Assessment of the Validity and Reliability of Reaction Speed Measurements Using the Rezzil Player Application in Virtual Reality
Abstract
1. Introduction
2. Materials and Methods
- -
- MSR—mean square for rows (subjects);
- -
- MSE—mean square error;
- -
- MSC—mean square for columns (trials);
- -
- n—number of subjects;
- -
- k—number of repeated measurements per subject.
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
VR | Virtual reality |
PA | Physical activity |
RS | Reaction speed |
RE | Real environment |
rS | Spearman’s rank correlation coefficient |
p | p-value |
ICC | Intraclass correlation coefficient |
RT | Reaction time |
MT | Movement time |
MSR | Mean square for rows |
MSE | Mean square error |
MSC | Mean square for columns |
n | Number of subjects |
k | Number of repeated measurements per subject |
Cl | Confidence interval |
F | F-test value |
rrb | Rank-biserial correlation coefficient |
References
- Cotterill, S.T. Virtual Reality and Sport Psychology: Implications for Applied Practice. Case Stud. Sport Exerc. Psychol. 2018, 2, 21–22. [Google Scholar] [CrossRef]
- Grosprêtre, S.; Marcel-Millet, P.; Eon, P.; Wollesen, B. How Exergaming with Virtual Reality Enhances Specific Cognitive and Visuo-Motor Abilities: An Explorative Study. Cogn. Sci. 2023, 47, e13278. [Google Scholar] [CrossRef]
- Harris, D.J.; Buckingham, G.; Wilson, M.R.; Brookes, J.; Mushtaq, F.; Mon-Williams, M.; Vine, S.J. The Effect of a Virtual Reality Environment on Gaze Behaviour and Motor Skill Learning. Psychol. Sport Exerc. 2020, 50, 101721. [Google Scholar] [CrossRef]
- Schack, T.; Hagan, J.E., Jr.; Essig, K. Coaching with Virtual Reality, Intelligent Glasses and Neurofeedback: The Potential Impact of New Technologies. Int. J. Sport Psychol. 2020, 51, 667–688. [Google Scholar]
- Yu, C.; Wang, C.; Xie, Q.; Wang, C. Effect of Virtual Reality Technology on Attention and Motor Ability in Children with Attention-Deficit/Hyperactivity Disorder: Systematic Review and Meta-Analysis. JMIR Serious Games 2024, 12, e56918. [Google Scholar] [CrossRef] [PubMed]
- Levac, D.E.; Huber, M.E.; Sternad, D. Learning and Transfer of Complex Motor Skills in Virtual Reality: A Perspective Review. J. Neuroeng. Rehabil. 2019, 16, 121. [Google Scholar] [CrossRef]
- Pastel, S.; Petri, K.; Chen, C.H.; Wiegand Cáceres, A.M.; Stirnatis, M.; Nübel, C.; Schlotter, L.; Witte, K. Training in Virtual Reality Enables Learning of a Complex Sports Movement. Virtual Real. 2023, 27, 523–540. [Google Scholar] [CrossRef]
- Pastel, S.; Klenk, F.; Bürger, D.; Heilmann, F.; Witte, K. Reliability and Validity of a Self-Developed Virtual Reality-Based Test Battery for Assessing Motor Skills in Sports Performance. Sci. Rep. 2025, 15, 6256. [Google Scholar] [CrossRef]
- Witte, K.; Bürger, D.; Pastel, S. Sports Training in Virtual Reality with a Focus on Visual Perception: A Systematic Review. Front. Sports Act. Living 2025, 7, 1530948. [Google Scholar] [CrossRef]
- Gokeler, A.; Bisschop, M.; Myer, G.D.; Benjaminse, A.; Dijkstra, P.U.; van Keeken, H.G.; van Raay, J.J.A.M.; Burgerhof, J.G.M.; Otten, E. Immersive Virtual Reality Improves Movement Patterns in Patients after ACL Reconstruction: Implications for Enhanced Criteria-Based Return-to-Sport Rehabilitation. Knee Surg. Sports Traumatol. Arthrosc. 2016, 24, 2280–2286. [Google Scholar] [CrossRef]
- Lal, H.; Mohanta, S.; Kumar, J.; Patralekh, M.K.; Lall, L.; Katariya, H.; Arya, R.K. Telemedicine-Rehabilitation and Virtual Reality in Orthopaedics and Sports Medicine. Indian J. Orthop. 2023, 57, 7–19. [Google Scholar] [CrossRef]
- Nambi, G.; Abdelbasset, W.K.; Elsayed, S.H.; Alrawaili, S.M.; Abodonya, A.M.; Saleh, A.K.; Elnegamy, T.E. Comparative Effects of Isokinetic Training and Virtual Reality Training on Sports Performances in University Football Players with Chronic Low Back Pain-Randomized Controlled Study. Evid. Based Complement. Alternat. Med. 2020, 2020, 2981273. [Google Scholar] [CrossRef] [PubMed]
- Yan, H. Construction and Application of Virtual Reality-Based Sports Rehabilitation Training Program. Occup. Ther. Int. 2022, 2022, 4364360. [Google Scholar] [CrossRef] [PubMed]
- Richlan, F.; Weiß, M.; Kastner, P.; Braid, J. Virtual Training, Real Effects: A Narrative Review on Sports Performance Enhancement through Interventions in Virtual Reality. Front. Psychol. 2023, 14, 1240790. [Google Scholar] [CrossRef]
- Polechoński, J.; Zwierzchowska, A.; Makioła, Ł.; Groffik, D.; Kostorz, K. Handheld Weights as an Effective and Comfortable Way To Increase Exercise Intensity of Physical Activity in Virtual Reality: Empirical Study. JMIR Serious Games 2022, 10, e39932. [Google Scholar] [CrossRef]
- Polechoński, J.; Szczechowicz, B.; Ryśnik, J.; Tomik, R. Recreational Cycling Provides Greater Satisfaction and Flow in an Immersive Virtual Environment than in Real Life. BMC Sports Sci. Med. Rehabil. 2024, 16, 31. [Google Scholar] [CrossRef] [PubMed]
- Rubio-Arias, J.Á.; Verdejo-Herrero, A.; Andreu-Caravaca, L.; Ramos-Campo, D.J. Impact of Immersive Virtual Reality Games or Traditional Physical Exercise on Cardiovascular and Autonomic Responses, Enjoyment and Sleep Quality: A Randomized Crossover Study. Virtual Real. 2024, 28, 64. [Google Scholar] [CrossRef]
- Zeng, N.; Pope, Z.; Gao, Z. Acute Effect of Virtual Reality Exercise Bike Games on College Students’ Physiological and Psychological Outcomes. Cyberpsychology Behav. Soc. Netw. 2017, 20, 453–457. [Google Scholar] [CrossRef]
- Langer, A.; Polechoński, J.; Polechoński, P.; Cholewa, J. Ruler Drop Method in Virtual Reality as an Accurate and Reliable Tool for Evaluation of Reaction Time of Mixed Martial Artists. Sustainability 2023, 15, 648. [Google Scholar] [CrossRef]
- Polechoński, J.; Langer, A.; Stastny, P.; Zak, M.; Zając-Gawlak, I.; Maszczyk, A. Does Virtual Reality Allow for a Reliable Assessment of Reaction Speed in Mixed Martial Arts Athletes? Balt. J. Health Phys. Act. 2024, 16, 3. [Google Scholar] [CrossRef]
- Polechoński, J.; Langer, A. Assessment of the Relevance and Reliability of Reaction Time Tests Performed in Immersive Virtual Reality by Mixed Martial Arts Fighters. Sensors 2022, 22, 4762. [Google Scholar] [CrossRef]
- Gierczuk, D.; Ljach, W. Evaluating the Coordination of Motor Abilities in Greco-Roman Wrestlers by Computer Testing. Hum. Mov. 2018, 13, 323–329. [Google Scholar] [CrossRef]
- Hülsdünker, T.; Ostermann, M.; Mierau, A. Standardised Computer-Based Reaction Tests Predict the Sport-Specific Visuomotor Speed and Performance of Young Elite Table Tennis Athletes. Int. J. Perform. Anal. Sport 2019, 19, 953–970. [Google Scholar] [CrossRef]
- Matczak, D.; Wieczorek, M. Effective Motor Learning and Coordination Abilities of Girls and Boys Aged 9–10. J. Educ. Health Sport 2023, 18, 49–61. [Google Scholar] [CrossRef]
- Valayi, F.; Bagherli, J.; Taheri, M. The Impact of Performance Fatigue on Visual Perception, Concentration, and Reaction Time in Professional Female Volleyball Players. Int. J. Sport Stud. Health 2024, 7, 47–54. [Google Scholar] [CrossRef]
- Ángel Latorre-Roman, P.; Robles-Fuentes, A.; García-Pinillos, F.; Salas-Sánchez, J. Reaction Times of Preschool Children on the Ruler Drop Test: A Cross-Sectional Study with Reference Values. Percept. Mot. Skills 2018, 125, 866–878. [Google Scholar] [CrossRef]
- Machowska-Krupa, W.; Cych, P. Differences in Coordination Motor Abilities between Orienteers and Athletics Runners. Int. J. Environ. Res. Public Health 2023, 20, 2643. [Google Scholar] [CrossRef] [PubMed]
- Olajos, A.A.; Takeda, M.; Dobay, B.; Radak, Z.; Koltai, E. Freestyle Gymnastic Exercise Can Be Used to Assess Complex Coordination in a Variety of Sports. J. Exerc. Sci. Fit. 2020, 18, 47–56. [Google Scholar] [CrossRef] [PubMed]
- Broodryk, A.; Skala, F.; Broodryk, R. Light-Based Reaction Speed Does Not Predict Field-Based Reactive Agility in Soccer Players. J. Funct. Morphol. Kinesiol. 2025, 10, 239. [Google Scholar] [CrossRef]
- Mori, S.; Ohtani, Y.; Imanaka, K. Reaction Times and Anticipatory Skills of Karate Athletes. Hum. Mov. Sci. 2002, 21, 213–230. [Google Scholar] [CrossRef]
- Supriadi, A.; Mesnan; Azandi, F.; Destya, M.R.; Farooque, S.M. Enhancing Goalkeeper Reaction Speed in Football: The Impact of Ball Launcher Training in Physical Training Methods. J. Sport Area 2023, 8, 447–456. [Google Scholar] [CrossRef]
- Zwierko, M.; Jedziniak, W.; Popowczak, M.; Rokita, A. Effects of Six-Week Stroboscopic Training Program on Visuomotor Reaction Speed in Goal-Directed Movements in Young Volleyball Players: A Study Focusing on Agility Performance. BMC Sports Sci. Med. Rehabil. 2024, 16, 59. [Google Scholar] [CrossRef]
- Schmidt, R.A. Motor Learning and Performance; Human Kinetics Publishers: Champaign, IL, USA, 1991. [Google Scholar]
- Balkó, Š.; Borysiuk, Z.; Simonek, J. The Influence of Different Performance Level of Fencers on Simple and Choice Reaction Time. Rev. Bras. Cineantropometria E Desempenho Hum. 2016, 18, 391–400. [Google Scholar] [CrossRef]
- Colman, A.M. Dictionary of Psychology; Oxford University Press: Oxford, UK, 2015; ISBN 978-0-19-965768-1. [Google Scholar]
- Harmenberg, J.; Ceci, R.; Barvestad, P.; Hjerpe, K.; Nyström, J. Comparison of Different Tests of Fencing Performance. Int. J. Sports Med. 2008, 12, 573–576. [Google Scholar] [CrossRef]
- Heirani, A.; Vazinitaher, A.; Soori, Z.; Rahmani, M. Relationship between Choice Reaction Time and Expertise in Team and Individual Sports: A Gender Differences Approach. Aust. J. Basic Appl. Sci. 2012, 6, 344–348. [Google Scholar]
- Gignac, G.E.; Vernon, P.A. Reaction Time and the Dominant and Non-Dominant Hands: An Extension of Hick’s Law. Pers. Individ. Differ. 2004, 36, 733–739. [Google Scholar] [CrossRef]
- Shelton, J.; Kumar, G.P. Comparison between Auditory and Visual Simple Reaction Times. Neurosci. Med. 2010, 1, 30–32. [Google Scholar] [CrossRef]
- Badau, D.; Baydil, B.; Badau, A. Differences among Three Measures of Reaction Time Based on Hand Laterality in Individual Sports. Sports 2018, 6, 45. [Google Scholar] [CrossRef] [PubMed]
- Polechoński, J.; Pilch, J.; Langer, A.; Prończuk, M.; Markowski, J.; Maszczyk, A. Assessment of the Reliability and Validity of Simple and Complex Reaction Speed Tests in Mixed Martial Arts Athletes Using the BlazePod System. Balt. J. Health Phys. Act. 2025, 17, 1–12. [Google Scholar] [CrossRef]
- Chen, Y.-C.; Liang, H.-W. Application of a Virtual Reality-Based Measurement of Simple Reaction Time in Adults: A Psychometric Evaluation. Virtual Real. 2025, 29, 108. [Google Scholar] [CrossRef]
- Chua, L.-K.; Chung, Y.-C.; Bellard, D.; Swan, L.; Gobreial, N.; Romano, A.; Glatt, R.; Bonaguidi, M.A.; Lee, D.J.; Jin, Y.; et al. Gamified Dual-Task Training for Individuals with Parkinson Disease: An Exploratory Study on Feasibility, Safety, and Efficacy. Int. J. Environ. Res. Public. Health 2021, 18, 12384. [Google Scholar] [CrossRef]
- Jhaveri, S.; Romanyk, M.; Glatt, R.; Satchidanand, N. SMARTfit Dual-Task Exercise Improves Cognition and Physical Function in Older Adults with Mild Cognitive Impairment: Results of a Community-Based Pilot Study. J. Aging Phys. Act. 2023, 31, 621–632. [Google Scholar] [CrossRef]
- Dancey, C.; Reidy, J. Statistics Without Maths for Psychology, 3rd ed.; Pearson Prentice Hall: Harlow, UK, 2004; ISBN 978-0-13-124941-7. [Google Scholar]
- Nunnally, J.C.; Bernstein, I.H. Psychometric Theory, 3rd ed.; McGraw-Hill: New York, NY, USA, 1994. [Google Scholar]
- Polechoński, J.; Langer, A.; Akbaş, A.; Zwierzchowska, A. Application of Immersive Virtual Reality in the Training of Wheelchair Boxers: Evaluation of Exercise Intensity and Users Experience Additional Load– a Pilot Exploratory Study. BMC Sports Sci. Med. Rehabil. 2024, 16, 80. [Google Scholar] [CrossRef]
- Polechoński, J.; Przepiórzyński, A.; Polechoński, P.; Tomik, R. Effect of Elastic Resistance on Exercise Intensity and User Satisfaction While Playing the Active Video Game BoxVR in Immersive Virtual Reality: Empirical Study. JMIR Serious Games 2024, 12, e58411. [Google Scholar] [CrossRef]
- Neumann, D.L.; Moffitt, R.L.; Thomas, P.R.; Loveday, K.; Watling, D.P.; Lombard, C.L.; Antonova, S.; Tremeer, M.A. A Systematic Review of the Application of Interactive Virtual Reality to Sport. Virtual Real. 2018, 22, 183–198. [Google Scholar] [CrossRef]
- Putranto, J.S.; Heriyanto, J.; Kenny; Achmad, S.; Kurniawan, A. Implementation of Virtual Reality Technology for Sports Education and Training: Systematic Literature Review. Procedia Comput. Sci. 2023, 216, 293–300. [Google Scholar] [CrossRef]
- Rutkowski, S.; Jakóbczyk, A.; Abrahamek, K.; Nowakowska, A.; Nowak, M.; Liska, D.; Batalik, L.; Colombo, V.; Sacco, M. Training Using a Commercial Immersive Virtual Reality System on Hand–Eye Coordination and Reaction Time in Students: A Randomized Controlled Trial. Virtual Real. 2024, 28, 7. [Google Scholar] [CrossRef]
- Witte, K.; Droste, M.; Ritter, Y.; Emmermacher, P.; Masik, S.; Bürger, D.; Petri, K. Sports Training in Virtual Reality to Improve Response Behavior in Karate Kumite with Transfer to Real World. Front. Virtual Real. 2022, 3, 903021. [Google Scholar] [CrossRef]
- Zhang, Y.; Tsai, S.-B. Application of Adaptive Virtual Reality with AI-Enabled Techniques in Modern Sports Training. Mob. Inf. Syst. 2021, 2021, 6067678. [Google Scholar] [CrossRef]
- Bland, J.M.; Altman, D.G. Measuring Agreement in Method Comparison Studies. Stat. Methods Med. Res. 1999, 8, 135–160. [Google Scholar] [CrossRef]
- Koo, T.K.; Li, M.Y. A Guideline of Selecting and Reporting Intraclass Correlation Coefficients for Reliability Research. J. Chiropr. Med. 2016, 15, 155–163. [Google Scholar] [CrossRef]
- Furr, R.M. Psychometrics: An Introduction; SAGE Publications: Thousand Oaks, CA, USA, 2021; ISBN 978-1-07-182408-5. [Google Scholar]
- Kelkkanen, V.; Lindero, D.; Fiedler, M.; Zepernick, H.-J. Hand-Controller Latency and Aiming Accuracy in 6-DOF VR. Adv. Hum.-Comput. Interact. 2023, 2023, 1563506. [Google Scholar] [CrossRef]
- Stauffert, J.-P.; Niebling, F.; Latoschik, M.E. Simultaneous Run-Time Measurement of Motion-to-Photon Latency and Latency Jitter. In Proceedings of the 2020 IEEE Conference on Virtual Reality and 3D User Interfaces (VR), Atlanta, GA, USA, 22–26 March 2020; pp. 636–644. [Google Scholar]
- Warburton, M.; Mon-Williams, M.; Mushtaq, F.; Morehead, J.R. Measuring Motion-to-Photon Latency for Sensorimotor Experiments with Virtual Reality Systems. Behav. Res. Methods 2023, 55, 3658–3678. [Google Scholar] [CrossRef] [PubMed]
- Subramanian, S.K.; Levin, M.F. Viewing Medium Affects Arm Motor Performance in 3D Virtual Environments. J. Neuroeng. Rehabil. 2011, 8, 36. [Google Scholar] [CrossRef] [PubMed]
- Brunnström, K.; Dima, E.; Qureshi, T.; Johanson, M.; Andersson, M.; Sjöström, M. Latency Impact on Quality of Experience in a Virtual Reality Simulator for Remote Control of Machines. Signal Process. Image Commun. 2020, 89, 116005. [Google Scholar] [CrossRef]
- Kourtesis, P.; Linnell, J.; Amir, R.; Argelaguet, F.; MacPherson, S.E. Cybersickness in Virtual Reality Questionnaire (CSQ-VR): A Validation and Comparison against SSQ and VRSQ. Virtual Worlds 2023, 2, 16–35. [Google Scholar] [CrossRef]
Parameter | ICC (95% CI) | F | p |
---|---|---|---|
Reaction Speed | 0.844 (0.758–0.906) | 17.120 | 0.001 |
Hits per Minute | 0.851 (0.768–0.910) | 18.036 | 0.001 |
Parameter | ICC (95% CI) | F | p |
---|---|---|---|
Reaction Speed | 0.878 (0.809–0.928) | 23.373 | 0.001 |
Hits per Minute | 0.881 (0.813–0.929) | 22.956 | 0.001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Polechoński, J.; Horbacz, A. Assessment of the Validity and Reliability of Reaction Speed Measurements Using the Rezzil Player Application in Virtual Reality. Multimodal Technol. Interact. 2025, 9, 91. https://doi.org/10.3390/mti9090091
Polechoński J, Horbacz A. Assessment of the Validity and Reliability of Reaction Speed Measurements Using the Rezzil Player Application in Virtual Reality. Multimodal Technologies and Interaction. 2025; 9(9):91. https://doi.org/10.3390/mti9090091
Chicago/Turabian StylePolechoński, Jacek, and Agata Horbacz. 2025. "Assessment of the Validity and Reliability of Reaction Speed Measurements Using the Rezzil Player Application in Virtual Reality" Multimodal Technologies and Interaction 9, no. 9: 91. https://doi.org/10.3390/mti9090091
APA StylePolechoński, J., & Horbacz, A. (2025). Assessment of the Validity and Reliability of Reaction Speed Measurements Using the Rezzil Player Application in Virtual Reality. Multimodal Technologies and Interaction, 9(9), 91. https://doi.org/10.3390/mti9090091