Google Scholar]
- Costa, T.; Rognoni, E.; Galati, D. EEG phase synchronization during emotional response to positive and negative film stimuli. Neurosci. Lett. 2006, 406, 159–164. [Google Scholar] [CrossRef] [PubMed]
- Li, M.; Lu, B.L. Emotion classification based on gamma-band EEG. In Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, 2009 (EMBC 2009), Minneapolis, MN, USA, 3–6 September 2009; pp. 1223–1226. [Google Scholar]
- Wang, X.W.; Nie, D.; Lu, B.L. EEG-based emotion recognition using frequency domain features and support vector machines. In Proceedings of the International Conference on Neural Information Processing, Shanghai, China, 13–17 November 2011; Springer: Berlin/Heidelberg, Germany, 2011; pp. 734–743. [Google Scholar]
- Thompson, T.; Steffert, T.; Ros, T.; Leach, J.; Gruzelier, J. EEG applications for sport and performance. Methods 2008, 45, 279–288. [Google Scholar] [CrossRef] [PubMed]
- Nakasone, A.; Prendinger, H.; Ishizuka, M. Emotion recognition from electromyography and skin conductance. In Proceedings of the 5th International Workshop on Biosignal Interpretation, Tokyo, Japan, 6–8 September 2005; pp. 219–222. [Google Scholar]
- Khair, N.M.; Yaacob, S.; Hariharan, M.; Basah, S.N. A study of human emotional: Review. In Proceedings of the 2012 International Conference on Biomedical Engineering (ICoBE), Penang, Malaysia, 27–28 February 2012; pp. 393–399. [Google Scholar] [CrossRef]
- Boone, R.T.; Cunningham, J.G. Children’s expression of emotional meaning in music through expressive body movement. J. Nonverbal Behav. 2001, 25, 21–41. [Google Scholar] [CrossRef]
- Zhou, F.; Qu, X.; Jiao, J.R.; Helander, M.G. Emotion prediction from physiological signals: A comparison study between visual and auditory elicitors. Interact. Comput. 2014, 26, 285–302. [Google Scholar] [CrossRef]
- Mehta, D.; Siddiqui, M.; Javaid, A. Facial emotion recognition: A survey and real-world user experiences in mixed reality. Sensors 2018, 18, 416. [Google Scholar] [CrossRef]
- Soleymani, M.; Lichtenauer, J.; Pun, T.; Pantic, M. A multimodal database for affect recognition and implicit tagging. IEEE Trans. Affect. Comput. 2012, 3, 42–55. [Google Scholar] [CrossRef]
- Abadi, M.K.; Subramanian, R.; Kia, S.M.; Avesani, P.; Patras, I.; Sebe, N. DECAF: MEG-Based Multimodal Database for Decoding Affective Physiological Responses. IEEE Trans. Affect. Comput. 2015, 6, 209–222. [Google Scholar] [CrossRef]
- Koelstra, S.; Muhl, C.; Soleymani, M.; Lee, J.S.; Yazdani, A.; Ebrahimi, T.; Pun, T.; Nijholt, A.; Patras, I. Deap: A database for emotion analysis; using physiological signals. IEEE Trans. Affect. Comput. 2012, 3, 18–31. [Google Scholar] [CrossRef]
- Zheng, W.L.; Lu, B.L. Investigating critical frequency bands and channels for EEG-based emotion recognition with deep neural networks. IEEE Trans. Auton. Ment. Dev. 2015, 7, 162–175. [Google Scholar] [CrossRef]
- Perrin, A.F.N.M.; Xu, H.; Kroupi, E.; Řeřábek, M.; Ebrahimi, T. Multimodal dataset for assessment of quality of experience in immersive multimedia. In Proceedings of the 23rd ACM international conference on Multimedia, Brisbane, Australia, 26–30 October 2015; pp. 1007–1010. [Google Scholar]
- Perrin, A.F.; Řeřábek, M.; Ebrahimi, T. Towards prediction of Sense of Presence in immersive audiovisual communications. Electron. Imaging 2016, 2016, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Ruohonen, J.; Hyrynsalmi, S. Evaluating the use of internet search volumes for time series modeling of sales in the video game industry. Electron. Mark. 2017, 27, 351–370. [Google Scholar] [CrossRef]
- Bernhaupt, R.; Mueller, F.F. Game User Experience Evaluation. In Proceedings of the 2016 CHI Conference Extended Abstracts on Human Factors in Computing Systems, San Jose, CA, USA, 7–12 May 2016; pp. 940–943. [Google Scholar]
- BERNHAUPT, R. Game User Experience Evaluation; Springer: Berlin/Heidelberg, Germany, 2016. [Google Scholar]
- Kivikangas, J.M.; Chanel, G.; Cowley, B.; Ekman, I.; Salminen, M.; Järvelä, S.; Ravaja, N. A review of the use of psychophysiological methods in game research. J. Gaming Virtual Worlds 2011, 3, 181–199. [Google Scholar] [CrossRef]
- Ijsselsteijn, W.; van den Hoogen, W.; Klimmt, C.; de Kort, Y.; Lindley, C.; Mathiak, K.; Poels, K.; Ravaja, N.; Turpeinen, M.; Vorderer, P. Measuring the experience of digital game enjoyment. In Proceedings of the 6th International Conference on Methods and Techniques in Behavioral Research, Maastricht, The Netherlands, 26–29 August 2008; pp. 88–89. [Google Scholar]
- Drachen, A.; Nacke, L.E.; Yannakakis, G.; Pedersen, A.L. Correlation between heart rate, electrodermal activity and player experience in first-person shooter games. In Proceedings of the 5th ACM SIGGRAPH Symposium on Video Games, Los Angeles, CA, USA, 28–29 July 2010; pp. 49–54. [Google Scholar]
- Ballard, M.E.; Wiest, J.R. Mortal Kombat (tm): The Effects of Violent Videogame Play on Males’ Hostility and Cardiovascular Responding. J. Appl. Soc. Psychol. 1996, 26, 717–730. [Google Scholar] [CrossRef]
- Drachen, A.; Nacke, L.E.; Yannakakis, G.N.; Pedersen, A.L. Psychophysiological Correlations with Gameplay Experience Dimensions. arXiv 2010, arXiv:1004.0243. [Google Scholar]
- Yannakakis, G.N.; Hallam, J.; Lund, H.H. Entertainment capture through heart rate activity in physical interactive playgrounds. User Model. User-Adapt. Interact. 2008, 18, 207–243. [Google Scholar] [CrossRef]
- Pedersen, C.; Togelius, J.; Yannakakis, G.N. Modeling player experience in Super Mario Bros. In Proceedings of the 2009 IEEE Symposium on Computational Intelligence and Games, Milano, Italy, 7–10 September 2009; pp. 132–139. [Google Scholar]
- McMahan, T.; Parberry, I.; Parsons, T.D. Modality specific assessment of video game player’s experience using the Emotiv. Entertain. Comput. 2015, 7, 1–6. [Google Scholar] [CrossRef]
- Nacke, L.E.; Grimshaw, M.N.; Lindley, C.A. More than a feeling: Measurement of sonic user experience and psychophysiology in a first-person shooter game. Interact. Comput. 2010, 22, 336–343. [Google Scholar] [CrossRef]
- Cowley, B.; Kosunen, I.; Lankoski, P.; Kivikangas, J.M.; Järvelä, S.; Ekman, I.; Kemppainen, J.; Ravaja, N. Experience assessment and design in the analysis of gameplay. Simul. Gaming 2014, 45, 41–69. [Google Scholar] [CrossRef]
- Stein, A.; Yotam, Y.; Puzis, R.; Shani, G.; Taieb-Maimon, M. EEG-triggered dynamic difficulty adjustment for multiplayer games. Entertain. Comput. 2018, 25, 14–25. [Google Scholar] [CrossRef]
- Drachen, A.; Canossa, A.; Yannakakis, G.N. Player modeling using self-organization in Tomb Raider: Underworld. In Proceedings of the 2009 IEEE Symposium on Computational Intelligence and Games, Milano, Italy, 7–10 September 2009; pp. 1–8. [Google Scholar]
- Togelius, J.; Nardi, R.D.; Lucas, S. Making Racing Fun through Player Modeling and Track Evolution. In Proceedings of the SAB’06 Workshop on Adaptive Approaches for Optimizing Player Satisfaction in Computer and Physical Games, Rome, Italy, 1 October 2006; pp. 61–70. [Google Scholar]
- Missura, O.; Gärtner, T. Player Modeling for Intelligent Difficulty Adjustment. In Proceedings of the 12th International Conference on Discovery Science (DS ’09), Porto, Portugal, 3–5 October 2009; pp. 197–211. [Google Scholar]
- Čertický, M.; Čertický, M.; Sinčák, P.; Magyar, G.; Vaščák, J.; Cavallo, F. Psychophysiological Indicators for Modeling User Experience in Interactive Digital Entertainment. Sensors 2019, 19, 989. [Google Scholar] [CrossRef]
- Lobel, A.; Gotsis, M.; Reynolds, E.; Annetta, M.; Engels, R.C.; Granic, I. Designing and Utilizing Biofeedback Games for Emotion Regulation: The Case of Nevermind. In Proceedings of the 2016 CHI Conference Extended Abstracts on Human Factors in Computing Systems, San Jose, CA, USA, 7–12 May 2016; pp. 1945–1951. [Google Scholar]
- Bethel, C.L.; Burke, J.L.; Murphy, R.R.; Salomon, K. Psychophysiological experimental design for use in human-robot interaction studies. In Proceedings of the 2007 International Symposium on Collaborative Technologies and Systems, Orlando, FL, USA, 25–25 May 2007; pp. 99–105. [Google Scholar]
- Itoh, K.; Miwa, H.; Nukariya, Y.; Zecca, M.; Takanobu, H.; Roccella, S.; Carrozza, M.C.; Dario, P.; Takanishi, A. Development of a bioinstrumentation system in the interaction between a human and a robot. In Proceedings of the 2006 IEEE/RSJ International Conference on Intelligent Robots and Systems, Beijing, China, 9–15 October 2006; pp. 2620–2625. [Google Scholar]
- Bekele, E.; Sarkar, N. Psychophysiological feedback for adaptive human–robot interaction (HRI). In Advances in Physiological Computing; Springer: Berlin/Heidelberg, Germany, 2014; pp. 141–167. [Google Scholar]
- Rani, P.; Sarkar, N. Making robots emotion-sensitive-preliminary experiments and results. In Proceedings of the IEEE International Workshop on Robot and Human Interactive Communication (ROMAN 2005), Nashville, TN, USA, 13–15 August 2005; pp. 1–6. [Google Scholar]
- Croft, D. Estimating intent for human-robot interaction. In Proceedings of the IEEE International Conference on Advanced Robotics, Coimbra, Portugal, 30 June–3 July 2003; pp. 810–815. [Google Scholar]
- Dehais, F.; Sisbot, E.A.; Alami, R.; Causse, M. Physiological and subjective evaluation of a human–robot object hand-over task. Appl. Ergon. 2011, 42, 785–791. [Google Scholar] [CrossRef] [PubMed]
- Paletta, L.; Dini, A.; Murko, C.; Yahyanejad, S.; Schwarz, M.; Lodron, G.; Ladstätter, S.; Paar, G.; Velik, R. Towards real-time probabilistic evaluation of situation awareness from human gaze in human-robot interaction. In Proceedings of the Companion of the 2017 ACM/IEEE International Conference on Human-Robot Interaction, Vienna, Austria, 6–9 March 2017; pp. 247–248. [Google Scholar]
- Podevijn, G.; O’grady, R.; Mathews, N.; Gilles, A.; Fantini-Hauwel, C.; Dorigo, M. Investigating the effect of increasing robot group sizes on the human psychophysiological state in the context of human–swarm interaction. Swarm Intell. 2016, 10, 193–210. [Google Scholar] [CrossRef]
- Swangnetr, M.; Kaber, D.B. Emotional state classification in patient–robot interaction using wavelet analysis and statistics-based feature selection. IEEE Trans. Hum.-Mach. Syst. 2013, 43, 63–75. [Google Scholar] [CrossRef]
- Kulic, D.; Croft, E. Anxiety detection during human-robot interaction. In Proceedings of the 2005 IEEE/RSJ International Conference on Intelligent Robots and Systems, Edmonton, AB, Canada, 2–6 August 2005; pp. 616–621. [Google Scholar]
- Kulić, D.; Croft, E. Physiological and subjective responses to articulated robot motion. Robotica 2007, 25, 13–27. [Google Scholar] [CrossRef]
- Cortellessa, G.; Fracasso, F.; Sorrentino, A.; Orlandini, A.; Bernardi, G.; Coraci, L.; De Benedictis, R.; Cesta, A. ROBIN, a telepresence robot to support older users monitoring and social inclusion: Development and evaluation. Telemed. e-Health 2018, 24, 145–154. [Google Scholar] [CrossRef]
- Tiberio, L.; Cesta, A.; Cortellessa, G.; Padua, L.; Pellegrino, A.R. Assessing affective response of older users to a telepresence robot using a combination of psychophysiological measures. In Proceedings of the 2012 IEEE RO-MAN: The 21st IEEE International Symposium on Robot and Human Interactive Communication, Paris, France, 9–13 September 2012; pp. 833–838. [Google Scholar]
- Goljar, N.; Javh, M.; Poje, J.; Ocepek, J.; Novak, D.; Ziherl, J.; Olenšek, A.; Mihelj, M.; Munih, M. Psychophysiological responses to robot training in different recovery phases after stroke. In Proceedings of the 2011 IEEE International Conference on Rehabilitation Robotic, Zurich, Switzerland, 29 June–1 July 2011; pp. 1–6. [Google Scholar]
- Ting, C.H.; Mahfouf, M.; Nassef, A.; Linkens, D.A.; Panoutsos, G.; Nickel, P.; Roberts, A.C.; Hockey, G.R.J. Real-time adaptive automation system based on identification of operator functional state in simulated process control operations. IEEE Trans. Syst. Man Cybern. Part A Syst. Hum. 2010, 40, 251–262. [Google Scholar] [CrossRef]
- Munih, M.; Mihelj, M. Psychophysiological responses during robot-assisted rehabilitation. In Rehabilitation Robotics; Elsevier: Amsterdam, The Netherlands, 2018; pp. 305–317. [Google Scholar]
- Zhang, L.; Wade, J.; Bian, D.; Fan, J.; Swanson, A.; Weitlauf, A.; Warren, Z.; Sarkar, N. Multimodal Fusion for Cognitive Load Measurement in an Adaptive Virtual Reality Driving Task for Autism Intervention. In Universal Access in Human-Computer Interaction. Access to Learning, Health and Well-Being: 9th International Conference, UAHCI 2015, Held as Part of HCI International 2015, Los Angeles, CA, USA, August 2–7, 2015, Proceedings, Part III; Antona, M., Stephanidis, C., Eds.; Springer International Publishing: Cham, Switzerland, 2015; pp. 709–720. [Google Scholar] [CrossRef]
- Yao, L.; Liu, Y.; Li, W.; Zhou, L.; Ge, Y.; Chai, J.; Sun, X. Using physiological measures to evaluate user experience of mobile applications. In Proceedings of the International Conference on Engineering Psychology and Cognitive Ergonomics, Heraklion, Crete, Greece, 22–27 June 2014; Springer: Berlin/Heidelberg, Germany, 2014; pp. 301–310. [Google Scholar]
- Kumar, N.; Kumar, J. Measurement of cognitive load in HCI systems using EEG power spectrum: an experimental study. Procedia Comput. Sci. 2016, 84, 70–78. [Google Scholar] [CrossRef]
- Baig, M.Z.; Kavakli, M. Analyzing Novice and Expert User’s Cognitive Load in using a Multi-Modal Interface System. In Proceedings of the 2018 26th International Conference on Systems Engineering (ICSEng), Sydney, Australia, 18–20 December 2018; pp. 1–7. [Google Scholar] [CrossRef]
- Puma, S.; Matton, N.; Paubel, P.V.; Raufaste, É.; El-Yagoubi, R. Using theta and alpha band power to assess cognitive workload in multitasking environments. Int. J. Psychophysiol. 2018, 123, 111–120. [Google Scholar] [CrossRef]
- Wilson, G.M. Psychophysiological indicators of the impact of media quality on users. In Proceedings of the CHI’01 extended abstracts on Human Factors in Computing Systems, Seattle, WA, USA, 31 March–5 April 2001; pp. 95–96. [Google Scholar]
- Ward, R.D.; Marsden, P.H. Physiological responses to different WEB page designs. Int. J. Hum.-Comput. Stud. 2003, 59, 199–212. [Google Scholar] [CrossRef]
- Bruun, A. It’s not Complicated: A Study of Non-Specialists Analyzing GSR Sensor Data to Detect UX Related Events. In Proceedings of the 10th Nordic Conference on Human-Computer Interaction, Oslo, Norway, 29 September–3 October 2018; pp. 170–183. [Google Scholar]
- Lin, T.; Omata, M.; Hu, W.; Imamiya, A. Do physiological data relate to traditional usability indexes? In Proceedings of the 17th Australia conference on Computer-Human Interaction: Citizens Online: Considerations for Today and the Future, Canberra, Australia, 21–25 November 2005; pp. 1–10. [Google Scholar]
- Meehan, M.; Insko, B.; Whitton, M.; Brooks, F.P., Jr. Physiological measures of presence in stressful virtual environments. In Proceedings of the 29th Annual Conference on Computer Graphics and Interactive Techniques, San Antonio, TX, USA, 23–26 July 2002; Volume 21, pp. 645–652. [Google Scholar]
- Gerě, I.; Jaušcvec, N. Multimedia: Differences in cognitive processes observed with EEG. Educ. Technol. Res. Dev. 1999, 47, 5–14. [Google Scholar] [CrossRef]
- Al Madi, N.S.; Khan, J.I. Measuring learning performance and cognitive activity during multimodal comprehension. In Proceedings of the 2016 7th International Conference on Information and Communication Systems (ICICS), Irbid, Jordan, 5–7 April 2016; pp. 50–55. [Google Scholar]
- Novak, D.; Mihelj, M.; Munih, M. Dual-task performance in multimodal human-computer interaction: A psychophysiological perspective. Multimed. Tools Appl. 2012, 56, 553–567. [Google Scholar] [CrossRef]
- Grassmann, M.; Vlemincx, E.; von Leupoldt, A.; Mittelstädt, J.M.; Van den Bergh, O. Respiratory changes in response to cognitive load: A systematic review. Neural Plast. 2016, 2016, 8146809. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.; Matteson, A.; Hooshyar, D.; Kim, S.; Jung, J.; Nam, G.; Lim, H. Comparing Programming Language Comprehension between Novice and Expert Programmers Using EEG Analysis. In Proceedings of the 2016 IEEE 16th International Conference on Bioinformatics and Bioengineering (BIBE), Taichung, Taiwan, 31 October–2 November 2016; pp. 350–355. [Google Scholar]
- Ferreira, E.; Ferreira, D.; Kim, S.; Siirtola, P.; Röning, J.; Forlizzi, J.F.; Dey, A.K. Assessing real-time cognitive load based on psycho-physiological measures for younger and older adults. In Proceedings of the 2014 IEEE Symposium on Computational Intelligence, Cognitive Algorithms, Mind, and Brain (CCMB), Orlando, FL, USA, 9–12 December 2014; pp. 39–48. [Google Scholar]
- Liu, Y.; Ritchie, J.M.; Lim, T.; Kosmadoudi, Z.; Sivanathan, A.; Sung, R.C. A fuzzy psycho-physiological approach to enable the understanding of an engineer’s affect status during CAD activities. Comput.-Aided Des. 2014, 54, 19–38. [Google Scholar] [CrossRef]
- Nguyen, T.A.; Zeng, Y. A physiological study of relationship between designer’s mental effort and mental stress during conceptual design. Comput.-Aided Desi. 2014, 54, 3–18. [Google Scholar] [CrossRef]
- Nguyen, T.A.; Zeng, Y. Effects of stress and effort on self-rated reports in experimental study of design activities. J. Intell. Manuf. 2017, 28, 1609–1622. [Google Scholar] [CrossRef]
- Baig, M.Z.; Kavakli, M. Connectivity Analysis Using Functional Brain Networks to Evaluate Cognitive Activity during 3D Modelling. Brain Sci. 2019, 9. [Google Scholar] [CrossRef]
- Baig, M.Z.; Kavakli, M. EEG Signal Analysis in 3D Modelling to Identify Correlations Between Task Completion in Design User’s Cognitive Activities. In Neural Information Processing; Cheng, L., Leung, A.C.S., Ozawa, S., Eds.; Springer International Publishing: Cham, Switzerland, 2018; pp. 340–352. [Google Scholar]
- Fairclough, S.H. Fundamentals of physiological computing. Interact. Comput. 2009, 21, 133–145. [Google Scholar] [CrossRef]
Biofeedback Signals | Commercially Available Devices |
---|---|
ECG | Alivecor System [16], Biopac [17], EPI mini [18], Omron ECG [19], Ambulatory ECG [20], Quasar sensors [21] |
EEG | Mindwave headset [22], Flex sensor [23], Emotiv Headset [24], Neurosky Headset [25], Muse headband [26] |
EMG | Neuronode [27], Sx230 [28], Trigno mini sensor [29] |
EOG | Google glass [30], SMI eye tracking glassess [31], ASL eye tracking glasses [11] |
GSR | Empatica [32], Shimmer 3 [33], Grove-GSR [34] |
ST | YSI 400 series temperature probe [35], TIDA-00824 by Texas Instrument |
RR | SA9311M [36], TMSI respiration sensor [37] |
Emotion | Physiological Response |
---|---|
Pleasure and Sadness | low skin conductance and EMG, high heart rate |
Anger | high skin conductance and EMG, flat and fast breathing |
Joy | high skin conductance, EMG and heart rate, deep and slow breathing |
Database | Year | No. of Subjects | Psycho-Physiological Signal | Task/Experiment |
---|---|---|---|---|
MAHNOB [82] | 2012 | 27 | EEG, ECG, EDA, GT, RM, FT, ST | 1st session: Emotional Videos, 2nd Session: Short Videos and Images |
DECAF [83] | 2015 | 30 | EEG, ECG, MEG, EOG, EMG, FT | Affective Multimedia content (Movies and Music) |
DEAP [84] | 2012 | 32 | EEG, FT | Watching Video |
SEED [85] | 2015 | 15 | EEG, FT | Watching Video |
Multi-modal Dataset [86] | 2015 | 20 | EEG, ECG, RM | Immersive Multimedia |
AV communication [87] | 2016 | 20 | EEG, ECG, RM | Audiovisual Stimuli |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Baig, M.Z.; Kavakli, M. A Survey on Psycho-Physiological Analysis & Measurement Methods in Multimodal Systems. Multimodal Technol. Interact. 2019, 3, 37. https://doi.org/10.3390/mti3020037
Baig MZ, Kavakli M. A Survey on Psycho-Physiological Analysis & Measurement Methods in Multimodal Systems. Multimodal Technologies and Interaction. 2019; 3(2):37. https://doi.org/10.3390/mti3020037
Chicago/Turabian StyleBaig, Muhammad Zeeshan, and Manolya Kavakli. 2019. "A Survey on Psycho-Physiological Analysis & Measurement Methods in Multimodal Systems" Multimodal Technologies and Interaction 3, no. 2: 37. https://doi.org/10.3390/mti3020037