Antimicrobial Resistance Associated with Mass Gatherings: A Systematic Review
Abstract
:1. Introduction
2. Materials and Methods
2.1. Search Strategy
2.2. Inclusion and Exclusion Criteria
2.3. Screening, Abstraction, and Quality Assessment
3. Results
3.1. General Description of Included Studies and Quality Assessment
3.2. Escherichia coli
3.3. Klebsiella pneumoniae
3.4. Organisms Carrying ESBL Genes
3.5. Staphylococcus aureus
3.6. Streptococcus Species
3.7. Salmonella and Other Bacteria
3.8. Tuberculosis
3.9. Influenza
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Ho, C.S.; Wong, C.T.H.; Aung, T.T.; Lakshminarayanan, R.; Mehta, J.S.; Rauz, S.; McNally, A.; Kintses, B.; Peacock, S.J.; de la Fuente-Nunez, C.; et al. Antimicrobial resistance: A concise update. Lancet Microbe 2024, 100947. [Google Scholar] [CrossRef] [PubMed]
- Laxminarayan, R.; Duse, A.; Wattal, C.; Zaidi, A.K.; Wertheim, H.F.; Sumpradit, N.; Vlieghe, E.; Hara, G.L.; Gould, I.M.; Goossens, H.; et al. Antibiotic resistance-the need for global solutions. Lancet Infect. Dis. 2013, 13, 1057–1098. [Google Scholar] [CrossRef]
- Bokhary, H.; Pangesti, K.N.A.; Rashid, H.; Abd El Ghany, M.; Hill-Cawthorne, G.A. Travel-Related Antimicrobial Resistance: A Systematic Review. Trop. Med. Infect. Dis. 2021, 6, 11. [Google Scholar] [CrossRef]
- Alreeme, S.; Bokhary, H.; Craig, A.T. Transmission of Antimicrobial Resistant Bacteria at the Hajj: A Scoping Review. Int. J. Environ. Res. Public Health 2022, 19, 14134. [Google Scholar] [CrossRef]
- de Smalen, A.W.; Ghorab, H.; Abd El Ghany, M.; Hill-Cawthorne, G.A. Refugees and antimicrobial resistance: A systematic review. Travel. Med. Infect. Dis. 2017, 15, 23–28. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. Emergencies: WHO’s Role in Mass Gatherings. Available online: https://www.who.int/news-room/questions-and-answers/item/what-is-who-s-role-in-mass-gatherings#:~:text=A%20mass%20gathering%20is%20a%20planned%20or%20spontaneous,of%20the%20community%20or%20country%20hosting%20the%20event (accessed on 4 December 2024).
- Yezli, S.; Alotaibi, B. Mass gatherings and mass gatherings health. Saudi Med. J. 2016, 37, 729–730. [Google Scholar] [CrossRef] [PubMed]
- Zumla, A.; Azhar, E.; Hui, D.; Shafi, S.; Petersen, E.; Memish, Z. Global spread of antibiotic-resistant bacteria and mass-gathering religious events. Lancet Infect. Dis. 2018, 18, 488–490. [Google Scholar] [CrossRef]
- Fistarol, G.O.; Coutinho, F.H.; Moreira, A.P.; Venas, T.; Canovas, A.; de Paula, S.E., Jr.; Coutinho, R.; de Moura, R.L.; Valentin, J.L.; Tenenbaum, D.R.; et al. Environmental and Sanitary Conditions of Guanabara Bay, Rio de Janeiro. Front. Microbiol. 2015, 6, 1232. [Google Scholar] [CrossRef]
- Jani, K.; Dhotre, D.; Bandal, J.; Shouche, Y.; Suryavanshi, M.; Rale, V.; Sharma, A. World’s Largest Mass Bathing Event Influences the Bacterial Communities of Godavari, a Holy River of India. Microb. Ecol. 2018, 76, 706–718. [Google Scholar] [CrossRef] [PubMed]
- Leangapichart, T.; Rolain, J.-M.; Memish, Z.A.; Al-Tawfiq, J.A.; Gautret, P. Emergence of drug resistant bacteria at the Hajj: A systematic review. Travel. Med. Infect. Dis. 2017, 18, 3–17. [Google Scholar] [CrossRef] [PubMed]
- Haseeb, A.; Saleem, Z.; Faidah, H.S.; Saati, A.A.; AlQarni, A.; Iqbal, M.S.; Alghamdi, S.; Elrggal, M.E.; AlGethamy, M.; Radwan, R.M.; et al. Threat of Antimicrobial Resistance among Pilgrims with Infectious Diseases during Hajj: Lessons Learnt from COVID-19 Pandemic. Antibiotics 2023, 2, 1299. [Google Scholar] [CrossRef]
- National Institute for Health Research. PROSPERO: International Prospective Register of Systematic Reviews. Available online: https://www.crd.york.ac.uk/PROSPERO/display_record.php?RecordID=145118 (accessed on 4 December 2024).
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. BMJ 2021, 372, n71. [Google Scholar] [CrossRef]
- The Ottawa Hospital Research Institute. The Newcastle-Ottawa Scale (NOS) for Assessing the Quality of Nonrandomised Studies in Meta-Analyses. Available online: http://www.ohri.ca/programs/clinical_epidemiology/oxford.asp (accessed on 20 October 2024).
- Ziyaeyan, M.; Alborzi, A.; Jamalidoust, M.; Moeini, M.; Pouladfar, G.R.; Pourabbas, B.; Namayandeh, M.; Moghadami, M.; Bagheri-Lankarani, K.; Mokhtari-Azad, T. Pandemic 2009 influenza A (H1N1) infection among 2009 Hajj Pilgrims from Southern Iran: A real-time RT-PCR-based study. Influenza Other Respir. Viruses 2012, 6, e80–e84. [Google Scholar] [CrossRef] [PubMed]
- Abd El Ghany, M.; Alsomali, M.; Almasri, M.; Padron Regalado, E.; Naeem, R.; Tukestani, A.; Asiri, A.; Hill-Cawthorne, G.A.; Pain, A.; Memish, Z.A. Enteric Infections Circulating during Hajj Seasons, 2011–2013. Emerg. Infect. Dis. 2017, 23, 10. [Google Scholar] [CrossRef]
- Alyamani, E.J.; Khiyami, A.M.; Booq, R.Y.; Majrashi, M.A.; Bahwerth, F.S.; Rechkina, E. The occurrence of ESBL-producing Escherichia coli carrying aminoglycoside resistance genes in urinary tract infections in Saudi Arabia. Ann. Clin. Microbiol. Antimicrob. 2017, 16, 1. [Google Scholar] [CrossRef] [PubMed]
- Alzeer, A.; Mashlah, A.; Fakin, N.; Al-Sugair, N.; Al-Hediathy, M.; Al-Majed, S.; Jamjoom, G. Tuberculosis is the commonest cause of pneumonia requiring hospitalisation during Hajj (prilgrimage to Makkah). J. Infect. 1998, 36, 303–306. [Google Scholar] [CrossRef] [PubMed]
- Ashgar, S.S.; El-Said, H.M.; Johargy, A.; Momenah, A.M.; Asghar, A.; Sorour, A.E.; Alherabi, A.; Mashat, B.H.; Aalam, A. Prevalence of nasal carriage of Neisseria meningitidis among Umrah visitor and pilgrims during umrah and Hajj season. Glo Adv. Res. J. Microbiol. 2013, 2, 141–149. [Google Scholar]
- Baharoon, S.; Al-Jahdali, H.; Al Hashmi, J.; Memish, Z.A.; Ahmed, Q.A. Severe sepsis and septic shock at the Hajj: Etiologies and outcomes. Travel. Med. Infect. Dis. 2009, 7, 247–252. [Google Scholar] [CrossRef] [PubMed]
- Zumla, A.; Memish, Z.A. Risk of antibiotic resistant meningococcal infections in Hajj pilgrims. BMJ Clin. Res. Ed. 2019, 366, 5260. [Google Scholar] [CrossRef]
- Bukhari, S.Z.; Hussain, W.M.; Fatani, M.I.; Ashshi, A.M. Multi-drug resistant Ewingella americana. Saudi Med. J. 2008, 29, 1051–1053. [Google Scholar] [PubMed]
- Crampin, M.; Willshaw, G.; Hancock, R.; Djuretic, T.; Elstob, C.; Rouse, A.; Cheasty, T.; Stuart, J. Outbreak of Escherichia coli O157 infection associated with a music festival. Eur. J. Clin. Microbiol. Infect. Dis. 1999, 18, 286–288. [Google Scholar] [PubMed]
- Fatani, M.I.; Bukhari, S.Z.; Al-Afif, K.A.; Karima, T.M.; Abdulghani, M.R.; Al-Kaltham, M.I. Pyoderma among Hajj pilgrims in Makkah. Saudi Med. J. 2002, 23, 782–785. [Google Scholar] [PubMed]
- Francois Watkins, L.K.; Winstead, A.; Appiah, G.D.; Friedman, C.R.; Medalla, F.; Hughes, M.J.; Birhane, M.G.; Schneider, Z.D.; Marcenac, P.; Hanna, S.S.; et al. Update on Extensively Drug-Resistant Salmonella Serotype Typhi Infections Among Travelers to or from Pakistan and Report of Ceftriaxone-Resistant Salmonella Serotype Typhi Infections Among Travelers to Iraq—United States, 2018–2019. MMWR Morb. Mortal Wkly. Rep. 2020, 69, 618–622. [Google Scholar] [CrossRef] [PubMed]
- Ganaie, F.; Nagaraj, G.; Govindan, V.; Basha, R.; Hussain, M.; Ashraf, N.; Ahmed, S.; Ravi Kumar, K.L. Impact of Hajj on the S. pneumoniae carriage among Indian pilgrims during 2016—A longitudinal molecular surveillance study. Travel Med. Infect. Dis. 2018, 23, 64–71. [Google Scholar] [CrossRef] [PubMed]
- Godbole, G.; McCann, N.; Jones, S.M.; Dallman, T.J.; Brown, M. Ceftriaxone-resistant Salmonella Typhi in a traveller returning from a mass gathering in Iraq. Lancet Infect. Dis. 2019, 19, 467. [Google Scholar] [CrossRef] [PubMed]
- Gorla, M.C.; de Lemos, A.P.; Quaresma, M.; Vilasboas, R.; Marques, O.; de Sa, M.U.; Ogassavara, C.T.; Brandileone, M.C.; Harrison, L.H.; Dias, J. Phenotypic and molecular characterization of serogroup C Neisseria meningitidis associated with an outbreak in Bahia, Brazil. Enferm. Infecc. Microbiol. Clin. 2012, 30, 56–59. [Google Scholar] [CrossRef] [PubMed]
- Haseeb, A.; Faidah, H.S.; Bakhsh, A.R.; Malki, W.H.A.; Elrggal, M.E.; Saleem, F.; Rahman, S.U.; Khan, T.M.; Hassali, M.A. Antimicrobial resistance among pilgrims: A retrospective study from two hospitals in Makkah, Saudi Arabia. Int. J. Infect. Dis. 2016, 47, 92–94. [Google Scholar] [CrossRef] [PubMed]
- Johargy, A.; Sorour, A.E.; Momenah, A.M.; Asghar, A.; Alherabi, A.; Elsayed, H. Prevalence of Nasal Carriage of Staphylococcus aureus among Umrah visitors and Pilgrims During Umrah and Hajj Seasons. Egypt. J. Med. Microbiol. 2011, 20, 162–166. [Google Scholar]
- Leangapichart, T.; Dia, N.M.; Olaitan, A.O.; Gautret, P.; Brouqui, P.; Rolain, J.M. Acquisition of extended-spectrum beta-lactamases by Escherichia coli and Klebsiella pneumoniae in gut microbiota of pilgrims during the hajj pilgrimage of 2013. Antimicrob. Agents Chemother. 2016, 60, 3222–3226. [Google Scholar] [CrossRef] [PubMed]
- Leangapichart, T.; Gautret, P.; Griffiths, K.; Belhouchat, K.; Memish, Z.; Raoult, D.; Rolain, J.M. Acquisition of a high diversity of bacteria during the Hajj pilgrimage, including Acinetobacter baumannii with bla OXA-72 and Escherichia coli with bla NDM-5 carbapenemase genes. Antimicrob. Agents Chemother. 2016, 60, 5942–5948. [Google Scholar] [CrossRef]
- Leangapichart, T.; Gautret, P.; Brouqui, P.; Mimish, Z.; Raoult, D.; Rolain, J.M. Acquisition of mcr-1 plasmid-mediated colistin resistance in Escherichia coli and Klebsiella pneumoniae during Hajj 2013 and 2014. Antimicrob. Agents Chemother. 2016, 60, 6998–6999. [Google Scholar] [CrossRef]
- Leangapichart, T.; Tissot-Dupont, H.; Raoult, D.; Memish, Z.A.; Rolain, J.M.; Gautret, P. Risk factors for acquisition of CTX-M genes in pilgrims during Hajj 2013 and 2014. J. Antimicrob. Chemother. 2017, 72, 2627–2635. [Google Scholar] [CrossRef] [PubMed]
- Marglani, O.A.; Alherabi, A.Z.; Herzallah, I.R.; Saati, F.A.; Tantawy, E.A.; Alandejani, T.A.; Faidah, H.S.; Bawazeer, N.A.; Marghalani, A.A.; Madani, T.A. Acute rhinosinusitis during Hajj season 2014: Prevalence of bacterial infection and patterns of antimicrobial susceptibility. Travel Med. Infect. Dis. 2016, 14, 583–587. [Google Scholar] [CrossRef] [PubMed]
- Memish, Z.A.; Assiri, A.; Almasri, M.; Alhakeem, R.F.; Turkestani, A.; Al Rabeeah, A.A.; Akkad, N.; Yezli, S.; Klugman, K.P.; O’Brien, K.L.; et al. Impact of the hajj on pneumococcal transmission. Clin. Microbiol. Infect. 2015, 21, e11–e18. [Google Scholar] [CrossRef] [PubMed]
- Memish, Z.A.; Balkhy, H.H.; Almuneef, M.A.; Al-Haj-Hussein, B.T.; Bukhari, A.I.; Osoba, A.O. Carriage of Staphylococcus aureus among Hajj pilgrims. Saudi Med. J. 2006, 27, 1367–1372. [Google Scholar]
- Memish, Z.A.; Al-Tawfiq, J.A.; Almasri, M.; Akkad, N.; Yezli, S.; Turkestani, A.; Van Der Linden, M.; Assiri, A. A cohort study of the impact and acquisition of naspharyngeal carriage of Streptococcus pneumoniae during the Hajj. Travel. Med. Infect. Dis. 2016, 14, 242–247. [Google Scholar] [CrossRef] [PubMed]
- Olaitan, A.O.; Dia, N.M.; Gautret, P.; Benkouiten, S.; Belhouchat, K.; Drali, T.; Parola, P.; Brouqui, P.; Memish, Z.; Raoult, D.; et al. Acquisition of extended-spectrum cephalosporin- and colistin-resistant Salmonella enterica subsp. enterica serotype Newport by pilgrims during Hajj. Int. J. Antimicrob. Agents 2015, 45, 600–604. [Google Scholar] [CrossRef]
- Osman, K.M.; Kappell, A.D.; Elhofy, F.; Orabi, A.; Mubarak, A.S.; Dawoud, T.M.; Moussa, I.M.; Hessain, A.M. Urinary tract infection attributed to Escherichia coli isolated from participants attending an unorganized gathering. Future Microbiol. 2018, 13, 745–756. [Google Scholar] [CrossRef] [PubMed]
- Shirah, B.H.; Zafar, S.H.; Alferaidi, O.A.; Sabir, A.M.M. Mass gathering medicine (Hajj Pilgrimage in Saudi Arabia): The clinical pattern of pneumonia among pilgrims during Hajj. J. Infect. Public Health 2017, 10, 277–286. [Google Scholar] [CrossRef] [PubMed]
- Ng, P.P.; Taha, M. Tetracycline resistant Vibrio cholerae in pilgrims returning from Mecca. Med. J. Malays. 1994, 49, 195. [Google Scholar]
- Wharton, M.; Spiegel, R.A.; Horan, J.M.; Tauxe, R.V.; Wells, J.G.; Barg, N.; Herndon, J.; Meriwether, R.A.; MacCormack, J.N.; Levine, R.H. A large outbreak of antibiotic-resistant shigellosis at a mass gathering. J. Infect. Dis. 1990, 162, 1324–1328. [Google Scholar] [CrossRef]
- Yousuf, M.; Nadeem, A. Meningococcal infection among pilgrims visiting Madinah Al-Munawarah despite prior A-C vaccination. J. Pak. Med. Assoc. 2000, 50, 184–186. [Google Scholar] [PubMed]
- Yezli, S.; Zumla, A.; Yassin, Y.; Al-Shangiti, A.M.; Mohamed, G.; Turkistani, A.M.; Alotaibi, B. Undiagnosed active pulmonary tuberculosis among pilgrims during the 2015 Hajj mass gathering: A prospective cross-sectional study. Am. J. Trop. Med. Hyg. 2017, 97, 1304–1309. [Google Scholar] [CrossRef]
- Al-Zahrani, I.A.; Azhar, E.I.; Jiman-Fatani, A.A.; Siddig, L.A.; Yasir, M.; Al-Ghamdi, A.K.; Harwood, C.R. Impact of mass migrations on the clonal variation of clinical Staphylococcus aureus strains isolated from the Western region of Saudi Arabia. J. Infect. Public Health 2019, 12, 317–322. [Google Scholar] [CrossRef] [PubMed]
- Bokhary, H.; Hajj Research Team; Barasheed, O.; Othman, H.B.; Saha, B.; Rashid, H.; Hill-Cawthorne, G.A.; Abd El Ghany, M. Evaluation of the rate, pattern and appropriateness of antibiotic prescription in a cohort of pilgrims suffering from upper respiratory tract infection during the 2018 Hajj season. Access Microbiol. 2022, 4, 000338. [Google Scholar] [CrossRef] [PubMed]
- Yezli, S.; Yassin, Y.; Mushi, A.; Bukhari, M.; Banasser, T.; Khan, A. Carriage of Neisseria meningitidis Among Umrah Pilgrims: Circulating Serogroups and Antibiotic Resistance. Infect. Drug Resist. 2022, 15, 4685–4696. [Google Scholar] [CrossRef]
- Hoang, V.T.; Dao, T.L.; Ly, T.D.A.; Gouriet, F.; Hadjadj, L.; Belhouchat, K.; Chaht, K.L.; Yezli, S.; Alotaibi, B.; Raoult, D.; et al. Acquisition of multidrug-resistant bacteria and encoding genes among French pilgrims during the 2017 and 2018 Hajj. Eur. J. Clin. Microbiol. Infect. Dis. 2021, 40, 1199–1207. [Google Scholar] [CrossRef] [PubMed]
- Leangapichart, T.; Hadjadj, L.; Gautret, P.; Rolain, J.M. Comparative genomics of two Shewanella xiamenensis strains isolated from a pilgrim before and during travels to the Hajj. Gut Pathog. 2021, 13, 9. [Google Scholar] [CrossRef] [PubMed]
- Booq, R.Y.; Abutarboush, M.H.; Alolayan, M.A.; Huraysi, A.A.; Alotaibi, A.N.; Alturki, M.I.; Alshammari, M.K.; Bakr, A.A.; Alquait, A.A.; Tawfik, E.A.; et al. Identification and Characterization of Plasmids and Genes from Carbapenemase-Producing Klebsiella pneumoniae in Makkah Province, Saudi Arabia. Antibiotics 2022, 11, 1627. [Google Scholar] [CrossRef]
- Harimurti, K.; Saldi, S.R.F.; Dewiasty, E.; Alfarizi, T.; Dharmayuli, M.; Khoeri, M.M.; Paramaiswari, W.T.; Salsabila, K.; Tafroji, W.; Halim, C.; et al. Streptococcus pneumoniae carriage and antibiotic susceptibility among Indonesian pilgrims during the Hajj pilgrimage in 2015. PLoS ONE 2021, 16, e0246122. [Google Scholar] [CrossRef]
- Yezli, S.; Yassin, Y.; Mushi, A.; Maashi, F.; Abdelmalek, N.M.; Awam, A.H.; Alotaibi, B.M. Undiagnosed and missed active pulmonary tuberculosis during mass gatherings: A prospective cross-sectional study from the Hajj pilgrimage. Eur. J. Clin. Microbiol. Infect. Dis. 2023, 42, 727–740. [Google Scholar] [CrossRef] [PubMed]
- Baharin, I.E.M.; Hasan, H.; Nik Mohd Noor, N.Z.; Mohamed, M. Molecular detection of selected zoonotic respiratory pathogens and the presence of virulence and antibiotic resistance genes via PCR among Kelantan Hajj pilgrims. Malays. J. Microbiol. 2021, 17, 254–265. [Google Scholar]
- Yezli, S.; Yassin, Y.; Mushi, A.; Alabdullatif, L.; Alburayh, M.; Alotaibi, B.M.; Khan, A.; Walsh, L.; Lekshmi, A.; Walker, A.; et al. Carriage of Neisseria meningitidis among travelers attending the Hajj pilgrimage, circulating serogroups, sequence types and antimicrobial susceptibility: A multinational longitudinal cohort study. Travel. Med. Infect. Dis. 2023, 53, 102581. [Google Scholar] [CrossRef]
- Ouaddane, I.; Diouf, C.; Goumballa, N.; Hoang, V.T.; Zinai, A.Z.R.; Sokhna, C.; Gautret, P. Nasopharyngeal methicillin-resistant Staphylococcus aureus carriage among pilgrims at the Grand Magal de Touba. J. Travel. Med. 2024, 31, taae095. [Google Scholar] [CrossRef]
- Ouaddane, I.; Goumballa, N.; Tran, X.D.; Diouf, C.; Diene, S.M.; Rolain, J.M.; Sokhna, C.; Gautret, P. Epidemiology of bacterial resistance at the Grand Magal of Touba in Senegal. Travel. Med. Infect. Dis. 2024, 59, 102709. [Google Scholar] [CrossRef] [PubMed]
- Dao, T.L.; Hoang, V.T.; Gautret, P. Respiratory Carriage of Methicillin-Resistant Staphylococcus aureus-Encoding Gene in Hajj Pilgrims. J. Epidemiol. Glob. Health 2024, 14, 1662–1667. [Google Scholar] [CrossRef]
- Tängdén, T.; Cars, O.; Melhus, Å.; Löwdin, E. Foreign Travel Is a Major Risk Factor for Colonization with Escherichia coli Producing CTX-M-Type Extended-Spectrum β-Lactamases: A Prospective Study with Swedish Volunteers. Antimicrob. Agents Chemother. 2010, 54, 3564–3568. [Google Scholar] [CrossRef] [PubMed]
- Ensor, V.M.; Shahid, M.; Evans, J.T.; Hawkey, P.M. Occurrence, prevalence and genetic environment of CTX-M beta-lactamases in Enterobacteriaceae from Indian hospitals. J. Antimicrob. Chemother. 2006, 58, 1260–1263. [Google Scholar] [CrossRef]
- Fouz, N.; Pangesti, K.N.A.; Yasir, M.; Al-Malki, A.L.; Azhar, E.I.; Hill-Cawthorne, G.A.; Abd El Ghany, M. The Contribution of Wastewater to the Transmission of Antimicrobial Resistance in the Environment: Implications of Mass Gathering Settings. Trop. Med. Infect. Dis. 2020, 5, 33. [Google Scholar] [CrossRef] [PubMed]
- General Authority for Statistics: Hajj Statistics 2019–1440. Available online: https://www.stats.gov.sa/sites/default/files/haj_40_en.pdf (accessed on 4 December 2024).
- Bezabih, Y.M.; Bezabih, A.; Dion, M.; Batard, E.; Teka, S.; Obole, A.; Dessalegn, N.; Enyew, A.; Roujeinikova, A.; Alamneh, E.; et al. Comparison of the global prevalence and trend of human intestinal carriage of ESBL-producing Escherichia coli between healthcare and community settings: A systematic review and meta-analysis. JAC Antimicrob. Resist. 2022, 4, dlac048. [Google Scholar] [CrossRef]
- Aljeldah, M. Prevalence of Methicillin-Resistant Staphylococcus aureus (MRSA) in Saudi Arabia: A Systematic Review. J. Pure Appl. Microbiol. 2020, 14, 37–46. [Google Scholar] [CrossRef]
- The Australian Commission on Safety and Quality in Health Care. AURA 2023: Fifth Australian Report on Antimicrobial Use and Resistance in Human Health. Available online: https://www.safetyandquality.gov.au/our-work/antimicrobial-resistance/antimicrobial-use-and-resistance-australia-aura/aura-2023-fifth-australian-report-antimicrobial-use-and-resistance-human-health (accessed on 20 October 2024).
- Prestinaci, F.; Pezzotti, P.; Pantosti, A. Antimicrobial resistance: A global multifaceted phenomenon. Pathog. Glob. Health 2015, 109, 309–318. [Google Scholar] [CrossRef] [PubMed]
- Wielders, C.L.; Fluit, A.C.; Brisse, S.; Verhoef, J.; Schmitz, F.J. mecA gene is widely disseminated in Staphylococcus aureus population. J. Clin. Microbiol. 2002, 40, 3970–3975. [Google Scholar] [CrossRef] [PubMed]
- Stadler, T.; Meinel, D.; Aguilar-Bultet, L.; Huisman, J.S.; Schindler, R.; Egli, A.; Seth-Smith, H.M.B.; Eichenberger, L.; Brodmann, P.; Hubner, P.; et al. Transmission of ESBL-producing Enterobacteriaceae and their mobile genetic elements-identification of sources by whole genome sequencing: Study protocol for an observational study in Switzerland. BMJ Open 2018, 8, e021823. [Google Scholar] [CrossRef] [PubMed]
- Lucet, J.-C.; Paoletti, X.; Demontpion, C.; Degrave, M.; Vanjak, D.; Vincent, C.; Andremont, A.; Jarlier, V.; Mentré, F.; Nicolas-Chanoine, M.-H.; et al. Carriage of Methicillin-Resistant Staphylococcus aureus in Home Care Settings: Prevalence, Duration, and Transmission to Household Members. Arch. Intern. Med. 2009, 169, 1372–1378. [Google Scholar] [CrossRef] [PubMed]
- Mughini-Gras, L.; Dorado-Garcia, A.; van Duijkeren, E.; van den Bunt, G.; Dierikx, C.M.; Bonten, M.J.M.; Bootsma, M.C.J.; Schmitt, H.; Hald, T.; Evers, E.G.; et al. Attributable sources of community-acquired carriage of Escherichia coli containing beta-lactam antibiotic resistance genes: A population-based modelling study. Lancet Planet. Health 2019, 3, e357–e369. [Google Scholar] [CrossRef] [PubMed]
- Alharbi, N.S.; Al-Barrak, A.M.; Al-Moamary, M.S.; Zeitouni, M.O.; Idrees, M.M.; Al-Ghobain, M.O.; Al-Shimemeri, A.A.; Al-Hajjaj, M.S. The Saudi Thoracic Society pneumococcal vaccination guidelines-2016. Ann. Thorac. Med. 2016, 11, 93–102. [Google Scholar] [PubMed]
- Gallego, V.; Berberian, G.; Lloveras, S.; Verbanaz, S.; Chaves, T.S.; Orduna, T.; Rodriguez-Morales, A.J. The 2014 FIFA World Cup: Communicable disease risks and advice for visitors to Brazil—A review from the Latin American Society for Travel Medicine (SLAMVI). Travel Med. Infect. Dis. 2014, 12, 208–218. [Google Scholar] [CrossRef]
- Khan, A.A.; Balkhi, B.S.; Alamri, F.A.; Alsaleh, G.S.; Al-Tawfiq, J.A.; Jokhdar, H. Vaccinations for Hajj: Enhancing health and global health security. Travel Med. Infect. Dis. 2024, 63, 102784. [Google Scholar] [CrossRef] [PubMed]
- Zavaleta-Monestel, E.; Hasselmyr Hasselmyr, S.; García-Montero, J.; Arguedas-Chacón, S.; Rojas-Chinchilla, C.; Díaz-Madriz, J.P. The Impact of Vaccination as a Strategy to Combat Bacterial Antimicrobial Resistance. Cureus 2024, 16, e65840. [Google Scholar] [CrossRef]
- Alshamrani, M.; Farahat, F.; Alzunitan, M.; Hasan, M.A.; Alsherbini, N.; Albarrak, A.; Johani, S.M.A.; Shibl, A.; Al-Tawfiq, J.A.; Zumla, A.; et al. Hajj vaccination strategies: Preparedness for risk mitigation. J. Infect. Public Health 2024, 17, 102547. [Google Scholar] [CrossRef]
- Alqahtani, A.S.; Heywood, A.E.; Rashid, H. Preparing Australian pilgrims for the Hajj 2018. J. Travel Med. 2018, 25, tay068. [Google Scholar] [CrossRef] [PubMed]
- Tobaiqy, M.; Alhasan, A.H.; Shams, M.M.; Amer, S.A.; MacLure, K.; Alcattan, M.F.; Almudarra, S.S. Assessment of Preventative Measures Practice among Umrah Pilgrims in Saudi Arabia, 1440H-2019. Int. J. Environ. Res. Public Health 2020, 18, 257. [Google Scholar] [CrossRef] [PubMed]
- Alqahtani, A.S.; Tashani, M.; Heywood, A.E.; Almohammed, A.B.S.; Booy, R.; Wiley, K.E.; Rashid, H. Tracking Australian Hajj Pilgrims’ Health Behavior before, during and after Hajj, and the Effective Use of Preventive Measures in Reducing Hajj-Related Illness: A Cohort Study. Pharmacy 2020, 8, 78. [Google Scholar] [CrossRef]
- El-Bahnasawy, M.M.; Elmeniawy, N.Z.; Morsy, T.A. An interventional program for nursing staff on selected mass gathering infectious diseases at Hajj. J. Egypt. Soc. Parasitol. 2014, 44, 405–424. [Google Scholar]
- O’Neill, J. Tackling Drug-Resistant Infections Globally: Final Report and Recommendations. Available online: https://amr-review.org/sites/default/files/160525_Final%20paper_with%20cover.pdf (accessed on 21 October 2024).
- ECDC/EMEA. ECDC/EMEA: Joint Technical Report. The Bacterial Challenge: Time to React. Available online: https://www.ecdc.europa.eu/sites/default/files/media/en/publications/Publications/0909_TER_The_Bacterial_Challenge_Time_to_React.pdf (accessed on 21 October 2024).
- Sulis, G.; Sayood, S.; Gandra, S. Antimicrobial resistance in low- and middle-income countries: Current status and future directions. Expert. Rev. Anti Infect. Ther. 2022, 20, 147–160. [Google Scholar] [CrossRef] [PubMed]
- Al-Tawfiq, J.A.; Memish, Z.A. Potential risk for drug resistance globalization at the Hajj. Clin. Microbiol. Infect. 2015, 21, 109–114. [Google Scholar] [CrossRef]
Author (Publication Year) | Study Type | Mass Gathering | Country (Study Setting) | Clinical Setting | Syndrome | Pathogens of Interest | NOS Score |
---|---|---|---|---|---|---|---|
Abd El Ghany et al. (2017) [17] | Cross-sectional | Hajj | Saudi Arabia | Emergency/ Outpatient clinic | Enteric infection | Campylobacter jejuni | 4 |
E. coli | |||||||
Salmonella spp. | |||||||
Shingella spp. | |||||||
Vibrio cholerae | |||||||
Yersinia enterocolitica | |||||||
Alyamani et al. (2017) [18] | Cross-sectional | Hajj | Saudi Arabia | Emergency/ outpatient clinic | Urinary tract infection | E. coli | 2 |
Alzeer et al. (1998) [19] | Cross-sectional | Hajj | Saudi Arabia | Hospital | Pneumonia | E. coli/Serratia spp. | 4 |
K. pneumoniae | |||||||
Legionella/Mycoplasma pneumoniae | |||||||
Mycobacterium tuberculosis | |||||||
S. pneumoniae | |||||||
Ashgar et al. (2013) [20] | Cohort | Hajj and Umrah | Saudi Arabia | Airport | Nasopharyngeal carriage | Neisseria meningitidis | 6 |
Baharoon et al. (2009) [21] | Cross-sectional | Hajj | Saudi Arabia | ICU | Severe sepsis | Anaerobes | 4 |
Candida spp. | |||||||
Enterobacteriaceae (K. pneumoniae, E. coli, Enterobacter spp., Proteus spp., Citrobacter spp.) | |||||||
M. tuberculosis | |||||||
Other Gram-negative bacteria (Haemophilus influenzae, Moraxella catarrhalis) | |||||||
Other Gram-positive bacteria (S. pneumoniae, Enterococcus spp., Coagulase-negative staphylococci) | |||||||
Pseudomonas spp. | |||||||
S. aureus | |||||||
Zumla and Memish [22] † | Case series | Hajj or Umrah | England | Hospital | Meningococcal conjunctivitis | N. meningitidis | N/A |
Bukhari et al. (2008) [23] | Case report | Hajj | Saudi Arabia | ICU | Pneumonia | Ewingella americana | N/A |
Crampin et al. (1999) [24] | Outbreak investigation | Glastonbury music festival | England | Community | Enteric infection | E. coli | 5 |
Fatani et al. (2002) [25] | Cross-sectional | Hajj | Saudi Arabia | Outpatient clinic | Pyoderma | Gram-negative bacilli (Pseudomonas aeruginosa, E. coli, Proteus and Klebsiella spp.) | 4 |
S. aureus | |||||||
Streptococcus pyogenes | |||||||
Francois Watkins et al. (2020) [26] | Case series | Arbaeen | United States of America | NR | Enteric fever | Salmonella enterica subsp. enterica serovar Typhi | N/A |
Ganaie et al. (2018) [27] | Cohort | Hajj | India | NR | Naso-/oro-pharyngeal carriage | S. pneumoniae | 6 |
Godbole et al. (2019) [28] | Case report | Arba’een | Iraq | Community | Enteric fever | S. Typhi | N/A |
Gorla et al. (2012) [29] | Outbreak investigation | Party | Brazil | Hospital | Meningococcal disease | N. meningitidis | 3 |
Haseeb et al. (2016) [30] | Retrospective review of hospital records | Hajj and Umrah | Saudi Arabia | Hospital | Community-acquired infections | Acinetobacter baumannii | 3 |
Enterobacter cloacae | |||||||
E. coli | |||||||
K. pneumoniae | |||||||
Proteus mirabilis | |||||||
P. aeruginosa | |||||||
Salmonella spp. | |||||||
S. aureus | |||||||
Streptococcus spp. | |||||||
Johargy et al. (2011) [31] | Cohort | Hajj and Umrah | Saudi Arabia | Community | Nasopharyngeal carriage | S. aureus | 4 |
Leangapichart et al. (2016) [32] | Cohort | Hajj | Saudi Arabia | Community | Gastrointestinal carriage | E. coli | 5 |
K. pneumoniae | |||||||
Leangapichart et al. (2016) [33] | Cohort | Hajj | Saudi Arabia | Community | Gastrointestinal carriage | A. baumannii | 5 |
E. coli | |||||||
Leangapichart et al. (2016) [34] | Cohort | Hajj | Saudi Arabia | Community | Gastrointestinal carriage | E. coli | 5 |
K. pneumoniae | |||||||
Leangapichart et al. (2017) [35] | Cohort | Hajj | Saudi Arabia/France | Community | Gastrointestinal carriage | NR | 5 |
Marglani et al. (2016) [36] | Cross-sectional | Hajj | Saudi Arabia | Emergency/ outpatient clinic | Acute rhinosinusitis | Citrobacter spp. | 4 |
Enterobacter aerogenes | |||||||
E. coli | |||||||
Klebsiella oxytoca | |||||||
K. pneumoniae | |||||||
Proteus vulgaris | |||||||
S. aureus | |||||||
Memish et al. (2015) [37] | Cross-sectional | Hajj | Saudi Arabia | NR | Nasopharyngeal carriage | S. pneumoniae | 5 |
Memish et al. (2006) [38] | Cross-sectional | Hajj | Saudi Arabia | Outpatient clinic | Nasal/skin carriage | S. aureus | 4 |
Memish et al. (2016) [39] | Cohort | Hajj | Saudi Arabia | Community | Nasopharyngeal carriage | S. pneumoniae | 6 |
Olaitan et al. (2015) [40] | Cohort | Hajj | France | Community | Gastrointestinal carriage | Salmonella enterica subsp. enterica serovar Newport | 5 |
Osman et al. (2018) [41] | Cross-sectional | El-Tahrir Square protest | Egypt | Outpatient clinic | Urinary tract infection | E. coli | 3 |
Shirah et al. (2017) [42] | Retrospective review of hospital records | Hajj | Saudi Arabia | Hospital | Pneumonia | S. aureus | 3 |
Ng and Taha (1994) [43] | Case series | Hajj or Umrah | Malaysia | Hospital | Enteric infection | V. cholerae | N/A |
Wharton et al. (1990) [44] | Outbreak investigation | Rainbow family gathering | United States of America | Community | Enteric infection | Shigella sonnei | 6 |
Yousuf and Nadeem (2000) [45] | Prospective cohort | Hajj and Umrah | Saudi Arabia | Hospital | Meningococcal disease | N. meningitidis | 4 |
Yezli et al. (2017) [46] | Cross-sectional | Hajj | Saudi Arabia | Community | Tuberculosis | M. tuberculosis | 4 |
Ziyaeyan et al. (2012) [16] | Cross-sectional | Hajj | Iran | Community | Upper respiratory tract infection | Influenza A(H1N1)pdm09 | 4 |
Al-Zahrani et al. (2019) [47] | Cross-sectional | Hajj and Umrah | Saudi Arabia | Hospital | SSTI/bacteraemia/others | S. aureus | 3 |
Bokhary et al. (2022) [48] | Cross-sectional | Hajj | Saudi Arabia | Primary health care centre | Upper respiratory tract infection | H. influenzae, S. aureus, S. pneumoniae, M. catarrhalis | 5 |
Yezli et al. (2022) [49] | Prospective cross-sectional | Umrah | Saudi Arabia | Pilgrims’ places of residence | Meningococcal carriage | N. meningitidis | 6 |
Hoang et al. (2021) [50] | Prospective cohort study | Hajj | France and KSA | Community | Acquisition of multidrug-resistant bacteria | MRSA, ESBL-E, CRAB, E. aerogenes, K. pneumoniae, E. coli, E cloacae, Citrobacter koseri, and S. aureus | 6 |
Leangapichart et al. (2021) [51] | Comparative genomics study | Hajj | France and KSA | Community | Diarrhea at Hajj | Shewanella xiamenensis | 3 |
Booq et al. (2022) [52] | Cross-sectional study | Umrah | KSA | Hospital | Isolation of antibiotic-resistant K. pneumoniae during Umrah | K. pneumoniae | 3 |
Harimurti et al. (2021) [53] | Prospective longitudinal study | Hajj | KSA | Community | Pneumococcal carriage | S. pneumoniae | 6 |
Yezli et al. (2023) [54] | Prospective cross-sectional study | Hajj | KSA | Hospital and non-hospital settings | Active pulmonary tuberculosis | M. tuberculosis | 7 |
Baharin et al. (2021) [55] | Cross-sectional study | Hajj | Malaysia | Airport | URTI | Influenza A | 5 |
MERS-CoV | |||||||
Mycobacterium bovis | |||||||
S. pneumoniae | |||||||
K. pneumoniae | |||||||
Yezli et al. (2023) [56] | Longitudinal Cohort | Hajj | Saudi Arabia | Community | Meningococcal carriage | N. meningitidis | 7 |
Ouaddane et al. (2024) [57] | Cohort | Grand Magal de Touba | Senegal | Community | S. aureus carriage | S. aureus | 5 |
Ouaddane et al. (2024) [58] | Cohort | Grand Magal de Touba | Senegal | Community | Gastrointestinal symptoms | Gastrointestinal bacteria | 6 |
Dao et al. (2024) [59] | Prospective cohort | Hajj | France and KSA | Private specialist travel agency | MRSA carriage | S. aureus | 6 |
Author | Laboratory Methods | Comparisons Made in Each Study | Statistical Methods Applied in Data Analysis | Key Pathogens Identified in This Group of Studies | Key AMR Findings of This Group of Studies |
---|---|---|---|---|---|
Hajj and Umrah Studies | E. coli, K. pneumoniae, S. pneumoniae, MRSA, M. tuberculosis, N. meningitidis. | Increased prevalence of ESBL-producing E. coli and K. pneumoniae. Post-Hajj rise in nasopharyngeal carriage of AMR pathogens. No rifampicin resistance detected in TB cases. | |||
Ganaie et al. (2018) [27] | S. pneumoniae isolates were identified using colony morphology, Gram staining, optochin susceptibility, and bile solubility tests. Serotyping of pneumococcal isolates was performed by Quellung reaction. Antimicrobial susceptibility testing of the isolates was performed by broth microdilution. DNA was extracted and used for quantitative multiplex real-time PCR. | The study compared the S. pneumoniae carriage before and after Hajj pilgrimage. It also compared the prevalence of S. pneumoniae detected by culture and quantitative multiplex real-time PCR. Additionally, the study compared the number of pilgrims carrying multiple serotypes before and after pilgrimage. | Paired t-tests were performed to analyse pre- and post-Hajj cohorts and chi-squared tests were performed on categorical data. | ||
Al-Zahrani et al. (2019) [47] | S. aureus isolates were identified using the Vitek 2 system. SmaI-multiplex PCR typing (SMT) was carried out for all isolates. PCR and sequencing were used to perform multi-locus sequence typing (MLST) and SCCmec typing. | SmaI-multiplex PCR typing (SMT) and Multi-Locus Sequence Typing (MLST) were compared to determine utility of SMT as an alternative to MLST for monitoring the impact of mass migration on the clonality of S. aureus. | Descriptive statistics and cluster analysis. | ||
Abd El Ghany et al. (2017) [17] | Enzyme immunoassays were used to detect viral and parasitic pathogens. Total DNA was isolated and purified from faecal samples and used for molecular characterisation of bacterial species by multiplex PCR. Viral RNA was extracted from antigenically positive samples and used for molecular characterisation of viral agents by RT-PCR. The samples were screened for the detection of β-lactamase genes by PCR. | The study compared the frequency of clinical symptoms of patients across three Hajj seasons. The study also compared the distribution of infectious agents across the three Hajj seasons. Additionally, the study compared the percentage of samples with identified etiologic agents and bacterial agents in patients with severe and mild symptoms. | Pearson χ2 test was used to evaluate differences between sets of categorical data. | ||
Fatani et al. (2002) [25] | Skin swabs were collected and cultured on sheep blood agar and MacConkey agar. Organisms were identified by standard microbiological methods. Susceptibility testing was performed using the Kirby–Bauer disc diffusion method. | Comparison of primary and secondary pyoderma cases: types of organisms isolated, demographic details (age, gender, nationality), antibiotic resistance patterns, and incidence rates of different pyoderma subtypes. | Not explicitly reported; descriptive analyses and percentage-based comparisons were used. | ||
Dao et al. (2024) [59] | Nasopharyngeal swab collection pre- and post-Hajj; DNA extraction for real-time PCR for S. aureus using the nucA gene and real-time PCR for MRSA using mecA and mecC genes. | Prevalence of S. aureus pre- and post-Hajj; Prevalence of MRSA pre- and post-Hajj; Acquisition rates of S. aureus and MRSA during the Hajj; Comparison of clinical features between pilgrims colonised with MRSA versus those negative with MRSA. | Not specified. | ||
Leangapichart et al. (2016) [32] | E. coli and K. pneumoniae isolates were tested against six antibiotics using the disk diffusion method. Total DNA was extracted, and ESBL-encoding genes were detected by PCR and sequencing. MLST was performed, and a phylogenetic tree was constructed. | The study compared the proportions of pilgrims harbouring antibiotic-resistant E. coli and K. pneumoniae before and after the Hajj pilgrimage. The study also compared the number of pilgrims harbouring ESBL genes before and after the pilgrimage. | McNemar’s or Fisher’s exact test was used to calculate the change in the number of pilgrims harbouring antibiotic-resistant bacteria and ESBL genes. | ||
Leangapichart et al. (2016) [33] | Pharyngeal and rectal swabs were collected and cultured, and bacterial species were identified. Antibiotic susceptibility testing was performed. Real-time PCR was used to identify A. baumannii and carbapenemase-producing bacteria. MLST was performed on nonduplicate A. baumannii isolates. | The study compared the bacterial diversity in pharyngeal swab samples taken from pilgrims before and after the Hajj pilgrimage. The study also compared the sequence types of A. baumannii isolates from pharyngeal and rectal swab samples. | A chi-squared test was used to compare bacterial species diversity between pre- and post-Hajj samples. | ||
Marglani et al. (2016) [36] | Samples were collected from the middle meatus, stained with Gram stain, and cultured. Identification and antimicrobial susceptibility testing were performed using the MicroScan Walk Away System. Susceptibility testing for S. pneumoniae and H. influenzae was performed using the disk diffusion method. | The study compared the severity of symptoms associated with different bacterial species. The study also compared the total Modified Arabic Sinonasal Outcome Test (MA-SNOT) scores between bacterial and non-bacterial groups. | Not specified, but reported descriptive statistics. | ||
Leangapichart et al. (2016) [34] | Real-time PCR: Screening for mcr-1 gene in rectal swabs. Culture: Isolation of colistin-resistant strains on Cepacia agar. MALDI-TOF: Bacterial species identification. Antibiotic susceptibility testing: Using EUCAST guidelines. E-test: colistin MIC determination. PCR and sequencing: detection of mcr-1 and ESBL genes (blaCTX-M, blaTEM, blaSHV). Multilocus sequence typing (MLST) of E. coli and K. pneumoniae isolates. | Compared the prevalence of mcr-1-positive isolates in rectal swab samples before and after the pilgrimage. | Not specified, but reported descriptive statistics. | ||
Haseeb et al. (2016) [30] | Retrospective audit of patient records admitted to two hospitals in Makkah from January to June 2015. Infections categorised as community-acquired based on positive cultures within 72 h of admission. Antimicrobial susceptibility testing performed according to Clinical and Laboratory Standards Institute standards (25th informational supplement, M100-S25). | Compared the resistance patterns of different bacterial pathogens (Gram-positive and Gram-negative) to various antibiotics. Did not compare resistance patterns before and after the pilgrimage. | Not specified, but reported descriptive statistics and comparative statistics. | ||
Memish et al. (2016) [39] | Nasopharyngeal swabs, microbiological culture, serotyping, and MIC determination. | Pre- vs. post-Hajj carriage rates, serotype coverage by vaccines. | Statistical significance tests. | ||
Olaitan et al. (2015) [40] | Rectal swabs, quantitative PCR, culture, MALDI-TOF, MIC testing, whole-genome sequencing. | Pre- vs. post-Hajj acquisition of multidrug-resistant Salmonella. | Not reported. | ||
Memish et al. (2015) [37] | Nasopharyngeal swabs, microbiological identification, serotyping, and MLST. | Beginning-Hajj vs. End-Hajj carriage rates, serotypes, and antibiotic resistance. | Bivariate and multivariate analyses, prevalence ratios, adjusted odds ratios. | ||
Shirah et al. (2017) [42] | Retrospective analysis of pneumonia cases. | Incidence, risk factors, microbial patterns of pneumonia; differences in pathogens between Hajj and general settings. | Chi-squared test; descriptive statistics. | ||
Yousuf and Nadeem (2000) [45] | CSF and blood cultures; Commercial latex agglutination kit used for serotyping of the meningococci; antimicrobial sensitivity testing. | Mortality across serogroups; clinical and demographic variations (e.g., age, nationality). Susceptibility of isolates to antibiotics. | Descriptive statistics. | ||
Ashgar et al. (2013) [20] | Nasopharyngeal swabs, cultured on chocolate agar and Thayer Martin agar, Gram stain, VITEK 2 system. | Comparison of carriage rates before and after Umrah and Hajj among different nationalities. | Chi-squared tests. | ||
Ng and Taha (1994) [43] | Rectal swabs, disc-diffusion method for antibiotic susceptibility. | Comparison of antibiotic resistance patterns among the three reported cases. | Not specified but reported descriptive statistics and comparative statistics. | ||
Alzeer et al. (1998) [19] | Sputum culture, broncho-alveolar lavage, microscopy, serological assays for Mycoplasma and Legionella. | Comparison of causative organisms in pneumonia cases among pilgrims, specifically looking at tuberculosis vs. others. | Student’s t-test to detect significant differences between groups. | ||
Bukhari et al. (2008) [23] | Blood culture. | A case report of E. americana infection in an immunocompromised patient with pneumonia. | Not reported. | ||
Baharoon et al. 2009 [21] | Blood culture and chest X-ray. | Comparison of incidence and outcomes of severe sepsis and septic shock among pilgrims. | Not reported. | ||
Memish et al. (2006) [38] | Standard microbiological techniques were used to screen for the presence of MRSA. S. aureus with cefoxitin zones of ≤19 mm reported as oxacillin-resistant. | Compared the prevalence of S. aureus found in the nares, axillae, and both. Compared prevalence of MRSA in the study population to prevalence found in other community-based studies. Compared gender, age, nationality, residence, hospitalisation, and S. aureus culture results. | Chi-squared test. | ||
Johargy et al. (2011) [31] | Nasal swabs were cultured on mannitol salt agar to grow S. aureus. | Compared the prevalence of S. aureus in Umrah visitors before and after performing Umrah. Compared the prevalence of S. aureus in pilgrims before and after performing Hajj. Compared prevalence of S. aureus in different nationalities of Umrah visitors. | Chi-squared test. | ||
Leangapichart et al. (2017) [35] | CTX-M genes in rectal samples were identified by PCR and confirmed by sequencing. | Compared prevalence of CTX-M genes (blaCTX-M) in pilgrims pre- and post-Hajj. | Pearson χ2 test and Fisher’s exact test, Student’s t-test, and logistic regression. | ||
Yezli et al. (2023) [56] | Oropharyngeal swabs cultured on selective agar; whole-genome sequencing; antibiotic susceptibility testing; serogrouping. | Pre-Hajj vs. post-Hajj carriage rates; antimicrobial resistance profiles between isolates. | Descriptive statistics. | ||
Alyamani et al. (2017) [18] | Phenotypic and genotypic testing (Vitek system, PCR); MIC assays; MLST. | Distribution of resistance genes among isolates; resistance profiles across antibiotic classes. | Not explicitly mentioned, but methods include frequency and percentage calculations for phenotypic resistance. | ||
Ziyaeyan et al. 2012 [16] | Real-time RT-PCR for RNA detection; oseltamivir resistance testing using a genotyping kit. | Prevalence of A(H1N1)pdm09 among pilgrims; viral load in relation to fever and symptoms. | Fisher’s exact test. | ||
Yezli et al. (2017) [46] | Xpert MTB/RIF assay for M. tuberculosis (TB) and rifampicin resistance detection. | Prevalence of undiagnosed tuberculosis among pilgrims by age, gender, education level, and comorbidities. | Chi-squared test, Fisher’s exact test, logistic regression analysis (Firth method). | ||
Yezli et al. (2022) [49] | Oropharyngeal swabs plated on Neisseria-selective agar, Gram staining, and biochemical tests for identification, serogrouping using antigenic assays, and antibiotic susceptibility testing using E-tests. | Prevalence of N. meningitidis carriage among pilgrims; distribution of serogroups; antibiotic resistance profiles. | Not reported. | ||
Leangapichart et al. (2021) [51] | Real-time PCR; conventional PCR and sequencing; culture on MacConkey agar with ertapenem; MALDI-TOF; whole-genome sequencing using the Illumina MiSeq platform. | Comparisons of the draft genome sequences of two S. xiamenensis isolates with other closely related genomes. | Not specifically re-ported, but conducted comparative genomic analysis between environmental and human strains to describe the genomic diversity. | ||
Harimurti et al. (2021) [53] | Nasopharyngeal swab collection; S. pneumoniae identification using conventional and molecular approaches; antibiotic susceptibility determination using a disk diffusion method; serotyping by sequential multiplex PCR (smPCR) targeting the wzy gene; confirmation of non-typeable isolates by real-time PCR targeting lytA. | Comparison of the prevalence of S. pneumoniae carriage rates before and after Hajj; comparison of the five most prevalent serotypes before and after Hajj; comparison of the percentage of isolates susceptible to co-trimoxazole before and after Hajj. | McNemar test. | ||
Hoang et al. (2021) [50] | Nasopharyngeal and rectal swabs; culture on specific media (MRSA agar, MacConkey agar, SMART agar, VRE agar); identification using MALDI-TOF; antibiotic susceptibility testing using the disk diffusion method; DNA extraction using QIAamp DNA Mini Kit; detection of antibiotic resistance-encoding genes using quantitative PCR. | Proportions of pilgrims acquiring MDR bacteria during the Hajj; prevalence of MDR bacteria pre- and post-Hajj; distinction between acquisition and persistent carriage of MDR bacteria based on species, anatomical sites, antibiotic susceptibility, and genetic characteristics; prevalence of colistin resistance genes pre- and post-Hajj. | Pearson χ2 test; Fisher’s exact test; McNemar’s test; univariable analysis; multivariable analysis; logistic regression. | ||
Booq et al. (2022) [52] | Bacterial identification using MicroScan and VITEK2; MIC determination using the microdilution method; biofilm formation assay using crystal violet staining and quantification; detection of plasmids using PCR-based replicon typing (PBRT 2.0 kit); detection of carbapenem resistance genes and virulence genes using conventional PCR. | Antibiotic resistance profiles of K. pneumoniae isolates; biofilm formation capabilities of K. pneumoniae isolates; prevalence of plasmid replicons among isolates; presence and co-occurrence of carbapenem resistance genes; distribution of virulence genes. | Not reported, but authors mention the use of mean and standard deviation to report the results of the biofilm formation assay. | ||
Yezli et al. (2023) [54] | Sputum sample collection; M. tuberculosis detection using Xpert MTB/RIF assay. | Comparison of tuberculosis prevalence between hospitalised and non-hospitalised pilgrims; association of various factors (e.g., age, underlying conditions, cough in household, and cough length) with tuberculosis in both hospitalised and non-hospitalised pilgrims. | Descriptive statistics; bivariate analysis; multivariate logistic regression using the Firth method. | ||
Baharin et al. (2021) [55] | Throat swab collection; nucleic acid extraction; PCR assays for pathogen detection (influenza A, MERS-CoV, M. bovis, S. pneumoniae, and K. pneumoniae); PCR assays for virulence and antibiotic resistance genes. | Prevalence of S. pneumoniae and K. pneumoniae; prevalence of virulence genes in S. pneumoniae and K. pneumoniae isolates; prevalence of antibiotic resistance genes in S. pneumoniae and K. pneumoniae isolates; distribution of respiratory tract infection symptoms among pilgrims. | Not specified. | ||
Bokhary et al. (2022) [48] | Oropharyngeal swab collection; culturing on blood agar, chocolate agar, and MacConkey agar; bacterial identification using the VITEK 2 COMPACT system; antimicrobial susceptibility testing using VITEK 2 COMPACT systems and Kirby–Bauer disc diffusion method. | Comparison of bacterial infection rates among different demographic groups; comparison of antibiotic prescription rates and appropriateness; assessment of the predictive value of clinical findings for bacterial infection. | Sensitivity, specificity, positive predictive value, negative predictive value, odds ratio, and confidence intervals. | ||
Arbaeen studies | Salmonella Typhi. | Reports of ceftriaxone-resistant Salmonella Typhi with ESBL genes (blaCTX-M-15). | |||
Francois Watkins et al. (2020) [26] | Antimicrobial susceptibility testing; whole-genome sequencing. | Comparison of Salmonella Typhi isolates from travellers to Pakistan and Iraq; comparison of antibiotic resistance patterns between S. Typhi isolates; comparison of patient characteristics (age, sex, travel history, vaccination status, hospitalisation) between those with XDR S. Typhi and those with non-XDR S. Typhi | Not specified. | ||
Godbole et al. (2019) [28] | Blood culture; whole-genome sequencing. | Phylogenetic analysis to compare the Iraqi Salmonella Typhi strain to strains from a Public Health England database and other previously described strains. | Not specified. | ||
Grand Magal de Touba studies | E. coli, K. pneumoniae, S. pneumoniae, MRSA. | The prevalence of gastrointestinal bacteria was high both pre-Magal (48.5%) and post-Magal, and no increase in post-Magal MRSA acquisition was noted. | |||
Ouaddane et al. (2024) [57] | Nasopharyngeal sampling; DNA extraction using the EZ1 Advanced XL with the DNA Tissue Kit; PCR screening for S. aureus using the nucA gene; real-time PCR screening for mecA and mecC genes. | Prevalence of S. aureus carriage pre- and post-Grand Magal de Touba; prevalence of mecA and mecC genes pre- and post-Grand Magal de Touba; acquisition rates of S. aureus, mecA, and mecC during the Grand Magal de Touba. | Not specified. | ||
Ouaddane et al. (2024) [58] | Rectal swab collection pre- and post-Grand Magal de Touba (GMT); DNA extraction; quantitative PCR for gastrointestinal bacteria and resistance genes. Culture on specific media for VRE, MRSA, ESBL producing, and carbapenemase-positive bacteria; bacterial identification using MALDI-TOF; antibiotic susceptibility testing using the Kirby–Bauer disk diffusion method. | Prevalence of gastrointestinal bacteria pre- and post-GMT; prevalence of resistance genes pre- and post-GMT; association between acquisition of resistance genes and demographic, medical, preventive, therapeutic, and clinical factors. | Pearson χ2 test; Fisher’s exact test; univariate analysis; multivariate analysis using logistical regression. | ||
Other mass gatherings (entertainment and political protest) | E. coli, Shigella spp., N. Meningitidis. | MDR E. coli among attendees of El-Tahrir Square Protest and at a music festival, and drug-resistant meningococcal and Shigella isolates at parties. | |||
Osman et al. (2018) [41] | PCR for virulence and resistance genes; phylogenetic classification; antimicrobial susceptibility testing; biofilm assay; serotyping using O-antisera; phenotypic assays for motility and haemolysis. | Resistance profiles of E. coli strains; biofilm formation patterns across phylogenetic groups; prevalence of specific virulence genes. | Not explicitly mentioned. | ||
Crampin et al. 1999 [24] | Faecal specimens were plated on sorbitol MacConkey agar; putative E. coli O157 were identified by agglutination with antiserum to the O157 antigen; isolates underwent serotyping, phage typing, and Vero cytotoxin (VT) gene probing; VT2 gene subtype was determined by PCR; DNA of the VTEC O157 isolates was digested with restriction enzyme Xba I and compared by pulsed-field gel electrophoresis; serum samples were screened for the presence of antibodies to the O157 antigen; rectal swabs from cows were collected and tested. | The study compared E. coli O157 strains from seven people and from a cow belonging to a herd that had previously grazed at the festival site. Drug resistance and DNA-based tests were also used to compare strains. | Not specified, but reported descriptive statistics, prevalence estimation and comparative analysis. | ||
Gorla et al. (2012) [29] | Meningococcal strains were serogrouped using conventional microbiologic methods; DNA was prepared in agarose plugs and digested with the restriction enzyme Nhe I; serotyping and serosubtyping were performed by dot blotting using whole-cell suspensions and murine Mabs; MLST was performed and antimicrobial susceptibility testing was performed using the broth microdilution procedure. | The study compared restriction profiles from N. meningitidis isolates to determine relatedness. | Not specified. | ||
Wharton et al. (1999) [44] | Stool cultures for pathogens; antimicrobial susceptibility testing; plasmid profiling; colicin typing. | Attack rates among genders, age groups, water usage, and communal kitchen exposure; resistance profiles. | Univariate (relative risks) and multivariate logistic regression. |
Author (Publication Year) | Phenotypic Resistance | Genotypic Resistance | ||||
---|---|---|---|---|---|---|
Antibiotic | Pre-Mass Gathering Number (%) | Post-Mass Gathering Number (%) | Resistance Genes | Pre-Mass Gathering Number (%) | Post-Mass gathering Number (%) | |
Leangapichart et al. (2016) [32] | Colistin | 3/129 (2.3) | 2/129 (1.6) | ESBL genes (CTX-M, TEM, or SHV) | 5/23 (21.7) | 18/23 (78.3) |
Ceftriaxone † | 5/129 (3.9) | 18/129 (14.0) | ||||
Ticarcillin-clavulanic acid † | 16/129 (12.4) | 29/129 (22.5) | ||||
Gentamicin | 2/129 (1.6) | 9/129 (7.0) | ||||
Piperacillin-tazobactam | 0 | 0 | ||||
Imipenem | 0 | 0 | ||||
Any † | 18/129 (14.0) | 36/129 (28.0) | ||||
Ouaddane et al. (2024) [58] | Amoxycillin-clavulanate | 18/27 (66.7) | 23/38 (60.5) | ARG CTX-MA CTX-MB SHV TEM OXA 23 | 260/295 (88.1) 68/295 (23.0) 30/295 (10.1) 154/295 (52.0) 259/295 (87.5) 10/295 (3.9) | 230/291 (79.0) 82/291 (28.2) 13/291 (4.5) 124/291 (42.6) 218/291 (3.9) 1/291 (0.3) |
Amoxicillin | 27/27 (100) | 35/38 (92.1) | ||||
Amikacin | 0/27 (0) | 2/38 (5.3) | ||||
Ciprofloxacin | 10/27 (37) | 9/38 (23.7) | ||||
Ceftriaxone | 27/27 (100) | 31/37 (83.8) | ||||
Doxycycline | 4/27 (14.8) | 15/38 (39.5) | ||||
Ertapenem | 0/27 (0) | 1/37 (2.7) | ||||
Cefepime | 11/27 (40.7) | 13/37 (35.1) | ||||
Fosfomycin | 2/27 (7.4) | 0/38 (0) | ||||
Gentamicin | 3/27 (11.1) | 4/38 (10.5) | ||||
Imipenem | 0/27 (0) | 1/37 (2.7) | ||||
Cotrimoxazole | 17/27 (63) | 26/38 (68.4) | ||||
Piperacillin + Tazobactam | 1/27 (3.7) | 4/38 (10.5) | ||||
Leangapichart et al. (2016) [33] | 1/2 (50%) resistant to cefoxitin, ceftriaxone, cefotaxime, amoxycillin-clavulanic acid, ticarcillin-clavulanic acid, amoxycillin, tobramycin, gentamicin, amikacin, rifampicin, and trimethoprim-sulfamethoxazole. | blaNDM-5, blaCTX-M-15, blaTEM-1, aadA2 | 0/2 (0) | 1/2 (50.0) | ||
1/2 (50%) resistant to multiple antibiotics except colistin and imipenem | blaNDM-5, blaTEM-1, aadA2 | 0/2 (0) | 1/2 (50.0) | |||
Leangapichart et al. (2016) [34] | Amoxycillin | 10/10 (100) | Colistin resistance gene † (mcr-1) | 2013 Hajj: | 2013 Hajj: | |
Amoxycillin-clavulanate | 9/10 (90) | 2/129 (1.6) | 11/129 (8.5) | |||
Trimethoprim-sulfamethoxazole | 7/10 (70) | 2014 Hajj: | 2014 Hajj: | |||
Ceftriaxone | 4/10 (40) | 1/92 (1.0) | 9/90 (9.2) | |||
Aztreonam | 2/10 (20) | |||||
Fosfomycin | 2/10 (20) | |||||
Cefepime | 1/10 (10) | |||||
Gentamicin | 4/10 (40) | blaTEM-1 | 0 | 8/10 (80) | ||
Nalidixic acid | 3/10 (30) | blaSHV-1 | 0 | 1/10 (10) | ||
Ciprofloxacin | 1/10 (10) | blaCTX-M-15, blaTEM-1 | 0 | 1/10 (10) | ||
Hoang et al. (2021) [50] | Penicillin | ‡ (100) | TEM CTX-M-A CTX-M-A & TEM CTX-M-A & SHV TEM & SHV | 1/268 (0.4) 9/268 (3.4) 3/268 (1.1) 0/268 (0) 1/268 (0.4) | 2/268 (0.7) 3/268 (1.1) 21/268 (7.8) 1/268 (0.4) 1/268 (0.4) | |
Ampicillin--clavulanate | ‡ (57.8) | |||||
Cefepime | ‡ (57.3) | |||||
Ceftriaxone | ‡ (95.5) |
First Author (Publication Year) | Phenotypic Resistance | Genotypic Resistance | ||
---|---|---|---|---|
Antibiotic | Number (%) | Resistance Gene | Number (%) | |
Alyamani et al. (2017) [18] | Ampicillin | 56/58 (96.6) | aac6 aac61b aadA4 strB aadA1 aadA2 aadB ant2 aphA strA blaCTX-M-1, blaCTX-M-15, blaOXA-1, blaTEM-1 blaCTX-M-1, blaCTX-M-15, blaOXA-1 blaOXA-1, blaTEM-1 blaSHV | 26/58 (44.8) 25/58 (43.0) 24/58 (42.0) 21/58 (36.0) 9/58 (15.0) 7/58 (12.0) 2/58 (4.0) 2/58 (4.0) 7/58 (12.0) 1/58 (1.0) 8/58 (13.7) 10/58 (17.2) 2/58 (3.4) 2/58 (3.4) |
Cefoxitin | 9/58 (15.3) | |||
Ciprofloxacin | 46/58 (79.7) | |||
Cefepime | 43/58 (74.6) | |||
Aztreonam | 52/58 (89.8) | |||
Cefotaxime | 44/58 (76.3) | |||
Ceftazidime | 47/58 (81.4) | |||
Meropenem | 0 | |||
Imipenem | 0 | |||
Crampin et al. (1999) [24] | Sulphonamides | 6/8 (75.0) | ||
Tetracycline | 6/8 (75.0) | |||
Abd El Ghany et al. (2017) [17] | NR | NR | blaCTX-M-15, blaNDM | 16/48 (33.3) |
Haseeb et al. (2016) [30] | Amoxycillin-clavulanate | 38/65 (59.0) | ||
Ampicillin | 66/825 (8.0) | |||
Ceftazidime | 20/1000 (2.0) | |||
Amikacin | 16/229 (7.0) | |||
Ciprofloxacin | 57/95 (60.0) | |||
Levofloxacin | 4/4 (100.0) | |||
Marglani et al. (2016) [36] | Ampicillin | 2/8 (25.0) | ||
Trimethoprim-sulfamethoxazole | 7/8 (87.5) | |||
Osman et al. (2018) [41] | Tetracycline, nalidixic acid, ampicillin, trimethoprim, neomycin, oxytetracycline and erythromycin Colistin | 29/29 (100.0) | tet(A) sulI sulII dhfrI dhfrXIII | 7/29 (24.1) 12/29 (41.4) 14/29 (48.3) 17/29 (58.6) 12/29 (41.4) |
5/29 (17.2) |
First Author (Publication Year) | Phenotypic Resistance | Genotypic Resistance | ||||
---|---|---|---|---|---|---|
Antibiotic | Pre-Mass Gathering Number (%) | Post-Mass Gathering Number (%) | Resistance Genes | Pre-Mass Gathering Number (%) | Post-Mass Gathering Number (%) | |
Leangapichart et al. (2016) [32] | Ceftriaxone | 0 | 5/129 (3.9) | blaCTX-M-15 (+TEM and SHV) blaCTX-M-14 + blaSHV-161 | 0 0 | 4/5 (80.0) 1/5 (20.0) |
Gentamicin | 0 | 4/129 (3.1) | ||||
Ticarcillin/clavulanate | 19/129 (14.7) | 22/129 (17.1) | ||||
Colistin | 5/129 (3.9) | 4/129 (3.1) | ||||
Any antibiotic | 22/129 (17.1) | 24/129 (18.6) | ||||
Leangapichart et al. (2016) [34] | Amoxycillin, amoxycillin–clavulanic acid, Trimethoprim-sulfamethoxazole | 0 | 1/1 (100.0) | mcr1 and blaTEM-1 | 0 | 1/1 (100.0) |
Booq et al. (2022) [52] | Cefoxitin | -- | 22/23 (95.7) | blaVIM blaOXA-48 blaNDM-1 blaOXA-23-like | -- -- -- -- | 23/23 (100.0) 20/23 (87.0) 7/23 (30.4) 1/23 (4.3) |
Cefepime | 22/23 (95.7) | |||||
Aztreonam | 22/23 (95.7) | |||||
Ceftazidime | 22/23 (95.7) | |||||
Cefotaxime | 23/23 (100.0) | |||||
Ciprofloxacin | 22/23 (95.7) | |||||
Meropenem | 21/23 (91.3) | |||||
Imipenem | 22/23 (95.7) | |||||
Ampicillin | 23/23 (100.0) | |||||
Baharin et al. (2021) [55] | The study only tested for resistance genes, not for specific antibiotic resistance | -- | -- | blaKPC | -- | 2/4 (50.0) |
blaOXA-48 | -- | 2/4 (50.0) | ||||
mefA gene | -- | 5/13 (38.5) | ||||
mefA & pbpA | -- | 5/13 (38.5) | ||||
pbpA | -- | 2/13 (15.4) | ||||
Hoang et al. (2021) [50] | Penicillin | -- | † (100.0) | CTX-M-A | 0/268 (0) | 2/268 (0.7) |
Ampicillin–clavulanate | † (57.8) | CTX-M-A and TEM | 0/268 (0) | 3/268 (1.1) | ||
Cefepime | † (57.3) | CTX-M-A and SHV | 1/268 (0.4) | 4/268 (1.5) | ||
Ceftriaxone | † (95.5) | CTX-M-A, TEM, and SHV | 3/268 (1.1) | 10/268 (3.7) | ||
Ouaddane et al. (2024) [58] | Amoxicillin–clavulanate | 0/1 (0) | 1/1 (100) | -- | -- | -- |
Ceftriaxone | 1/1 (100) | 1/1 (100) | ||||
Fosfomycin | 1/1 (100) | 0/1 (0) | ||||
Cotrimoxazole | 1/1 (100) | 1/1 (100) | ||||
Antibiotic | Number resistant (%) | |||||
Alzeer et al. (1998) [19] | Amoxycillin and first-generation cephalosporin | 5/5 (100.0) | ||||
Haseeb et al. (2016) [30] | Amoxycillin–clavulanate | 28/54 (52.0) | ||||
Ampicillin | 55/59 (94.0) | |||||
Aztreonam | 4/17 (23.5) | |||||
Cefazolin | 8/19 (42.1) | |||||
Cefepime | 8/30 (27.0) | |||||
Cefoxitin | 10/50 (20.0) | |||||
Cefuroxime | 8/23 (34.8) | |||||
Ceftazidime | 11/46 (24.9) | |||||
Cefotaxime | 6/26 (23.1) | |||||
Cephalothin | 12/18 (66.7) | |||||
Ertapenem | 3/23 (13.0) | |||||
Imipenem | 5/6 (83.3) | |||||
Meropenem | 3/30 (10.0) | |||||
Piperacillin–tazobactam | 3/18 (16.7) | |||||
Amikacin | 3/60 (5.0) | |||||
Gentamicin | 24/63 (38.1) | |||||
Tobramycin | 6/13 (46.2) | |||||
Ciprofloxacin | 26/63 (41.3) | |||||
Levofloxacin | 4/9 (44.4) | |||||
Moxifloxacin | 16/29 (55.2) | |||||
Marglani et al. (2016) [36] | Amoxycillin–clavulanate | 6/14 (42.9) | ||||
Ampicillin | 14/14 (100.0) | |||||
Imipenem | 3/14 (21.4) | |||||
Piperacillin-tazobactam | 6/14 (42.9) |
First author (Publication Date) | Genotypic Resistance | Pre-Hajj Number (%) | Post-Hajj Number (%) |
---|---|---|---|
Leangapichart et al. (2016) [32] | CTX-M genes † | 13/129 (10.1) | 42/129 (32.6) |
TEM genes | 101/129 (78.3) | 107/129 (83.0) | |
SHV | 82/129 (63.6) | 94/129 (72.9) | |
Leangapichart et al. (2021) [51] | blaOXA-48 | 1/1 (100.0) | |
blaOXA-48-like (blaOXA-547) | 1/1 (100.0) | ||
Baharin et al. (2021) [55] | blaKPC | -- | 2/4 (50.0) |
blaOXA-48 | -- | 2/4 (50.0) | |
Hoang et al. (2021) [50] | CTX-M-A | 10/268 (3.7) | 6/268 (2.2) |
TEM | 2/268 (0.7) | 2/268 (0.7) | |
SHV | 0/268 (0) | 1/268 (0.4) | |
CTX-M-A & TEM | 3/268 (1.1) | 24/268 (9.0) | |
CTX-M-A & SHV | 1/268 (0.4) | 5/268 (1.9) | |
TEM and SHV | 1/268 (0.4) | 1/268 (0.4) | |
CTX-M-A, TEM & SHV | 2/268 (0.7) | 10/268 (3.7) | |
Ouaddane et al. (2024) [58] | ARG | 260/295 (88.1) | 230/291 (79.0) |
CTX-MA | 68/295 (23.0) | 82/291 (28.2) | |
CTX-MB | 30/295 (10.1) | 13/291 (4.5) | |
SHV | 154/295 (52.0) | 124/291 (42.6) | |
TEM | 259/295 (87.5) | 218/291 (3.9) | |
OXA 23 | 10/295 (3.9) | 1/291 (0.3) | |
Leangapichart et al. (2017) [35] | CTX-M genes | 20/218 (9.2) | 71/218 (32.6) |
Acquisition rate: 68/218 (31.0%) in 2013 and 76/218 (34.8%) in 2014, overall 32.6% | |||
blaCTX-M-15 | Acquisition rate: 17/129 (13.2) in 2013 and 13/89 (14.6) in 2014 | ||
blaCTX-M-78 | Acquisition rate: Overall, 7/71 (9.9) | ||
blaCTX-M-152 | Acquisition rate: Overall, 5/71 (7.0) | ||
More than one CTX-M gene acquired | Acquisition rate: Overall, 22/218 (10.1) |
First Author (Publication Date) | Antibiotic or Resistance Profile | Pre-Umrah (or Pre-Magal) Number (%) | Post-Umrah (or Post-Magal) Number (%) | Pre-Hajj Number (%) | Post-Hajj Number (%) |
---|---|---|---|---|---|
Johargy et al. (2011) [31] | MRSA | 16/155 (10.3) | 25/235 (10.6) | 30/153 (19.6) | 19/128 (14.8) |
Penicillin | 136/155 (87.7) | 207/235 (88.1) | 132/153 (86.3) | 101/128 (78.9) | |
Gentamicin | 4/155 (2.6) | 7/235 (3.0) | 14/153 (9.2) | 11/128 (8.6) | |
Tobramycin | 6/155 (3.9) | 9/235 (3.8) | 18/153 (11.8) | 13/128 (10.2) | |
Levofloxacin | 8/155 (5.2) | 10/235 (4.3) | 19/153 (12.4) | 26/128 (20.3) | |
Moxifloxacin | 6/155 (3.9) | 8/235 (3.4) | 8/153 (5.2) | 13/128 (10.2) | |
Erythromycin | 17/155 (11.0) | 26/235 (11.1) | 96/153 (62.8) | 32/128 (25.0) | |
Clindamycin | 14/155 (9.0) | 24/235 (10.2) | 28/153 (18.3) | 28/128 (21.9 | |
Tetracycline | 36/155 (23.2) | 54/235 (19.2) | 26/153 (17.0) | 63/128 (49.2) | |
Fosfomycin | 16/155 (10.3) | 26/235 (11.1) | 32/153 (20.9) | 28/128 (21.9) | |
Nitrofurantion | 2/155 (1.3) | 5/235 (2.1) | 30/153 (19.6) | NR | |
Fusidic Acid | 16/155 (10.3) | 26/235 (11.1) | NR | 26/128 (20.3) | |
Co-trimoxazole | 3/155 (1.9) | 6/235 (2.6) | 22/153 (14.4) | 15/128 (11.7) | |
Mupirocin | 1/155 (0.7) | 3/235 (1.3) | 12/153 (7.8) | NR | |
Rifampicin | NR | NR | 1/153 (0.7) | 0/128 (0) | |
Ouaddane et al. (2024) [57] * | MRSA | 22/423 (5.2) | 11/423 (2.6) | -- | |
mecA gene | 9/140 (6.4) | 6/140 (4.3) | |||
mecC gene | 10/102 (9.8) | 4/102 (3.9) | |||
Dao et al. (2024) [59] | MRSA | -- | 25/606 (4.1)All were positive for mecA gene | 62/606 (10.6)All positive for mecA gene | |
Phenotypic Resistance | Genotypic Resistance | ||||
Antibiotic/phenotype | Number (%) | Resistance gene | Number (%) | ||
Hoang et al. (2021) [50] | MRSA Fusidic acid Erythromycin | 12/12 (100.0) 8/12 (66.7) 1/12 (8.3) | mecA | 12/12 (100.0) | |
Memish et al. (2006) [38] | MRSA | 6/411 (1.5) | mecA | 6/85 (7.1) | |
Al-Zahrani et al. (2019) [47] | MRSA | 41/89 (46.1) | SCCmec IV | 21/41 (51.2) | |
SCCmec V | 10/41 (24.4) | ||||
SCCmec III | 5/41 (12.2) | ||||
SCCmec II | 2/41 (4.9) | ||||
Non-Typable | 3/41 (7.3) | ||||
Fatani et al. (2002) [25] | MRSA | 1/47 (2.1) | |||
Penicillin | 38/47 (80.9) | ||||
Erythromycin | 2/47 (4.3) | ||||
Cephalothin | 1/4 (2.1) | ||||
Co-trimoxazole | 2/47 (4.3) | ||||
Clindamycin | 2/47 (4.3) | ||||
Tetracycline | 6/47 (12.8) | ||||
Gentamicin | 3/47 (6.4) | ||||
Haseeb et al. (2016) [30] | MRSA | 36/57 (63.2) | |||
Amoxycillin–clavulanate | 15/20 (75.0) | ||||
Ampicillin | 17/22 (77.3) | ||||
Aztreonam | 5/7 (71.4) | ||||
Cefazolin | 5/6 (83.3) | ||||
Cefepime | 3/5 (60.0) | ||||
Cefoxitin | 3/10 (30.0) | ||||
Cefuroxime | 4/5 (80.0) | ||||
Ceftazidime | 4/8 (50.0) | ||||
Cefotaxime | 3/5 (60.0) | ||||
Ceftriaxone | 4/6 (66.7) | ||||
Cephalothin | 13/15 (86.7) | ||||
Imipenem | 10/20 (50) | ||||
Penicillin G | 10/11 (90.9) | ||||
Gentamicin | 10/24 (41.7) | ||||
Ciprofloxacin | 15/24 (62.5) | ||||
Moxifloxacin | 5/12 (41.7) | ||||
MSSA | 21/57 (36.8) | ||||
Amoxycillin–clavulanate | 4/14 (28.6) | ||||
Ampicillin | 10/11 (90.9) | ||||
Imipenem | 3/7 (42.7) | ||||
Oxacillin | 4/17 (23.5) | ||||
Penicillin G | 8/9 (88.9) | ||||
Ciprofloxacin | 4/10 (40.0) | ||||
Moxifloxacin | 4/10 (40.0) | ||||
Marglani et al. (2016) [36] | MRSA | 13/46 (28.2) | |||
Amoxycillin-clavulanate | 13/13 (100.0) | ||||
Ampicillin | 13/13 (100.0) | ||||
Cefoxitin | 13/13 (100.0) | ||||
Cefepime | 13/13 (100.0) | ||||
Ceftazidime | 13/13 (100.0) | ||||
Ceftriaxone | 13/13 (100.0) | ||||
Ciprofloxacin | 8/13 (61.5) | ||||
Levofloxacin | 9/13 (69.2) | ||||
Gentamicin | 6/13 (46.2) | ||||
Imipenem | 13/13 (100.0) | ||||
Piperacillin–tazobactam | 13/13 (100.0) | ||||
Co-trimoxazole | 7/13 (53.9) | ||||
Clindamycin | 4/13 (30.8) | ||||
Azithromycin | 12/13 (92.3) | ||||
Erythromycin | 10/13 (76.9) | ||||
Tetracycline | 5/13 (38.5) | ||||
MSSA | 33/46 (71.7) | ||||
Amoxycillin–clavulanate | 7/33 (21.2) | ||||
Ampicillin | 13/33 (39.4) | ||||
Ceftazidime | 1/33 (3.0) | ||||
Ciprofloxacin | 4/33 (12.1) | ||||
Levofloxacin | 4/33 (12.1) | ||||
Gentamicin | 1/33 (3.0) | ||||
Imipenem | 5/33 (15.2) | ||||
Clindamycin | 3/33 (9.1) | ||||
Azithromycin | 7/33 (21.2) | ||||
Erythromycin | 6/33 (18.2) | ||||
Tetracycline | 6/33 (18.2) | ||||
Bokhary et al. (2022) [48] | MRSA | 1/121 (1.0) |
First Author (Publication Year) | Antibiotic/Resistance Profile | Pre-Hajj Number (%) | Post-Hajj Number (%) | |
---|---|---|---|---|
Ganaie et al. (2018) [27] | Co-trimoxazole | 62/105 (59.0) | 70/133 (52.6) | |
Tetracycline † | 31/105 (29.5) | 68/133 (51.1) | ||
Erythromycin † | 27/105 (25.7) | 61/133 (45.9) | ||
Levofloxacin † | 6/105 (5.7) | 23/133 (17.3) | ||
Cefotaxime | 1/105 (1.0) | 0/133 (0) | ||
Penicillin non-susceptible | 2/105 (1.9) | 1/133 (0.8) | ||
Memish et al. (2015) [37] | Non-susceptible to one antibiotic † | 39/191 (20.4) | 98/191 (51.3) | |
Non-susceptible to three antibiotics † | 9/191 (4.7) | 35/191 (18.3) | ||
Harimurti et al. (2021) [53] | Chloramphenicol | 11/70 (15.7) | 16/68 (23.5 | |
Erythromycin | 8/70 (11.4) | 14/68 (20.6) | ||
Clindamycin | 9/70 (12.9) | 8/68 (11.8) | ||
Tetracycline | 41/70 (58.6) | 44/68 (64.7) | ||
Co-trimoxazole | 40/70 (57.1) | 29/68 (42.6) | ||
Penicillin | 35/70 (50.0) | 33/68 (48.5) | ||
Antibiotic/resistance profile | Number resistant (%) | Resistance gene | Number (%) | |
Alzeer et al. (1998) [19] | Penicillin | 2/6 (33.3) | NR | NR |
Fatani et al. (2002) [25] | Oxacillin and Penicillin | 0/24 (0) | NR | NR |
Memish et al. (2016) [39] | Penicillin non-susceptible | 34/110 (30.9) | mefE only ermB only mefE and ermB | 12/27 (44.4) 10/27 (37.0) 5/27 (18.5) |
|
| |||
|
| |||
Amoxycillin “intermediate” susceptibility | 3/110 (2.7) | |||
Cefotaxime “intermediate” susceptibility | 2/110 (1.8) | |||
Erythromycin | 27/110 (24.5) | |||
Clindamycin | 14/110 (12.7) | |||
Tetracycline | 61/110 (55.5) | |||
Chloramphenicol | 7/110 (6.4) | |||
Co-trimoxazole | ||||
|
| |||
|
| |||
Levofloxacin/moxifloxacin | 99/110 (0.9) | |||
Baharin et al. (2021) [55] | - | - | mefA only | 5/13 (38.5) |
pbpA only | 2/13 (15.4) | |||
mefA and pbpA | 5/13 (38.5) | |||
ermB | 0/13 (0) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pao, L.T.; Tashani, M.; King, C.; Rashid, H.; Khatami, A. Antimicrobial Resistance Associated with Mass Gatherings: A Systematic Review. Trop. Med. Infect. Dis. 2025, 10, 2. https://doi.org/10.3390/tropicalmed10010002
Pao LT, Tashani M, King C, Rashid H, Khatami A. Antimicrobial Resistance Associated with Mass Gatherings: A Systematic Review. Tropical Medicine and Infectious Disease. 2025; 10(1):2. https://doi.org/10.3390/tropicalmed10010002
Chicago/Turabian StylePao, Linda Tong, Mohamed Tashani, Catherine King, Harunor Rashid, and Ameneh Khatami. 2025. "Antimicrobial Resistance Associated with Mass Gatherings: A Systematic Review" Tropical Medicine and Infectious Disease 10, no. 1: 2. https://doi.org/10.3390/tropicalmed10010002
APA StylePao, L. T., Tashani, M., King, C., Rashid, H., & Khatami, A. (2025). Antimicrobial Resistance Associated with Mass Gatherings: A Systematic Review. Tropical Medicine and Infectious Disease, 10(1), 2. https://doi.org/10.3390/tropicalmed10010002