Reducing the Gap between Mental Models of Truck Drivers and Adaptive User Interfaces in Commercial Vehicles
Abstract
:1. Introduction
2. State of the Art
2.1. Adaptive User Interfaces
2.1.1. Opportunities
2.1.2. Disadvantages
2.1.3. Resulting Challenges
2.2. Mental Models
2.2.1. Definition and Relevance
2.2.2. Formation of Mental Models
2.2.3. Resulting Challenges and Implications
3. Research Questions
- RQ1: How can the user’s mental model be incorporated into the design and development process of adaptive user interfaces?
- RQ2: What underlying dimensions describe the mental model of truck drivers regarding AUI and how can it be measured?
- RQ3: What is the initial mental model of truck drivers before interacting with an AUI for commercial vehicles?
4. RQ1—How to Incorporate MMs during AUI Development
5. RQ2—Structure of the MM and Measuring It
5.1. Generating an Item Pool
5.2. Item Revision
5.2.1. Expert Workshop 1
5.2.2. Expert Workshop 2
5.2.3. Qualitative Pretests
5.3. Data Acquisition
5.4. Factor Analysis
5.5. Naming the Dimensions
- Factor 1: System State and Transparency. Describes the user’s MM regarding the transparency of the system and how much information about the system state is visible.
- Factor 2: Intelligence and Adaptability. Describes how intelligent the user thinks the AUI is, how much it is able to recognize, if it is personalized and how adaptable the system is in general.
- Factor 3: Context Sensitivity. Reflects the user’s MM regarding the degree of context sensitivity, how the system prioritizes functions and what kind of context is defined.
- Factor 4: User Control. Represents how much the user thinks the system allows him to be in control and if he can change its behavior manually or access functions via static interaction.
6. RQ3—Initial MM
6.1. Data Acquisition
6.2. Resulting MM
7. Discussion
8. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Item | Item Wording | Factor Loading | Item Difficulty | Item Discrimination |
---|---|---|---|---|
1 | The adaptive system provides reasons for its actions. | 0.64 | 3.6 | 0.68 |
2 | I can view the sensor data that the adaptive system uses to recognize the context. | 0.37 | 3.8 | 0.42 |
3 | The adaptive system shows me how automatically it adapts: Whether it adapts in a fully automated way, needs my confirmation, or only presents me with a selection of functions. | 0.82 | 4.6 | 0.73 |
4 | The adaptive system announces its changes to me. | 0.73 | 5.0 | 0.68 |
5 | When a vehicle function is executed, other similar vehicle functions are suggested to me. | 0.47 | 4.1 | 0.61 |
6 | The adaptive system informs me which vehicle functions are currently active. | 0.74 | 5.1 | 0.61 |
7 | Context recognition is performed with a high degree of accuracy. | 0.36 | 4.7 | 0.53 |
8 | The adaptive system shows me how confident it is in recognizing the current context. | 0.79 | 4.1 | 0.67 |
9 | The adaptive system informs me about the current context. | 0.80 | 4.9 | 0.73 |
Item | Item Wording | Factor Loading | Item Difficulty | Item Discrimination |
---|---|---|---|---|
1 | The adaptive system quickly adapts to the current context. | 0.45 | 0.50 | 0.71 |
2 | I can operate all vehicle functions with the adaptive control system. | 0.47 | 4.7 | 0.48 |
3 | Vehicle functions that I have used more often at a particular time are suggested to me again at the same time. | 0.81 | 4.3 | 0.60 |
4 | Vehicle functions that I last used are suggested to me. | 0.61 | 4.7 | 0.64 |
5 | Vehicle functions that I use frequently are suggested to me. | 0.61 | 5.0 | 0.78 |
6 | Safety-relevant vehicle functions are displayed preferentially. | 0.39 | 5.2 | 0.56 |
7 | I can define which vehicle functions should no longer be suggested to me in the future. | 0.63 | 4.8 | 0.68 |
8 | If I have rejected vehicle functions several times in the same situation, they will no longer be suggested to me. | 0.74 | 4.0 | 0.50 |
9 | If I sustainably change my behavior, the adaptive control system recognizes this and adapts to it. | 0.50 | 4.6 | 0.69 |
10 | The adaptive system recognizes new contexts that have not occurred before. | 0.59 | 4.6 | 0.75 |
11 | The adaptive system automatically creates a personal user profile. | 0.63 | 4.6 | 0.65 |
12 | My user profile can also be transferred to other vehicles with the adaptive system. | 0.71 | 4.9 | 0.71 |
Item | Item Wording | Factor Loading | Item Difficulty | Item Discrimination |
---|---|---|---|---|
1 | When I use the adaptive system for the first time, it asks me about my preferences, e.g., whether I like to use a particular vehicle function. | 0.56 | 4.4 | 0.70 |
2 | The adaptive system uses sensor data from the vehicle’s environment to recognize the context (e.g., GPS location, engine speed, road type, weather, traffic density). | 0.73 | 4.9 | 0.75 |
3 | During my workday, the adaptive system frequently switches between recognized contexts. | 0.78 | 4.5 | 0.64 |
4 | Depending on the context, the appearance of the adaptive system changes. | 0.62 | 4.7 | 0.65 |
5 | The number of vehicle functions changes with the current context. | 0.72 | 4.6 | 0.66 |
6 | The adaptive system recognizes how demanding the situation is for me and adapts to it. | 0.54 | 3.7 | 0.52 |
7 | Vehicle functions that are relevant in the current context are suggested to me. | 0.45 | 4.9 | 0.65 |
8 | Vehicle functions that I have saved as favorites are suggested to me. | 0.37 | 5.1 | 0.62 |
9 | Vehicle functions that are urgent in terms of time are displayed preferentially. | 0.68 | 5.0 | 0.64 |
10 | Vehicle functions that are not relevant within the context are hidden by the adaptive control system. | 0.54 | 4.9 | 0.57 |
Item | Item Wording | Factor Loading | Item Difficulty | Item Discrimination |
---|---|---|---|---|
1 | Certain areas of the adaptive system remain unchanged in the same place. | 0.64 | 5.0 | 0.61 |
2 | I can override the adaptive system and its actions at any time. | 0.64 | 5.5 | 0.65 |
3 | I can view the rules of the adaptive system. | 0.59 | 4.7 | 0.59 |
4 | I can change the rules of the adaptive system. | 0.51 | 4.8 | 0.66 |
5 | I can change how automatically the adaptive system adapts at any time (e.g., functions are executed automatically by the system or must first be confirmed by me). | 0.76 | 5.0 | 0.76 |
6 | I can also call up vehicle functions that are not suggested to me by the adaptive system. | 0.62 | 5.3 | 0.63 |
References
- Flaspöler, E.; Hauke, A.; Pappachan, P. The Human Machine Interface as an Emerging Risk; Publications Office: Luxembourg, 2010; ISBN 978-92-9191-300-8. [Google Scholar]
- Walter, N. Personalization and Context-Sensitive User Interaction of in-Vehicle Infotainment Systems. Ph.D. Dissertation, Technische Universität München, München, Germany, 2018. [Google Scholar]
- Schölkopf, L.; Wolf, M.-M.; Hutmann, V.; Diermeyer, F. Conception, Development and First Evaluation of a Context-Adaptive User Interface for Commercial Vehicles. In Proceedings of the 13th International Conference on Automotive User Interfaces and Interactive Vehicular Applications, AutomotiveUI ’21, Leeds, UK, 9–14 September 2021; ACM: New York, NY, USA, 2021; pp. 21–25, ISBN 9781450386418. [Google Scholar]
- Hartmann, M. Challenges in Developing User-Adaptive Intelligent User Interfaces. In 17th Workshop on Adaptivity and User Modeling in Interactive Systems; Hauger, D., Köck, M., Nauerz, A., Eds.; Gesellschaft für Informatik e.V.: Darmstadt, Germany, 2009. [Google Scholar]
- National Highway Traffic Safety Administration. Traffic Safety Facts: 2019 Data; DOT HS 813 110; US Department of Transportation: Washington, DC, USA, 2021. Available online: https://crashstats.nhtsa.dot.gov/Api/Public/ViewPublication/813110 (accessed on 20 December 2021).
- Class, U. Sicheres automatisiertes Fahren braucht System. ATZ Automobiltech. Z. 2019, 121, 82. [Google Scholar] [CrossRef]
- Schölkopf, L.; Kneuper, A.; Hutmann, V.; Diermeyer, F. Methods for Reducing the Complexity of Driving Workplaces in Commercial Vehicles. In Advances in Human Aspects of Transportation; Stanton, N., Ed.; Springer International Publishing: Cham, Switzerland, 2021; pp. 34–44. ISBN 978-3-030-80011-6. [Google Scholar]
- Garzon, S.R. Intelligent In-Car-Infotainment Systems: A Contextual Personalized Approach. In Proceedings of the 8th International Conference on Intelligent Environments (IE), Guanajuato, Mexico, 26–29 June 2012; IEEE: Piscataway, NJ, USA, 2012; pp. 315–318, ISBN 978-1-4673-2093-1. [Google Scholar]
- Hanisch, S. Nach Tesla-Unfall: Gericht Verbietet Touchscreen-Bedienung. BR24 [Online]. 6 August 2020. Available online: https://www.br.de/nachrichten/wirtschaft/nach-tesla-unfall-gericht-verbietet-touchscreen-bedienung,S6nsrLT (accessed on 30 October 2020).
- Ahram, T.Z.; Falcão, C. (Eds.) Advances in Usability, User Experience and Assistive Technology; Springer International Publishing: Cham, Switzerland, 2019; ISBN 978-3-319-94946-8. [Google Scholar]
- Hancock, P.A.; Chignell, M.H. Mental workload dynamics in adaptive interface design. IEEE Trans. Syst. Man Cybern. 1988, 18, 647–658. [Google Scholar] [CrossRef]
- Gajos, K.Z.; Everitt, K.; Tan, D.S.; Czerwinski, M.; Weld, D.S. Predictability and accuracy in adaptive user interfaces. In Proceedings of the Twenty-Sixth Annual CHI Conference on Human Factors in Computing Systems—CHI ’08, Florence, Italy, 5–10 April 2008; Czerwinski, M., Lund, A., Tan, D., Eds.; ACM Press: New York, NY, USA, 2008; p. 1271, ISBN 9781605580111. [Google Scholar]
- Alvarez-Cortes, V.; Zayas-Perez, B.E.; Zarate-Silva, V.H.; Ramirez Uresti, J.A. Current Trends in Adaptive User Interfaces: Challenges and Applications. In Electronics, Robotics and Automotive Mechanics Conference (CERMA 2007), Cuernavaca, Morelos, Mexico, 25–28 September 2007; IEEE: Piscataway, NJ, USA, 2007; pp. 312–317. ISBN 0-7695-2974-7. [Google Scholar]
- Findlater, L.; McGrenere, J. Impact of screen size on performance, awareness, and user satisfaction with adaptive graphical user interfaces. In Proceedings of the Twenty-Sixth Annual CHI Conference on Human Factors in Computing Systems—CHI ’08, Florence, Italy, 5–10 April 2008; Czerwinski, M., Lund, A., Tan, D., Eds.; ACM Press: New York, NY, USA, 2008; p. 1247, ISBN 9781605580111. [Google Scholar]
- Hutchison, D.; Kanade, T.; Kittler, J.; Kleinberg, J.M.; Mattern, F.; Mitchell, J.C.; Naor, M.; Nierstrasz, O.; Pandu Rangan, C.; Steffen, B.; et al. (Eds.) Human-Computer Interaction. HCI Intelligent Multimodal Interaction Environments; Springer: Berlin/Heidelberg, Germany, 2007; ISBN 978-3-540-73108-5. [Google Scholar]
- Wesson, J.L.; Singh, A.; van Tonder, B. Can Adaptive Interfaces Improve the Usability of Mobile Applications? In Human-Computer Interaction; Forbrig, P., Paternó, F., Mark Pejtersen, A., Eds.; Springer: Berlin/Heidelberg, Germany, 2010; pp. 187–198. ISBN 978-3-642-15230-6. [Google Scholar]
- Findlater, L.; Gajos, K.Z. Design Space and Evaluation Challenges of Adaptive Graphical User Interfaces. AIMag 2010, 30, 68. [Google Scholar] [CrossRef] [Green Version]
- Paymans, T.F.; Lindenberg, J.; Neerincx, M. Usability trade-offs for adaptive user interfaces. In Proceedings of the 9th international conference on Intelligent user interfaces, Funchal, Portugal, 13–16 January 2004; Vanderdonckt, J., Ed.; ACM: New York, NY, USA, 2004; p. 301, ISBN 1581138156. [Google Scholar]
- Norman, D.A. Living with Complexity; MIT Press: Cambridge, MA, USA, 2011; ISBN 0262014866. [Google Scholar]
- Maria, S. Informationsmanagement im Nutzfahrzeug. Ph.D. Dissertation, Technische Universität München, München, Germany, 2013. [Google Scholar]
- Stecher, M.W. Ergonomische Gestaltung und Bewertung Berührungsfreier Gestensteuerungen für Nutzfahrzeuge. Ph.D. Dissertation, Technische Universität München, Garching, Germany, 2019. [Google Scholar]
- Meixner, G.; Häcker, C.; Decker, B.; Gerlach, S.; Hess, A.; Holl, K.; Klaus, A.; Lüddecke, D.; Mauser, D.; Orfgen, M.; et al. Retrospective and Future Automotive Infotainment Systems—100 Years of User Interface Evolution. In Automotive User Interfaces; Meixner, G., Müller, C., Eds.; Springer International Publishing: Cham, Switzerland, 2017; pp. 3–53. ISBN 978-3-319-49447-0. [Google Scholar]
- Zimmermann, G.; Vanderheiden, G.C.; Strobbe, C. Towards Deep Adaptivity—A Framework for the Development of Fully Context-Sensitive User Interfaces. In Universal Access in Human-Computer Interaction. Design and Development Methods for Universal Access; Hutchison, D., Kanade, T., Kittler, J., Kleinberg, J.M., Kobsa, A., Mattern, F., Mitchell, J.C., Naor, M., Nierstrasz, O., Pandu Rangan, C., et al., Eds.; Springer International Publishing: Cham, Switzerland, 2014; pp. 299–310. ISBN 978-3-319-07436-8. [Google Scholar]
- Rodriguez Garzon, S. Kontextsensitive Personalisierung automotiver Benutzerschnittstellen. Ph.D. Dissertation, Technische Universität Berlin, Berlin, Germany, 2013. [Google Scholar]
- Ablaßmeier, M. Multimodales, kontextadaptives Informationsmanagement im Automobil. Ph.D. Dissertation, Technische Universität München, München, Germany, 2009. [Google Scholar]
- Walthart, G. EQS with Unique MBUX Hyperscreen: The Big in-Car Cinema. An Assistant for the Driver and Front Passenger Who is Constantly Learning, Thanks to Artificial Intelligence. 2021. Available online: https://media.daimler.com/marsMediaSite/ko/en/48584064 (accessed on 8 April 2021).
- Thomasen, F. First of a New Breed: Ford Mustang Mach-E Ready to Accelerate Zero-Emission Driving Thrills and Bring on Tomorrow. Available online: https://media.ford.com/content/fordmedia/feu/en/news/2020/12/09/first-of-a-new-breed--ford-mustang-mach-e-ready-to-accelerate-ze.html (accessed on 8 April 2021).
- Walter, N.; Kaplan, B.; Altmüller, T.; Bengler, K. Erhöhung der Transparenz eines adaptiven Empfehlungsdiensts. In Mensch und Computer 2015—Workshopband; Weisbecker, A., Burmester, M., Schmidt, A., Eds.; De Gruyter: Berlin, Germany, 2015; pp. 475–482. ISBN 9783110443905. [Google Scholar]
- Bauer, C.; Dey, A.K. Considering context in the design of intelligent systems: Current practices and suggestions for improvement. J. Syst. Softw. 2016, 112, 26–47. [Google Scholar] [CrossRef]
- Gena, C. Methods and techniques for the evaluation of user-adaptive systems. Knowl. Eng. Rev. 2005, 20, 1–37. [Google Scholar] [CrossRef]
- Lavie, T.; Meyer, J. Benefits and costs of adaptive user interfaces. Int. J. Hum.-Comput. Stud. 2010, 68, 508–524. [Google Scholar] [CrossRef]
- Gajos, K.Z.; Chauncey, K. The Influence of Personality Traits and Cognitive Load on the Use of Adaptive User Interfaces. In Proceedings of the 22nd International Conference on Intelligent User Interfaces, IUI’17, Limassol, Cyprus, 13 March 2017; Papadopoulos, G.A., Kuflik, T., Chen, F., Duarte, C., Fu, W.-T., Eds.; ACM: New York, NY, USA, 2017; pp. 301–306, ISBN 9781450343480. [Google Scholar]
- DIN EN ISO 9241-112:2017-08; Ergonomie der Mensch-System-Interaktion—Teil 112: Grundsätze der Informationsdarstellung (ISO 9241-112:2017); Deutsche Fassung EN ISO 9241-112:2017. Beuth Verlag GmbH: Berlin, Germany, 2017.
- Simons, D.J.; Chabris, C.F. Gorillas in our midst: Sustained inattentional blindness for dynamic events. Perception 1999, 28, 1059–1074. [Google Scholar] [CrossRef]
- Bader, R.; Siegmund, O.; Woerndl, W. A study on user acceptance of proactive in-vehicle recommender systems. In Proceedings of the 3rd International Conference on Automotive User Interfaces and Interactive Vehicular Applications—AutomotiveUI ’11, Salzburg, Austria, 30 November–2 December 2011; Tscheligi, M., Ed.; ACM Press: New York, NY, USA, 2011; p. 47, ISBN 9781450312318. [Google Scholar]
- Wright, A.P.; Wang, Z.J.; Park, H.; Guo, G.; Sperrle, F.; El-Assady, M.; Endert, A.; Keim, D.; Chau, D.H. A Comparative Analysis of Industry Human-AI Interaction Guidelines. 2020. Available online: http://arxiv.org/pdf/2010.11761v1 (accessed on 20 December 2021).
- Cooper, A.; Reimann, R.; Cronin, D. About Face 3: The Essentials of Interaction Design; Completely rev. and updated; Wiley: Indianapolis, IN, USA, 2007; ISBN 978-0470084113. [Google Scholar]
- Vollrath, M.; Leplow, B.; Selg, H. Ingenieurpsychologie: Psychologische Grundlagen und Anwendungsgebiete; 1. Aufl.; Kohlhammer: Stuttgart, Germany, 2015; ISBN 9783170226203. [Google Scholar]
- Schilling, T. Mentale Modelle der Benutzer von Fahrerinformationssystemen. Ph.D. Thesis, Humboldt-Universität zu Berlin, Berlin, Germany, 2008. [Google Scholar]
- Streitz, N.A. Learning Issues for Intelligent Tutoring Systems; Springer: New York, NY, USA, 1988. [Google Scholar]
- Silva, S.S.; Hansman, R.J. Divergence between Flight Crew Mental Model and Aircraft System State in Auto-Throttle Mode Confusion Accident and Incident Cases. J. Cogn. Eng. Decis. Mak. 2015, 9, 312–328. [Google Scholar] [CrossRef] [Green Version]
- Blömacher, K.; Nöcker, G.; Huff, M. The evolution of mental models in relation to initial information while driving automated. Transp. Res. Part F Traffic Psychol. Behav. 2020, 68, 198–217. [Google Scholar] [CrossRef]
- Lyons, K. Two People Killed in Fiery Tesla Crash with No One Driving: Authorities Said it Took Four Hours to Extinguish the Fire. 2021. Available online: https://www.theverge.com/2021/4/18/22390612/two-people-killed-fiery-tesla-crash-no-driver (accessed on 21 January 2022).
- Buckley, B.C.; Boulter, C.J. Investigating the Role of Representations and Expressed Models in Building Mental Models. In Developing Models in Science Education; Gilbert, J.K., Boulter, C.J., Eds.; Springer: Dordrecht, The Netherlands, 2000; pp. 119–135. ISBN 978-0-7923-6772-7. [Google Scholar]
- Westbrook, L. Mental models: A theoretical overview and preliminary study. J. Inf. Sci. 2006, 32, 563–579. [Google Scholar] [CrossRef]
- Norman, D.A. The Design of Everyday Things; Basic Books: New York, NY, USA, 2002; ISBN 9780465003945. [Google Scholar]
- Zhang, W.; Xu, P. Do I have to learn something new? Mental models and the acceptance of replacement technologies. Behav. Inf. Technol. 2011, 30, 201–211. [Google Scholar] [CrossRef]
- Schnotz, W.; Kürschner, C. External and internal representations in the acquisition and use of knowledge: Visualization effects on mental model construction. Instr. Sci. 2008, 36, 175–190. [Google Scholar] [CrossRef]
- Greenberg, S.; Carpendale, S.; Marquardt, N.; Buxton, B. Uncovering the Initial Mental Model. Sketching User Experiences: The Workbook; Elsevier: Hoboken, NJ, USA, 2012; pp. 217–226. ISBN 9780123819598. [Google Scholar]
- Google LLC. Google PAIR. People + AI Guidebook. 2019. Available online: https://pair.withgoogle.com/guidebook/ (accessed on 15 July 2021).
- d’Apollonia, S.T.; Charles, E.S.; Boyd, G.M. Acquisition of Complex Systemic Thinking: Mental Models of Evolution. Educ. Res. Eval. 2004, 10, 499–521. [Google Scholar] [CrossRef]
- Apple Inc. Human Interface Guidelines: Machine Learning. 2021. Available online: https://developer.apple.com/design/human-interface-guidelines/machine-learning/overview/introduction/ (accessed on 15 July 2021).
- Microsoft Corporation. Guidelines for Human-AI Interaction. 2021. Available online: https://www.microsoft.com/en-us/research/project/guidelines-for-human-ai-interaction/ (accessed on 15 July 2021).
- Norman, D.A. Some Observations on Mental Models. In Mental Models; Psychology Press: Hove, UK; East Sussex, UK, 1983; pp. 7–14. [Google Scholar]
- van der Laan, J.D.; Heino, A.; de Waard, D. A simple procedure for the assessment of acceptance of advanced transport telematics. Transp. Res. Part C Emerg. Technol. 1997, 5, 1–10. [Google Scholar] [CrossRef]
- Richardson, N.T.; Sprung, A.; Michel, B. Entwicklung und Validierung eines Fragebogens zur Erfassung des mentalen Modells für das hochautomatisierte Fahren. Z. Arb. Wiss. 2019, 73, 312–323. [Google Scholar] [CrossRef]
- Lim, B.Y.; Dey, A.K.; Avrahami, D. Why and why not explanations improve the intelligibility of context-aware intelligent systems. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, CHI’09, Boston, MA, USA, 4–9 April 2009; Olsen, D.R., Arthur, R.B., Hinckley, K., Morris, M.R., Hudson, S., Greenberg, S., Eds.; ACM: New York, NY, USA, 2009; pp. 2119–2128, ISBN 9781605582467. [Google Scholar]
- Beggiato, M.; Krems, J.F. The evolution of mental model, trust and acceptance of adaptive cruise control in relation to initial information. Transp. Res. Part F Traffic Psychol. Behav. 2013, 18, 47–57. [Google Scholar] [CrossRef]
- Hinderks; Andreas; Schrepp, M.; Thomaschewski, J. User Experience Questionnaire (UEQ). 2018. Available online: https://www.ueq-online.org/ (accessed on 16 April 2021).
- Laugwitz, B.; Held, T.; Schrepp, M. Construction and Evaluation of a User Experience Questionnaire. In HCI and Usability for Education and Work; Holzinger, A., Ed.; Springer: Berlin/Heidelberg, Germany, 2008; pp. 63–76. ISBN 978-3-540-89349-3. [Google Scholar]
- Rothhämel, M.; IJkema, J.; Drugge, L. On a Method for Generating a Word Pool for the Description of Steering Feel. In Proceedings of the 10th International Symposium on Advanced Vehicle Control, Loughborough, UK, 22–25 August 2010. [Google Scholar]
- Hassenzahl, M.; Burmester, M.; Koller, F. AttrakDiff: Ein Fragebogen zur Messung wahrgenommener hedonischer und pragmatischer Qualität. In Mensch & Computer 2003; Szwillus, G., Ziegler, J., Eds.; Vieweg + Teubner Verlag: Wiesbaden, Germany, 2003; pp. 187–196. ISBN 978-3-519-00441-7. [Google Scholar]
- RealtimeBoard, Inc. Miro. 2021. Available online: https://miro.com/ (accessed on 9 November 2021).
- Bühner, M. Einführung in Die Test-und Fragebogenkonstruktion; 3. Aktualisierte und Erweiterte Auflage; Pearson Studium ein Imprint von Pearson Education: München, Germany, 2011; ISBN 9783863265700. [Google Scholar]
- Lenzner, T.; Neuert, C.; Otto, W. Cognitive Pretesting: GESIS Survey Guidelines; GESIS–Leibniz Institute for the Social Sciences: Mannheim, Germany, 2015. [Google Scholar]
- Schölkopf, L.; Gatto von der Heyde, C.; Diermeyer, F. Survey Data from 75 Truck Drivers on their Mental Models of Adaptive Interfaces. 2021. Available online: https://mediatum.ub.tum.de/1631619 (accessed on 12 December 2021).
- Schrepp, M.; Rummel, B. UX Fragebögen: Verwenden wir die richtigen Methoden? In Proceedings of the Mensch und Computer 2018—Workshopband, Dresden, Germany, 2–5 September 2018. [Google Scholar]
- Häder, M. Delphi-Befragungen; Springer Fachmedien Wiesbaden: Wiesbaden, Germany, 2014; ISBN 978-3-658-01927-3. [Google Scholar]
- Zhang, Y. Dimensions and elements of people’s mental models of an information-rich Web space. J. Am. Soc. Inf. Sci. 2010, 61, 2206–2218. [Google Scholar] [CrossRef]
- Moosbrugger, H.; Kelava, A. Testtheorie und Fragebogenkonstruktion; Springer: Berlin/Heidelberg, Germany, 2020; ISBN 978-3-662-61531-7. [Google Scholar]
- Lohre, D.; Bernecker, T.; Stock, W. ZF-Zukunftsstudie Fernfahrer 2.0: Der Mensch im Transport-und Logistikmarkt. 2014. Available online: https://www.zf.com/master/media/corporate/m_zf_com/company/download_center/company_3/zukunftsstudie_1/zf_zukunftsstudie_2014_gesamt.pdf (accessed on 18 December 2021).
Factor 1 | Factor 2 | Factor 3 | Factor 4 | |
---|---|---|---|---|
Cronbach’s α | 0.88 | 0.91 | 0.89 | 0.85 |
Guttman’s λ | 0.90 | 0.93 | 0.91 | 0.86 |
Explained Variation | 16% | 16% | 16% | 10% |
Factor 1 | Factor 2 | Factor 3 | Factor 4 | |
---|---|---|---|---|
Factor 1 | 1.00 | 0.33 | 0.34 | 0.28 |
Factor 2 | 1.00 | 0.35 | 0.32 | |
Factor 3 | 1.00 | 0.22 | ||
Factor 4 | 1.00 |
System State and Transparency | Intelligence and Adaptability | Context Sensitivity | User Control | |
---|---|---|---|---|
Mean | 4.43 | 4.72 | 4.67 | 5.06 |
SD | 1.0 | 0.95 | 0.92 | 0.92 |
Median | 4.56 | 4.92 | 4.80 | 5.33 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Schölkopf, L.; Gatto von der Heyde, C.; Sprung, A.; Diermeyer, F. Reducing the Gap between Mental Models of Truck Drivers and Adaptive User Interfaces in Commercial Vehicles. Multimodal Technol. Interact. 2022, 6, 14. https://doi.org/10.3390/mti6020014
Schölkopf L, Gatto von der Heyde C, Sprung A, Diermeyer F. Reducing the Gap between Mental Models of Truck Drivers and Adaptive User Interfaces in Commercial Vehicles. Multimodal Technologies and Interaction. 2022; 6(2):14. https://doi.org/10.3390/mti6020014
Chicago/Turabian StyleSchölkopf, Lasse, Camilla Gatto von der Heyde, Anna Sprung, and Frank Diermeyer. 2022. "Reducing the Gap between Mental Models of Truck Drivers and Adaptive User Interfaces in Commercial Vehicles" Multimodal Technologies and Interaction 6, no. 2: 14. https://doi.org/10.3390/mti6020014
APA StyleSchölkopf, L., Gatto von der Heyde, C., Sprung, A., & Diermeyer, F. (2022). Reducing the Gap between Mental Models of Truck Drivers and Adaptive User Interfaces in Commercial Vehicles. Multimodal Technologies and Interaction, 6(2), 14. https://doi.org/10.3390/mti6020014