Design and Validation of a Computational Thinking Test for Children in the First Grades of Elementary Education
Abstract
:1. Introduction and Background
2. Background and Systematic Literature Review
3. Materials and Methods
3.1. Fundamentals and Initial Design of the CTTC
- Spatial thinking enables children to visually represent information, comprehend and manipulate spatial relationships, and understand object positions, orientations, and directions [39]. Moreover, as noted by Kwon et al., “spatial abilities are used for daily tasks including reading maps, driving cars, drawing objects from different perspectives, or even folding clothes” [16] (p. 4).
- Sequential thinking involves the comprehension, ordering, and recall of sequences of events and aids children with understanding numerical order and enhances their problem-solving abilities [40].
- Logical thinking fosters problem solving through abstraction and pattern recognition. According to Oljayevna and Shavkatovna [41], the development of logical thinking entails observing and comparing objects, identifying similarities and differences, discerning essential features, drawing conclusions from observations or facts, and presenting ideas logically and coherently.
- The Brebas Test (http://www.bebras.org, accessed on 1 April 2024), which endeavors to present intriguing tasks aimed at inspiring students to delve deeper into technology-related concepts;
- The Computer Olympiad (https://olympiad.org.za/, accessed on 1 April 2024), which seeks to familiarize students and educators with computational thinking and computer science through enjoyable and interactive tasks. These tasks enable students to explore their aptitude for computational thinking without necessitating prior knowledge.
3.2. Expert Assessment
3.3. Pilot Test of the CTTC
3.4. Construction of the Final Version of the CTTC
3.5. Validation and Reliability of the CTTC
3.6. Difficulty of the CTTC Items
4. Results and Discussion
4.1. Validation of Content
4.2. Internal Validity
Construct Validity
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
CT | computational thinking |
CTTC | Computational Thinking Test for Children |
KR-20 | Kuder–Richardson Alpha coefficient |
V-Aiken | Aiken’s content validity coefficients |
K–12 | educational levels from kindergarten to 12th grade |
STEM | science, technology, engineering, and mathematics |
RQ | research question |
CTt | Computational Thinking Test |
PAM | Primary Mental Abilities |
CTT | Classical Test Theory |
IRT | Item Response Theory |
CFI | Comparative Fit Index |
TLI | Tucker–Lewis Index |
cCTt | competent Computational Thinking test |
References
- Papert, S. Children, Computers, and Powerful Ideas; Harvester: Birmingham, UK, 1980. [Google Scholar]
- Wing, J.M. Computational thinking. Commun. ACM 2006, 49, 33–35. [Google Scholar] [CrossRef]
- Grover, S.; Pea, R. Computational thinking: A competency whose time has come. In Computer Science Education: Perspectives on Teaching and Learning in School; Bloomsbury Publishing: London, UK, 2018; Volume 19, pp. 19–38. [Google Scholar]
- Angulo, J.A.P. El pensamiento computacional en la vida cotidiana. Rev. Sci. 2019, 4, 293–306. [Google Scholar] [CrossRef]
- Tekdal, M. Trends and development in research on computational thinking. Educ. Inf. Technol. 2021, 26, 6499–6529. [Google Scholar] [CrossRef]
- Fuentes Pérez, A.D.; Valladares, G.M. Desarrollo y Evaluación del Pensamiento Computacional: Una Propuesta Metodológica y una Herramienta de Apoyo. In Proceedings of the IV Congreso Internacional Sobre Aprendizaje, Innovación y Competitividad (CINAIC 2017), Zaragoza, Spain, 4–6 October 2017; pp. 577–582. [Google Scholar]
- Tsortanidou, X.; Daradoumis, T.; Barberá, E. Connecting moments of creativity, computational thinking, collaboration and new media literacy skills. Inf. Learn. Sci. 2019, 120, 704–722. [Google Scholar] [CrossRef]
- Román-González, M.; Pérez-González, J.C.; Jiménez-Fernández, C. Which cognitive abilities underlie computational thinking? Criterion validity of the Computational Thinking Test. Comput. Hum. Behav. 2017, 72, 678–691. [Google Scholar] [CrossRef]
- Piatti, A.; Adorni, G.; El-Hamamsy, L.; Negrini, L.; Assaf, D.; Gambardella, L.; Mondada, F. The CT-cube: A framework for the design and the assessment of computational thinking activities. Comput. Hum. Behav. Rep. 2022, 5, 100166. [Google Scholar] [CrossRef]
- Zapata-Ros, M. Pensamiento computacional: Una nueva alfabetización digital. Rev. Educ. Distancia (RED) 2015, 46, 1–47. [Google Scholar] [CrossRef]
- Bers, M.U. Blocks, Robots and Computers: Learning about Technology in Early Childhood; Teacher’s College Press: New York, NY, USA, 2008. [Google Scholar]
- Kazakoff, E.R.; Sullivan, A.; Bers, M.U. The effect of a classroom-based intensive robotics and programming workshop on sequencing ability in early childhood. Early Child. Educ. J. 2013, 41, 245–255. [Google Scholar] [CrossRef]
- Duncan, C.; Bell, T. A pilot computer science and programming course for primary school students. In Proceedings of the Workshop in Primary and Secondary Computing Education, London, UK, 9–11 November 2015; pp. 39–48. [Google Scholar]
- Álvarez-Herrero, J. Computational thinking in early childhood education, beyond floor robots. Educ. Knowl. Soc. 2020, 21, 1–11. [Google Scholar]
- Terroba, M.; Ribera, J.M.; Lapresa, D.; Anguera, M.T. Education intervention using a ground robot with programmed directional controls: Observational analysis of the development of computational thinking in early childhood education. Rev. Psicodidáctica 2021, 26, 143–151. [Google Scholar] [CrossRef]
- Kwon, K.; Jeon, M.; Zhou, C.; Kim, K.; Brush, T.A. Embodied learning for computational thinking in early primary education. J. Res. Technol. Educ. 2022, 1–21. [Google Scholar] [CrossRef]
- Wang, X.C.; Choi, Y.; Benson, K.; Eggleston, C.; Weber, D. Teacher’s role in fostering preschoolers’ computational thinking: An exploratory case study. Early Educ. Dev. 2021, 32, 26–48. [Google Scholar] [CrossRef]
- Gerosa, A.; Koleszar, V.; Tejera, G.; Gómez-Sena, L.; Carboni, A. Cognitive abilities and computational thinking at age 5: Evidence for associations to sequencing and symbolic number comparison. Comput. Educ. Open 2021, 2, 100043. [Google Scholar] [CrossRef]
- Voogt, J.; Fisser, P.; Good, J.; Mishra, P.; Yadav, A. Computational thinking in compulsory education: Towards an agenda for research and practice. Educ. Inf. Technol. 2015, 20, 715–728. [Google Scholar] [CrossRef]
- Fields, D.; Lui, D.; Kafai, Y.; Jayathirtha, G.; Walker, J.; Shaw, M. Communicating about computational thinking: Understanding affordances of portfolios for assessing high school students’ computational thinking and participation practices. Comput. Sci. Educ. 2021, 31, 224–258. [Google Scholar] [CrossRef]
- Grover, S.; Pea, R. Computational Thinking in K-12: A Review of the State of the Field. Educ. Res. 2013, 42, 38–43. [Google Scholar] [CrossRef]
- Kalelioglu, F.; Gulbahar, Y.; Kukul, V. A Framework for Computational Thinking Based on a Systematic Research Review. Balt. J. Mod. Comput. 2016, 4, 583–596. [Google Scholar]
- Tang, X.; Yin, Y.; Lin, Q.; Hadad, R.; Zhai, X. Assessing computational thinking: A systematic review of empirical studies. Comput. Educ. 2020, 148, 103798. [Google Scholar] [CrossRef]
- Tsarava, K.; Moeller, K.; Román-González, M.; Golle, J.; Leifheit, L.; Butz, M.V.; Ninaus, M. A cognitive definition of computational thinking in primary education. Comput. Educ. 2022, 179, 104425. [Google Scholar] [CrossRef]
- Zhang, Y.; Luo, R.; Zhu, Y.; Yin, Y. Educational Robots Improve K-12 Students’ Computational Thinking and STEM Attitudes: Systematic Review. J. Educ. Comput. Res. 2021, 59, 1450–1481. [Google Scholar] [CrossRef]
- Liao, Y.K.C.; Bright, G.W. Effects of Computer Programming on Cognitive Outcomes: A Meta-Analysis. J. Educ. Comput. Res. 1991, 7, 251–268. [Google Scholar] [CrossRef]
- Basu, S.; Kinnebrew, J.S.; Biswas, G. Assessing student performance in a computational-thinking based science learning environment. In Proceedings of the Intelligent Tutoring Systems: 12th International Conference, ITS 2014, Honolulu, HI, USA, 5–9 June 2014; Proceedings 12. Springer: Berlin/Heidelberg, Germany, 2014; pp. 476–481. [Google Scholar]
- Doleck, T.; Bazelais, P.; Lemay, D.J.; Saxena, A.; Basnet, R.B. Algorithmic thinking, cooperativity, creativity, critical thinking, and problem solving: Exploring the relationship between computational thinking skills and academic performance. J. Comput. Educ. 2017, 4, 355–369. [Google Scholar] [CrossRef]
- El-Hamamsy, L.; Zapata-Cáceres, M.; Martín-Barroso, E.; Mondada, F.; Zufferey, J.D.; Bruno, B.; Román-González, M. The competent Computational Thinking test (cCTt): A valid, reliable and gender-fair test for longitudinal CT studies in grades 3–6. arXiv 2023, arXiv:2305.19526. [Google Scholar]
- Relkin, E.; de Ruiter, L.; Bers, M.U. TechCheck: Development and validation of an unplugged assessment of computational thinking in early childhood education. J. Sci. Educ. Technol. 2020, 29, 482–498. [Google Scholar] [CrossRef]
- Chen, G.; Shen, J.; Barth-Cohen, L.; Jiang, S.; Huang, X.; Eltoukhy, M. Assessing elementary students’ computational thinking in everyday reasoning and robotics programming. Comput. Educ. 2017, 109, 162–175. [Google Scholar] [CrossRef]
- Ortega-Ruipérez, B.; Asensio, M. Evaluar el pensamiento computacional mediante resolución de problemas: Validación de un instrumento de evaluación. Rev. Iberoam. EvaluacióN Educ. 2021, 14, 153–171. [Google Scholar] [CrossRef]
- Mühling, A.; Ruf, A.; Hubwieser, P. Design and first results of a psychometric test for measuring basic programming abilities. In Proceedings of the WiPSCE’15: Proceedings of the Workshop in Primary and Secondary Computing Education, London, UK, 9–11 November 2015; Association for Computing Machinery: New York, NY, USA, 2015; pp. 2–10. [Google Scholar] [CrossRef]
- Weintrop, D.; Wilensky, U. Using commutative assessments to compare conceptual understanding in blocks-based and text-based programs. In Proceedings of the ICER’15: Proceedings of the eleventh annual International Conference on International Computing Education Research, Omaha, NE, USA, 9–13 August 2015; Association for Computing Machinery, Inc.: New York, NY, USA, 2015; pp. 101–110. [Google Scholar] [CrossRef]
- Kukul, V.; Karatas, S. Computational thinking self-efficacy scale: Development, validity and reliability. Inform. Educ. 2019, 18, 151–164. [Google Scholar] [CrossRef]
- Yang, W.; Gao, H.; Jiang, Y.; Li, H. Beyond computing: Computational thinking is associated with sequencing ability and self-regulation among Chinese young children. Early Child. Res. Q. 2023, 64, 324–330. [Google Scholar] [CrossRef]
- del Olmo-Muñoz, J.; Cózar-Gutiérrez, R.; González-Calero, J.A. Computational thinking through unplugged activities in early years of Primary Education. Comput. Educ. 2020, 150, 103832. [Google Scholar] [CrossRef]
- Harper, F.K.; Caudle, L.A.; Flowers, C.E., Jr.; Rainwater, T.; Quinn, M.F.; Partnership, T.C. Centering teacher and parent voice to realize culturally relevant computational thinking in early childhood. Early Child. Res. Q. 2023, 64, 381–393. [Google Scholar] [CrossRef]
- Uttal, D.H.; Cohen, C.A. Spatial thinking and STEM education: When, why, and how? In Psychology of Learning and Motivation; Elsevier: Amsterdam, The Netherlands, 2012; Volume 57, pp. 147–181. [Google Scholar]
- Delgoshaei, Y.; Delavari, N. Applying multiple-intelligence approach to education and analyzing its impact on cognitive development of pre-school children. Procedia-Soc. Behav. Sci. 2012, 32, 361–366. [Google Scholar] [CrossRef]
- Oljayevna, O.; Shavkatovna, S. The Development of Logical Thinking of Primary School Students in Mathematics. Eur. J. Res. Reflect. Educ. Sci. 2020, 8, 235–239. [Google Scholar]
- DeLoache, J.S.; Miller, K.F.; Pierroutsakos, S.L. Reasoning and Problem Solving; John Wiley & Sons Inc.: Hoboken, NJ, USA, 1998; pp. 801–850. [Google Scholar]
- Muzaky, A.F.; Sunarno, W.; Harjana. Evaluating students logical thinking ability: TPACK model as a physics learning strategy to improve students logical thinking ability. J. Phys. Conf. Ser. 2020, 1511, 012027. [Google Scholar] [CrossRef]
- Hawes, Z.; Moss, J.; Caswell, B.; Naqvi, S.; MacKinnon, S. Enhancing children’s spatial and numerical skills through a dynamic spatial approach to early geometry instruction: Effects of a 32-week intervention. Cogn. Instr. 2017, 35, 236–264. [Google Scholar] [CrossRef]
- Ehrlich, S.B.; Levine, S.C.; Goldin-Meadow, S. The importance of gesture in children’s spatial reasoning. Dev. Psychol. 2006, 42, 1259. [Google Scholar] [CrossRef] [PubMed]
- Kesselring, T.; Müller, U. The concept of egocentrism in the context of Piaget’s theory. New Ideas Psychol. 2011, 29, 327–345. [Google Scholar] [CrossRef]
- Aristizábal Zapata, J.H.; Gutíerrez Posada, J.E. Collaborative Spatial Problem-Solving Strategies Presented by First Graders by Interacting with Tangible User Interface. In Proceedings of the HCI International 2021-Posters: 23rd HCI International Conference, HCII 2021, Virtual Event, 24–29 July 2021; Proceedings, Part III 23. Springer: Berlin/Heidelberg, Germany, 2021; pp. 64–71. [Google Scholar]
- Wing, J.M. Computational thinking and thinking about computing. Philos. Trans. R. Soc. Math. Phys. Eng. Sci. 2008, 366, 3717–3725. [Google Scholar]
- Ángel-Díaz, C.M.; Segredo, E.; Arnay, R.; León, C. Simulador de robótica educativa para la promoción del pensamiento computacional. Rev. Educ. Distancia (RED) 2020, 20, 63. [Google Scholar] [CrossRef]
- Skjong, R.; Wentworth, B. Expert Judgment and Risk Perception, 2001. In Proceedings of the Eleventh (2001) International Offshore and Polar Engineering Conference, Stavanger, Norway, 17–22 June 2001; pp. 537–544. [Google Scholar]
- Grant, J.S.; Davis, L.L. Selection and use of content experts for instrument development. Res. Nurs. Health 1997, 20, 269–274. [Google Scholar] [CrossRef]
- Penfield, R.D.; Giacobbi, P.R., Jr. Applying a score confidence interval to Aiken’s item content-relevance index. Meas. Phys. Educ. Exerc. Sci. 2004, 8, 213–225. [Google Scholar] [CrossRef]
- Norman, D.A. La Psicología de los Objetos Cotidianos; Editorial Nerea: Donostia, Spain, 1998; Volume 6. [Google Scholar]
- Castaño-García, J. Una aproximación al proceso de comprensión de los numerales por parte de los niños: Relaciones entre representaciones mentales y representaciones semióticas. Univ. Psychol. 2008, 7, 895–908. [Google Scholar]
- Escudero, E.B.; Reyna, N.L.; Morales, M.R. Nivel de dificultad y poder de discriminación del Examen de Habilidades y Conocimientos Básicos (EXHCOBA). REDIE Rev. ElectróNica Investig. Educ. 2000, 2, 1. [Google Scholar]
- Castro, A. El dibujo en la escuela. Rev. Digit. Innov. Exp. Educ. 2010. Available online: https://archivos.csif.es/archivos/andalucia/ensenanza/revistas/csicsif/revista/pdf/Numero_26/ANA_BELEN_MAESTRE_CASTRO_01.pdf (accessed on 6 April 2024).
- Blacker, D. Endicott, J. Psychometric properties: Concepts of reliability and validity. In Handbook of Psychiatric Measures, 2nd ed.; APA: Washington, DC, USA, 2002; pp. 7–14. [Google Scholar]
- Muñiz Fernández, J. Teoría Clásica de Los Tests; Pirámide: Rome, Italy, 2003. [Google Scholar]
- Field, A.; Miles, J.; Field, Z. Discovering Statistics Using R; SAGE Publications Ltd.: Southend Oaks, CA, USA, 2012. [Google Scholar]
- Chang, L.C.; Lin, W.C. Improving Computational Thinking and Teamwork by Applying Balanced Scorecard for Sustainable Development. Sustainability 2022, 14, 11723. [Google Scholar] [CrossRef]
- Cerdán, F. El paradigma agrícola. Personal communication. 2008. [Google Scholar]
Test name | Population | Items | Measuring | Approach |
---|---|---|---|---|
Computational-thinking-based science learning (CTSiM, 2014) [27] | 25 students from 6th grade | 4 | Abstractions, algorithms, conditionals, loops, and variables | Model accuracy metric |
Computational Thinking Test (CTt, 2017) [8] | 1251 students from 5th to 10th grade | 40 | Spatial ability, reasoning ability, and problem-solving ability | Descriptive statistics comparing with other tests: Primary Mental Abilities (PAM) and Solving Problem Test (RP30) |
Assessing elementary students’ computational thinking (2017) [31] | 121 students from 5th grade | 23 | Syntax for formulating problems and solutions, data algorithms representing efficient and effective solutions | Cronbach´s alpha, reliability coefficient, two-tailed, two sample t-test, and Rasch testlet model |
Exploring the relationship between computational thinking skills and academic performance (2017) [28] | 104 pre-university science students | 29 | Algorithmic thinking, cooperativity, creativity, critical thinking, and problem-solving | Partial least squares approach |
Computational Thinking Self-efficacy Scale (2019) [35] | 319 students from 5th to 7th grade | 18 | Computational thinking self-efficacy, reasoning, abstraction, decomposition, and generalization | Chi-square, Cronbach’s alpha reliability coefficient, and expert opinion |
TechCheck (2020) [30] | 612 students from 1st to 2nd grade | 15 | Algorithm modularity, control structures, symbolic representation, hardware/software, and debugging | Classical Test Theory (CTT), Item Response Theory (IRT), and evaluator opinion |
Computational thinking as a problem-solving strategy (2021) [32] | 66 students from 10th grade | 15 | CT through solving problems | Root mean square error of approximation, comparative fit index (CFI), and Tucker–Lewis index (TLI) |
The competent Computational Thinking test (cCTt, 2023) [29] | 2666 students from 3rd to 6th grade | 25 | Blocks, sequences, simple loops, complex loops, conditional statements, while statements, and combinations | Classical Test Theory, Item Response Theory (IRT) |
Frequency | Percent | Cumulative Percent | ||
---|---|---|---|---|
Gender | Male | 53 | 44.915 | 44.915 |
Female | 65 | 55.085 | 100.000 | |
Total | 118 | 100.000 | ||
Grade | 1st Grade | 33 | 27.996 | 27.996 |
2nd Grade | 38 | 32.203 | 61.169 | |
3rd Grade | 47 | 39.831 | 100.000 | |
Total | 118 | 100.000 |
95% CI | |||||
---|---|---|---|---|---|
Item | Mean | sd | V-Aiken | Lower Limit | Upper Limit |
1 | 4.458 | 0.212 | 0.865 | 0.707 | 0.944 |
2 | 4.375 | 0.270 | 0.844 | 0.682 | 0.931 |
3 | 4.042 | 0.257 | 0.760 | 0.590 | 0.875 |
4 | 4.000 | 0.306 | 0.750 | 0.579 | 0.867 |
5 | 4.208 | 0.212 | 0.802 | 0.635 | 0.904 |
6 | 3.958 | 0.212 | 0.740 | 0.568 | 0.860 |
7 | 4.167 | 0.156 | 0.792 | 0.624 | 0.897 |
8 | 4.333 | 0.358 | 0.833 | 0.670 | 0.925 |
9 | 4.083 | 0.358 | 0.771 | 0.601 | 0.882 |
10 | 4.375 | 0.270 | 0.844 | 0.682 | 0.931 |
11 | 4.292 | 0.412 | 0.823 | 0.659 | 0.918 |
12 | 4.292 | 0.059 | 0.823 | 0.659 | 0.918 |
13 | 4.042 | 0.059 | 0.760 | 0.590 | 0.875 |
14 | 3.875 | 0.354 | 0.719 | 0.546 | 0.844 |
15 | 4.250 | 0.270 | 0.813 | 0.647 | 0.911 |
16 | 4.042 | 0.312 | 0.760 | 0.590 | 0.875 |
17 | 4.208 | 0.059 | 0.802 | 0.635 | 0.904 |
18 | 3.958 | 0.059 | 0.740 | 0.568 | 0.860 |
19 | 4.125 | 0.270 | 0.781 | 0.612 | 0.890 |
20 | 4.125 | 0.354 | 0.781 | 0.612 | 0.890 |
21 | 4.333 | 0.295 | 0.833 | 0.670 | 0.925 |
22 | 4.208 | 0.059 | 0.802 | 0.635 | 0.904 |
23 | 4.208 | 0.312 | 0.802 | 0.635 | 0.904 |
24 | 4.208 | 0.425 | 0.802 | 0.635 | 0.904 |
25 | 3.958 | 0.156 | 0.740 | 0.568 | 0.860 |
26 | 4.292 | 0.295 | 0.823 | 0.659 | 0.918 |
27 | 4.167 | 0.358 | 0.792 | 0.624 | 0.897 |
28 | 4.000 | 0.177 | 0.750 | 0.579 | 0.867 |
29 | 3.792 | 0.156 | 0.698 | 0.525 | 0.829 |
30 | 4.083 | 0.156 | 0.771 | 0.601 | 0.882 |
31 | 4.042 | 0.236 | 0.760 | 0.590 | 0.875 |
32 | 4.042 | 0.412 | 0.760 | 0.590 | 0.875 |
33 | 4.208 | 0.412 | 0.802 | 0.635 | 0.904 |
34 | 4.167 | 0.257 | 0.792 | 0.624 | 0.897 |
35 | 4.125 | 0.306 | 0.781 | 0.612 | 0.890 |
36 | 4.333 | 0.257 | 0.833 | 0.670 | 0.925 |
37 | 4.250 | 0.204 | 0.813 | 0.647 | 0.911 |
38 | 3.958 | 0.460 | 0.740 | 0.568 | 0.860 |
39 | 4.333 | 0.358 | 0.833 | 0.670 | 0.925 |
40 | 4.125 | 0.204 | 0.781 | 0.612 | 0.890 |
N | Min. | Max. | Mean | sd | Variance |
---|---|---|---|---|---|
40 | 1 | 33 | 4.151 | 0.49 | 0.24 |
Estimate | KR-20 | Mean | sd |
---|---|---|---|
Point estimate | |||
95% CI lower bound | |||
95% CI upper bound |
Classification by Item | Difficulty Index | Expected Percentage Distribution | Real Percentage Distribution |
---|---|---|---|
Easy questions | 0.91–1 | 5% | 5% |
Moderately easy questions | 0.81–0.90 | 20% | 25% |
Medium-difficulty questions | 0.51–0.80 | 50% | 37.5% |
Moderately hard questions | 0.40–0.50 | 20% | 20% |
Difficult questions | 0–0.39 | 20% | 12.5% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Aristizábal Zapata, J.H.; Gutiérrez Posada, J.E.; Diago, P.D. Design and Validation of a Computational Thinking Test for Children in the First Grades of Elementary Education. Multimodal Technol. Interact. 2024, 8, 39. https://doi.org/10.3390/mti8050039
Aristizábal Zapata JH, Gutiérrez Posada JE, Diago PD. Design and Validation of a Computational Thinking Test for Children in the First Grades of Elementary Education. Multimodal Technologies and Interaction. 2024; 8(5):39. https://doi.org/10.3390/mti8050039
Chicago/Turabian StyleAristizábal Zapata, Jorge Hernán, Julián Esteban Gutiérrez Posada, and Pascual D. Diago. 2024. "Design and Validation of a Computational Thinking Test for Children in the First Grades of Elementary Education" Multimodal Technologies and Interaction 8, no. 5: 39. https://doi.org/10.3390/mti8050039
APA StyleAristizábal Zapata, J. H., Gutiérrez Posada, J. E., & Diago, P. D. (2024). Design and Validation of a Computational Thinking Test for Children in the First Grades of Elementary Education. Multimodal Technologies and Interaction, 8(5), 39. https://doi.org/10.3390/mti8050039