Risk of Colonization with Multidrug-Resistant Gram-Negative Bacteria Among Travellers and Migrants: A Narrative Review
Abstract
:1. Introduction
2. Defining MDR Bacteria
3. Mechanisms of Resistance in Gram-Negative Bacteria
- Production of antibiotic-inactivating enzymes: Production of enzymes able to inactivate antibiotics is the most frequent mechanism of beta-lactams resistance among Gram-negative bacteria. ESBL can hydrolyse extended-spectrum beta-lactam antibiotics (such as third-generation cephalosporins) and other beta-lactams, such as penicillins. ESBL-producing strains of E. coli and Klebsiella pneumoniae have become endemic in many parts of the world, posing a significant threat to public health. However, these beta-lactamases are unable to degrade carbapenems. P. aeruginosa also produces a variety of beta-lactamases, including cephalosporinases and carbapenemases, which degrade beta-lactam antibiotics. The emergence of CRE, driven by carbapenemase production, is a major cause for concern. These enzymes, including KPC (Klebsiella pneumoniae carbapenemase) and OXA-48, can degrade carbapenems and nearly all other beta-lactams, leaving mostly only combinations with the latest carbapenemase inhibitors as viable therapeutic options among beta-lactams. A subset of these enzymes, metallo-beta-lactamases (such as the New Delhi metallo-beta-lactamase—NDM), are especially nefarious, given that they are not inhibited by any beta-lactamase inhibitors. As aztreonam is not degraded by these enzymes, it could be an interesting therapeutic alternative. However, it is not uncommon to observe the co-production of metallo-beta-lactamase and other enzymes (e.g., ESBL), especially in P. aeruginosa, in various regions of the world, rendering aztreonam ineffective by itself. Aminoglycoside-modifying enzymes are a key mechanism by which Gram-negative bacteria become MDR through antibiotic modification. They are crucial enzymes that catalyse the chemical modification of aminoglycoside antibiotics, resulting in their inactivity.
- Efflux pumps: Efflux pumps are transmembranar proteins that can actively export a variety of antibiotics from the cell, reducing their intracellular concentrations. They are responsible for the emergence of resistance to several antibiotic classes, such as tetracyclines, fluoroquinolones, aminoglycosides, and penicillins.
- Modifications of antibiotic targets: Modifications in drug target sites are one of the primary mechanisms by which Gram-negative bacteria acquire resistance to multiple antibiotics. For example, alterations in the lipopolysaccharide (LPS) present in the outer cell membrane enhance bacterial stability by protecting it from external threats. On the other hand, the addition of positively charged sugars decreases the negative charge of Lipid A, reducing its ability to bind cationic antimicrobial peptides and weakening electrostatic interactions, which are essential for polymixins such as colistin. Another target that can be modified is the 16S ribosomal RNA. Its methylation has emerged as a new resistance mechanism, specifically against drugs acting at this site, including aminoglycosides. Changes in penicillin-binding proteins (PBPs) can also result in a reduced ability of beta-lactams to bind to their target site, thereby decreasing their activity.
- Decreased porins permeability: Another mechanism used by many Gram-negative bacteria involves limiting the influx of antibiotics into the cell, thereby preventing their action on the therapeutic target. Mutations in porins, transmembrane proteins essential for the entry of hydrophilic drugs, severely limit the efficacy of drugs such as beta-lactams, fluoroquinolones, and tetracyclines. Another important resistance mechanism is remodelling of the outer cell membrane, allowing the bacteria to regulate its membrane by removing or adding specific components (such as lipids or proteins), enabling adaptation to a new environment.
- Biofilm formation: Some bacteria, in particular P. aeruginosa, can form biofilms on medical devices and host tissues, which protect them from both the host immune response and antibiotic treatment. Biofilms are a major contributor to chronic infections, particularly in patients with cystic fibrosis and those with prosthetic devices.
4. Epidemiology of International Travel and MDR Risk
5. Regions with Higher Risk of MDR Strains
6. Risk of MDR Gram-Negative Colonization in Travellers and Migrants
7. Mass Gatherings as High-Risk Environments
8. Duration of Colonization and Overall Impact in Healthcare
9. Prevention and Control of MDR Gram-Negative Bacteria Colonization
- Pre-travel consultation and vaccination: Travellers should receive appropriate consultation and vaccinations before visiting endemic regions [95]. Vaccines for typhoid fever, cholera (only in high-risk settings such as outbreaks), and hepatitis A are readily available. While pre-travel receipt of the injected typhoid vaccine and the oral cholera vaccine have been associated with a reduction in the risk of E. coli acquisition, further research is needed to assess the true impact of protection and its possible mechanism [72,96].
- Hygiene and sanitation practices: Travellers should be educated on proper hygiene, including frequent handwashing with soap and water, using hand sanitizers, and avoiding the consumption of raw or undercooked food and untreated water [93]. Safe water consumption is particularly important in high-risk regions, where waterborne pathogens can carry resistant strains. Travellers should avoid petting stray or zoo animals and, if they do, they should follow appropriate sanitation measures afterwards.
- Antibiotic stewardship: Travellers should avoid self-medication and only use antibiotics as prescribed by a healthcare professional [93]. Educating travellers on the risks of misusing antibiotics can help curb the development of resistance. Albeit optimized hygiene practices can reduce the risk of traveller’s diarrhoea, should it happen, antibiotics ought to be used judiciously. There is no role for antimicrobial prophylaxis (other than in very selective high-risk health-related situations) [97]. In light or moderate diarrhoea, taking only antidiarrheal drugs such as loperamide is acceptable, with antimicrobial use being recommended in cases of severe diarrhoea or symptoms of dysentery [97]. No association has been observed between the use of loperamide without antibiotics and acquisition of MDR Gram-negatives [98].
- Avoid unnecessary hospitalization: Hospitalization is associated with colonization with Gram-negative bacteria [93,99]. Travellers should avoid seeking medical care unless absolutely necessary. When seeking healthcare abroad, if possible, it might be helpful to ensure that the facility adheres to stringent infection control protocols.
- Post-travel screening: Currently there is no recommendation for screening for MDR colonization upon returning home after travelling [97]. However, it might be useful in selected cases, especially for vulnerable travellers who needed to seek medical care abroad or were visiting friends and family, especially in high-risk regions, and present with a suspected bacterial infection. Early detection of colonization can help prevent further spread and ensure that proper infection control measures are in place if an infection develops. Nevertheless, as part of Antimicrobial Stewardship programmes, a thorough epidemiologic history and screen for MDR upon arrival to a healthcare facility might be useful.
10. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- UNWTO World Tourism Organization. International Tourism Highlights, 2024th ed.; UN Tourism: Madrid, Spain, 2024. [Google Scholar] [CrossRef]
- Kajova, M.; Khawaja, T.; Kangas, J.; Mäkinen, H.; Kantele, A. Import of multidrug-resistant bacteria from abroad through interhospital transfers, Finland, 2010–2019. Eurosurveillance 2021, 26, 2010–2019. [Google Scholar] [CrossRef] [PubMed]
- Arcilla, M.S.; van Hattem, J.M.; Haverkate, M.R.; Bootsma, M.C.J.; van Genderen, P.J.J.; Goorhuis, A.; Grobusch, M.P.; Lashof, A.M.O.; Molhoek, N.; Schultsz, C.; et al. Import and spread of extended-spectrum β-lactamase-producing Enterobacteriaceae by international travellers (COMBAT study): A prospective, multicentre cohort study. Lancet Infect. Dis. 2017, 17, 78–85. [Google Scholar] [CrossRef] [PubMed]
- Tham, J.; Odenholt, I.; Walder, M.; Brolund, A.; Ahl, J.; Melander, E. Extended-spectrum beta-lactamase-producing Escherichia coli in patients with travellers’ diarrhoea. Scand. J. Infect. Dis. 2010, 42, 275–280. [Google Scholar] [CrossRef] [PubMed]
- Murray, B.E.; Mathewson, J.J.; DuPont, H.L.; Ericsson, C.D.; Reves, R.R. Emergence of resistant fecal Escherichia coli in travelers not taking prophylactic antimicrobial agents. Antimicrob. Agents Chemother. 1990, 34, 515–518. [Google Scholar] [CrossRef] [PubMed]
- O’Neill, J. Tackling Drug-Resistant Infections Globally: Final Report and Recommendations. Review on Antimicrobial Resistance. 2016. Available online: https://amr-review.org/sites/default/files/160518_Final%20paper_with%20cover.pdf (accessed on 1 November 2024).
- Cassini, A.; Högberg, L.D.; Plachouras, D.; Quattrocchi, A.; Hoxha, A.; Simonsen, G.S.; Colomb-Cotinat, M.; Kretzschmar, M.E.; Devleesschauwer, B.; Cecchini, M.; et al. Attributable deaths and disability-adjusted life-years caused by infections with antibiotic-resistant bacteria in the EU and the European Economic Area in 2015: A population-level modelling analysis. Lancet Infect. Dis. 2019, 19, 56–66. [Google Scholar] [CrossRef]
- Murray, C.J.L.; Ikuta, K.S.; Sharara, F.; Swetschinski, L.; Robles Aguilar, G.; Gray, A.; Han, C.; Bisignano, C.; Rao, P.; Wool, E.; et al. Global burden of bacterial antimicrobial resistance in 2019: A systematic analysis. Lancet 2022, 399, 629–655. [Google Scholar] [CrossRef] [PubMed]
- Chatterjee, A.; Modarai, M.; Naylor, N.R.; Boyd, S.E.; Atun, R.; Barlow, J.; Holmes, A.H.; Johnson, A.; Robotham, J.V. Quantifying drivers of antibiotic resistance in humans: A systematic review. Lancet Infect. Dis. 2018, 18, e368–e378. [Google Scholar] [CrossRef] [PubMed]
- Hellinger, W. Confronting the Problem of Increasing Antibiotic Resistance. South. Med. J. 2000, 93, 842–849. [Google Scholar] [CrossRef]
- Tamma, P.D.; Heil, E.L.; Justo, J.A.; Mathers, A.J.; Satlin, M.J.; Bonomo, R.A. Infectious Diseases Society of America 2024 Guidance on the Treatment of Antimicrobial-Resistant Gram-Negative Infections. Clin. Infect. Dis. 2024. ahead of print. [Google Scholar] [CrossRef]
- World Health Organization. Antimicrobial Resistance: Global Report on Surveillance. 2014. Available online: https://www.who.int/publications/i/item/9789241564748 (accessed on 1 December 2024).
- Mendes Pedro, D.; Paulo, S.E.; Santos, C.M.; Fonseca, A.B.; Melo Cristino, J.; Pereira, Á.A.; Caneiras, C. Extensively drug-resistant Pseudomonas aeruginosa: Clinical features and treatment with ceftazidime/avibactam and ceftolozane/tazobactam in a tertiary care university hospital center in Portugal—A cross-sectional and retrospective observational study. Front. Microbiol. 2024, 15, 1347521. [Google Scholar] [CrossRef]
- Thabit, A.K.; Crandon, J.L.; Nicolau, D.P. Antimicrobial resistance: Impact on clinical and economic outcomes and the need for new antimicrobials. Expert Opin. Pharmacother. 2015, 16, 159–177. [Google Scholar] [CrossRef]
- Al-Tawfiq, J.A.; Stephens, G.; Memish, Z.A. Inappropriate antimicrobial use and potential solutions: A Middle Eastern perspective. Expert Rev. Anti-Infect. Ther. 2010, 8, 765–774. [Google Scholar] [CrossRef] [PubMed]
- Al-Tawfiq, J.A.; Memish, Z.A. Potential risk for drug resistance globalization at the Hajj. Clin. Microbiol. Infect. 2015, 21, 109–114. [Google Scholar] [CrossRef] [PubMed]
- Andersson, D.I.; Hughes, D. Microbiological effects of sublethal levels of antibiotics. Nat. Rev. Microbiol. 2014, 12, 465–478. [Google Scholar] [CrossRef] [PubMed]
- Diarra, M.S.; Silversides, F.G.; Diarrassouba, F.; Pritchard, J.; Masson, L.; Brousseau, R.; Bonnet, C.; Delaquis, P.; Bach, S.; Skura, B.J.; et al. Impact of feed supplementation with antimicrobial agents on growth performance of broiler chickens, Clostridium perfringens and Enterococcus counts, and antibiotic resistance phenotypes and distribution of antimicrobial resistance determinants in Escherichia coli isolates. Appl. Environ. Microbiol. 2007, 73, 6566–6576. [Google Scholar] [CrossRef]
- Diarrassouba, F.; Diarra, M.S.; Bach, S.; Delaquis, P.; Pritchard, J.; Topp, E.; Skura, B.J. Antibiotic Resistance and Virulence Genes in Commensal Escherichia coli and Salmonella Isolates from Commercial Broiler Chicken Farms. J. Food Prot. 2007, 70, 1316–1327. [Google Scholar] [CrossRef]
- Lee, L.A.; Ostroff, S.M.; McGee, H.B.; Johnson, D.R.; Downes, F.P.; Cameron, D.N.; Bean, N.H.; Griffin, P.M. An Outbreak of Shigellosis at an Outdoor Music Festival. Am. J. Epidemiol. 1991, 133, 608–615. [Google Scholar] [CrossRef]
- Gauba, A.; Rahman, K.M. Evaluation of Antibiotic Resistance Mechanisms in Gram-Negative Bacteria. Antibiotics 2023, 12, 1590. [Google Scholar] [CrossRef]
- Ruppé, E.; Armand-Lefèvre, L.; Estellat, C.; Consigny, P.-H.; El Mniai, A.; Boussadia, Y.; Goujon, C.; Ralaimazava, P.; Campa, P.; Girard, P.-M.; et al. High Rate of Acquisition but Short Duration of Carriage of Multidrug-Resistant Enterobacteriaceae After Travel to the Tropics. Clin. Infect. Dis. 2015, 61, 593–600. [Google Scholar] [CrossRef]
- Östholm-Balkhed, Å.; Tärnberg, M.; Nilsson, M.; Nilsson, L.E.; Hanberger, H.; Hällgren, A. Travel-associated faecal colonization with esbl-producing Enterobacteriaceae: Incidence and risk factors. J. Antimicrob. Chemother. 2013, 68, 2144–2153. [Google Scholar] [CrossRef] [PubMed]
- Barreto Miranda, I.; Ignatius, R.; Pfüller, R.; Friedrich-Jänicke, B.; Steiner, F.; Paland, M.; Dieckmann, S.; Schaufler, K.; Wieler, L.H.; Guenther, S.; et al. High carriage rate of ESBL-producing Enterobacteriaceae at presentation and follow-up among travellers with gastrointestinal complaints returning from India and Southeast Asia. J. Travel Med. 2016, 23, tav024. [Google Scholar] [CrossRef] [PubMed]
- Spadar, A.; Phelan, J.; Elias, R.; Modesto, A.; Caneiras, C.; Marques, C.; Lito, L.; Pinto, M.; Cavaco-Silva, P.; Ferreira, H.; et al. Genomic epidemiological analysis of Klebsiella pneumoniae from Portuguese hospitals reveals insights into circulating antimicrobial resistance. Sci. Rep. 2022, 12, 13791. [Google Scholar] [CrossRef] [PubMed]
- Lorme, F.; Maataoui, N.; Rondinaud, E.; Esposito-Farèse, M.; Clermont, O.; Ruppe, E.; Arlet, G.; Genel, N.; Matheron, S.; Andremont, A.; et al. Acquisition of plasmid-mediated cephalosporinase producing Enterobacteriaceae after a travel to the tropics. PLoS ONE 2018, 13, e0206909. [Google Scholar] [CrossRef]
- Mendes, G.; Ramalho, J.F.; Duarte, A.; Pedrosa, A.; Silva, A.C.; Méndez, L.; Caneiras, C. First Outbreak of NDM-1-Producing Klebsiella pneumoniae ST11 in a Portuguese Hospital Centre during the COVID-19 Pandemic. Microorganisms 2022, 10, 251. [Google Scholar] [CrossRef] [PubMed]
- Mendes, G.; Ramalho, J.F.; Bruschy-fonseca, A.; Lito, L.; Duarte, A.; Melo-cristino, J.; Caneiras, C. Whole-Genome Sequencing Enables Molecular Characterization of Non-Clonal Group 258 High-Risk Clones (ST13, ST17, ST147 and ST307) Among Carbapenem-Resistant Klebsiella pneumoniae From a Tertiary University Hospital Centre in Portugal. Microorganisms 2022, 10, 416. [Google Scholar] [CrossRef] [PubMed]
- Kumarasamy, K.K.; Toleman, M.A.; Walsh, T.R.; Bagaria, J.; Butt, F.; Balakrishnan, R.; Chaudhary, U.; Doumith, M.; Giske, C.G.; Irfan, S.; et al. Emergence of a new antibiotic resistance mechanism in India, Pakistan, and the UK: A molecular, biological, and epidemiological study. Lancet Infect. Dis. 2010, 10, 597–602. [Google Scholar] [CrossRef] [PubMed]
- Ruppé, E.; Armand-Lefèvre, L.; Estellat, C.; El-Mniai, A.; Boussadia, Y.; Consigny, P.H.; Girard, P.M.; Vittecoq, D.; Bouchaud, O.; Pialoux, G.; et al. Acquisition of carbapenemase-producing Enterobacteriaceae by healthy travellers to India, France, February 2012 to March 2013. Eurosurveillance 2014, 19, 20768. [Google Scholar] [CrossRef] [PubMed]
- Doménech-Sánchez, A.; Laso, E.; Albertí, S. Environmental surveillance of Pseudomonas aeruginosa in recreational waters in tourist facilities of the Balearic Islands, Spain (2016–2019). Travel Med. Infect. Dis. 2023, 54, 102622. [Google Scholar] [CrossRef] [PubMed]
- Lamere, L.; Smith, E.; Grieser, H.; Arduino, M.; Hlavsa, M.C.; Combes, S. Pseudomonas Infection Outbreak Associated with aHotel Swimming Pool. Centers Dis. Control Prev. MMWR 2024, 73, 5–9. [Google Scholar]
- UNWTO. International Tourism Highlights, International Tourism Trends, 2019. In International Tourism Highlights, 2020 Edition; UN Tourism: Madrid, Spain, 2020; pp. 1–24. [Google Scholar]
- INE. Estatísticas do Turismo Estatísticas do Turismo 2020–2021. 2021. Available online: https://www.ine.pt/ngt_server/attachfileu.jsp?look_parentBoui=512249749&att_display=n&att_download=y (accessed on 1 December 2024).
- UNWTO. International Tourism Highlights, 2017 Edition; UN Tourism: Madrid, Spain, 2017. [Google Scholar]
- Slavov, M.; Palupi, R. Over-Tourism: The Untold Story of the Rise of Sunny Beach, Bulgaria. Int. J. Appl. Sci. Tour. Events 2019, 3, 142. [Google Scholar] [CrossRef]
- Pallett, S.J.C.; Boyd, S.E.; O’Shea, M.K.; Martin, J.; Jenkins, D.R.; Hutley, E.J. The contribution of human conflict to the development of antimicrobial resistance. Commun. Med. 2023, 3, 5–8. [Google Scholar] [CrossRef] [PubMed]
- United Nations High Commissioner for Refugees UNHCR. Data and Statistics Global Trends: Forced Displacement in 2022. UNHCR Global Data Service. 2023. Available online: https://www.unhcr.org/global-trends-report-2022 (accessed on 1 December 2024).
- Fialho, A.; Lopes, S.M.; Machado, R. Relatório de Imigração, Fronteiras e Asilo 2022. Serv. Estrang. Front. 2023, 1, 5–65. [Google Scholar]
- Seijas-Pereda, L.; Carmena, D.; Rescalvo-Casas, C.; Hernando-Gozalo, M.; Prieto-Pérez, L.; Cuadros-González, J.; Pérez-Tanoira, R. Global Dynamics of Gastrointestinal Colonisations and Antimicrobial Resistance: Insights from International Travellers to Low- and Middle-Income Countries. Trop. Med. Infect. Dis. 2024, 9, 182. [Google Scholar] [CrossRef] [PubMed]
- Govindaswamy, A.; Bajpai, V.; Khurana, S.; Aravinda, A.; Batra, P.; Malhotra, R.; Mathur, P. Prevalence and characterization of beta-lactamase-producing Escherichia coli isolates from a tertiary care hospital in India. J. Lab. Physicians 2019, 11, 123–127. [Google Scholar] [CrossRef] [PubMed]
- Ruiz-Lievano, A.P.; Cervantes-Flores, F.; Nava-Torres, A.; Carbajal-Morales, P.J.; Villaseñor-Garcia, L.F.; Zavala-Cerna, M.G. Fluoroquinolone Resistance in Escherichia coli Causing Community-Acquired Urinary Tract Infections: A Systematic Review. Microorganisms 2024, 12, 2320. [Google Scholar] [CrossRef] [PubMed]
- Veeraraghavan, B.; Shankar, C.; Karunasree, S.; Kumari, S.; Ravi, R.; Ralph, R. Carbapenem resistant Klebsiella pneumoniae isolated from bloodstream infection: Indian experience. Pathog. Glob. Health 2017, 111, 240–246. [Google Scholar] [CrossRef] [PubMed]
- Pragasam, A.; Veeraraghavan, B.; Anandan, S.; Narasiman, V.; Sistla, S.; Kapil, A.; Mathur, P.; Ray, P.; Wattal, C.; Bhattacharya, S.; et al. Dominance of international high-risk clones in carbapenemase-producing Pseudomonas aeruginosa: Multicentric molecular epidemiology report from India. Indian J. Med. Microbiol. 2018, 36, 344–351. [Google Scholar] [CrossRef] [PubMed]
- Quan, J.; Dai, H.; Liao, W.; Zhao, D.; Shi, Q.; Zhang, L.; Shi, K.; Akova, M.; Yu, Y. Etiology and prevalence of ESBLs in adult community-onset urinary tract infections in East China: A prospective multicenter study. J. Infect. 2021, 83, 175–181. [Google Scholar] [CrossRef] [PubMed]
- Xie, X.; Liu, Z.; Huang, J.; Wang, X.; Tian, Y.; Xu, P.; Zheng, G. Molecular epidemiology and carbapenem resistance mechanisms of Pseudomonas aeruginosa isolated from a hospital in Fujian, China. Front. Microbiol. 2024, 15, 1431154. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Y.; Jia, P.; Yu, W.; Chu, X.; Liu, X.; Yang, Q. The epidemiology and virulence of carbapenem-resistant Pseudomonas aeruginosa in China. Lancet Microbe 2023, 4, e665. [Google Scholar] [CrossRef]
- Sawatwong, P.; Sapchookul, P.; Whistler, T.; Gregory, C.J.; Sangwichian, O.; Makprasert, S.; Jorakate, P.; Srisaengchai, P.; Thamthitiwat, S.; Promkong, C.; et al. High burden of extended-spectrum β-lactamase-producing Escherichia coli and Klebsiella pneumoniae bacteremia in older adults: A seven-year study in two rural Thai Provinces. Am. J. Trop. Med. Hyg. 2019, 100, 943–951. [Google Scholar] [CrossRef] [PubMed]
- Kiratisin, P.; Apisarnthanarak, A.; Laesripa, C.; Saifon, P. Molecular characterization and epidemiology of extended-spectrum-β-lactamase-producing Escherichia coli and Klebsiella pneumoniae isolates causing health care-associated infection in Thailand, where the CTX-M family is endemic. Antimicrob. Agents Chemother. 2008, 52, 2818–2824. [Google Scholar] [CrossRef] [PubMed]
- Hongsuwan, M.; Srisamang, P.; Kanoksil, M.; Luangasanatip, N.; Jatapai, A.; Day, N.P.; Peacock, S.J.; Cooper, B.S.; Limmathurotsakul, D. Increasing incidence of hospital-acquired and healthcare-associated bacteremia in northeast Thailand: A multicenter surveillance study. PLoS ONE 2014, 9, e109324. [Google Scholar] [CrossRef] [PubMed]
- Siriphap, A.; Kitti, T.; Khuekankaew, A.; Boonlao, C.; Thephinlap, C.; Thepmalee, C.; Suwannasom, N.; Khoothiam, K. High prevalence of extended-spectrum beta-lactamase-producing Escherichia coli and Klebsiella pneumoniae isolates: A 5-year retrospective study at a Tertiary Hospital in Northern Thailand. Front. Cell. Infect. Microbiol. 2022, 12, 4–11. [Google Scholar] [CrossRef]
- Caron, Y.; Chheang, R.; Puthea, N.; Soda, M.; Boyer, S.; Tarantola, A.; Kerléguer, A. Beta-lactam resistance among Enterobacteriaceae in Cambodia: The four-year itch. Int. J. Infect. Dis. 2018, 66, 74–79. [Google Scholar] [CrossRef]
- Suwantarat, N.; Carroll, K.C. Epidemiology and molecular characterization of multidrug-resistant Gram-negative bacteria in Southeast Asia. Antimicrob. Resist. Infect. Control 2016, 5, 15. [Google Scholar] [CrossRef]
- Saengsuwan, P.; Kositpantawong, N.; Kawila, S.; Patugkaro, W.; Romyasamit, C. Prevalence of carbapenemase genes among multidrug-resistant Pseudomonas aeruginosa isolates from tertiary care centers in Southern Thailand. Saudi Med. J. 2022, 43, 991–999. [Google Scholar] [CrossRef] [PubMed]
- Lee, Y.-L.; Ko, W.-C.; Hsueh, P.-R. Geographic Patterns of Carbapenem-Resistant Pseudomonas aeruginosa in the Asia-Pacific Region: Results from the Antimicrobial Testing Leadership and Surveillance (ATLAS) Program, 2015–2019. Antimicrob. Agents Chemother. 2022, 66, 2015–2019. [Google Scholar] [CrossRef]
- Al-Orphaly, M.; Hadi, H.A.; Eltayeb, F.K.; Al-Hail, H.; Samuel, B.G.; Sultan, A.A.; Skariah, S. Epidemiology of Multidrug-Resistant Pseudomonas aeruginosa in the Middle East and North Africa Region. mSphere 2021, 6, 1–15. [Google Scholar] [CrossRef]
- Ouchar Mahamat, O.; Kempf, M.; Lounnas, M.; Tidjani, A.; Hide, M.; Benavides, J.A.; Carrière, C.; Bañuls, A.-L.; Jean-Pierre, H.; Ouedraogo, A.-S.; et al. Epidemiology and prevalence of extended-spectrum β-lactamase- and carbapenemase-producing Enterobacteriaceae in humans, animals and the environment in West and Central Africa. Int. J. Antimicrob. Agents 2021, 57, 106203. [Google Scholar] [CrossRef]
- Manenzhe, R.I.; Zar, H.J.; Nicol, M.P.; Kaba, M. The spread of carbapenemase-producing bacteria in Africa: A systematic review. J. Antimicrob. Chemother. 2015, 70, 23–40. [Google Scholar] [CrossRef] [PubMed]
- Kieffer, N.; Nordmann, P.; Aires-De-Sousa, M.; Poirel, L. High prevalence of carbapenemase-producing Enterobacteriaceae among hospitalized children in Luanda, Angola. Antimicrob. Agents Chemother. 2016, 60, 6189–6192. [Google Scholar] [CrossRef] [PubMed]
- Guzmán-Blanco, M.; Labarca, J.A.; Villegas, M.V.; Gotuzzo, E. Extended spectrum β-lactamase producers among nosocomial Enterobacteriaceae in Latin America. Braz. J. Infect. Dis. 2014, 18, 421–433. [Google Scholar] [CrossRef]
- Karlowsky, J.A.; Kazmierczak, K.M.; Valente, M.L.N.d.F.; Luengas, E.L.; Baudrit, M.; Quintana, A.; Irani, P.; Stone, G.G.; Sahm, D.F. In vitro activity of ceftazidime-avibactam against Enterobacterales and Pseudomonas aeruginosa isolates collected in Latin America as part of the ATLAS global surveillance program, 2017–2019. Braz. J. Infect. Dis. 2021, 25, 101647. [Google Scholar] [CrossRef] [PubMed]
- Meurs, L.; Lempp, F.S.; Lippmann, N.; Trawinski, H.; Rodloff, A.C.; Eckardt, M.; Klingeberg, A.; Eckmanns, T.; Walter, J.; Lübbert, C.; et al. Intestinal colonization with extended-spectrum beta-lactamase producing Enterobacterales (ESBL-PE) during long distance travel: A cohort study in a German travel clinic (2016–2017). Travel Med. Infect. Dis. 2020, 33, 101521. [Google Scholar] [CrossRef]
- Voor In ’T Holt, A.F.; Mourik, K.; Beishuizen, B.; Van Der Schoor, A.S.; Verbon, A.; Vos, M.C.; Severin, J.A. Acquisition of multidrug-resistant Enterobacterales during international travel: A systematic review of clinical and microbiological characteristics and meta-analyses of risk factors. Antimicrob. Resist. Infect. Control 2020, 9, 71. [Google Scholar] [CrossRef] [PubMed]
- Lübbert, C.; Straube, L.; Stein, C.; Makarewicz, O.; Schubert, S.; Mössner, J.; Pletz, M.W.; Rodloff, A.C. Colonization with extended-spectrum beta-lactamase-producing and carbapenemase-producing Enterobacteriaceae in international travelers returning to Germany. Int. J. Med. Microbiol. 2015, 305, 148–156. [Google Scholar] [CrossRef] [PubMed]
- Schaumburg, F.; Sertic, S.M.; Correa-Martinez, C.; Mellmann, A.; Köck, R.; Becker, K. Acquisition and colonization dynamics of antimicrobial-resistant bacteria during international travel: A prospective cohort study. Clin. Microbiol. Infect. 2019, 25, 1287.e1–1287.e7. [Google Scholar] [CrossRef] [PubMed]
- Ruppé, E.; Andremont, A.; Armand-Lefèvre, L. Digestive tract colonization by multidrug-resistant Enterobacteriaceae in travellers: An update. Travel Med. Infect. Dis. 2018, 21, 28–35. [Google Scholar] [CrossRef] [PubMed]
- Kantele, A.; Lääveri, T.; Mero, S.; Vilkman, K.; Pakkanen, S.H.; Ollgren, J.; Antikainen, J.; Kirveskari, J. Antimicrobials increase travelers’ risk of colonization by extended-spectrum betalactamase-producing Enterobacteriaceae. Clin. Infect. Dis. 2015, 60, 837–846. [Google Scholar] [CrossRef]
- Muzembo, B.A.; Kitahara, K.; Ohno, A.; Okamoto, K.; Miyoshi, S.I. Colonization with extended-spectrum beta-lactamase-producing Escherichia coli and traveler’s diarrhea attack rates among travelers to India: A systematic review and meta-analysis. Trop. Dis. Travel Med. Vaccines 2022, 8, 22. [Google Scholar] [CrossRef]
- Kuenzli, E.; Jaeger, V.K.; Frei, R.; Neumayr, A.; DeCrom, S.; Haller, S.; Blum, J.; Widmer, A.F.; Furrer, H.; Battegay, M.; et al. High colonization rates of extended-spectrum β-lactamase (ESBL)-producing Escherichia coli in Swiss Travellers to South Asia- a prospective observational multicentre cohort study looking at epidemiology, microbiology and risk factors. BMC Infect. Dis. 2014, 14, 528. [Google Scholar] [CrossRef] [PubMed]
- Vading, M.; Kabir, M.H.; Kalin, M.; Iversen, A.; Wiklund, S.; Nauclér, P.; Giske, C.G. Frequent acquisition of low-virulence strains of ESBL-producing Escherichia coli in travellers. J. Antimicrob. Chemother. 2016, 71, 3548–3555. [Google Scholar] [CrossRef]
- Hassing, R.J.; Alsma, J.; Arcilla, M.S.; van Genderen, P.J.; Stricker, B.H.; Verbon, A. International travel and acquisition of multidrugresistant Enterobacteriaceae: A systematic review. Eurosurveillance 2015, 20, 30074. [Google Scholar] [CrossRef] [PubMed]
- Worby, C.J.; Sridhar, S.; Turbett, S.E.; Becker, M.V.; Kogut, L.; Sanchez, V.; Bronson, R.A.; Rao, S.R.; Oliver, E.; Walker, A.T.; et al. Gut microbiome perturbation, antibiotic resistance, and Escherichia coli strain dynamics associated with international travel: A metagenomic analysis. Lancet Microbe 2023, 4, e790–e799. [Google Scholar] [CrossRef] [PubMed]
- von Wintersdorff, C.J.H.; Penders, J.; Stobberingh, E.E.; Oude Lashof, A.M.L.; Hoebe, C.J.P.A.; Savelkoul, P.H.M.; Wolffs, P.F.G. High rates of antimicrobial drug resistance gene acquisition after international travel, the Netherlands. Emerg. Infect. Dis. 2014, 20, 649–657. [Google Scholar] [CrossRef] [PubMed]
- Lääveri, T.; Vlot, J.A.; van Dam, A.P.; Häkkinen, H.K.; Sonder, G.J.B.; Visser, L.G.; Kantele, A. Extended-spectrum beta-lactamase-producing Enterobacteriaceae (ESBL-PE) among travellers to Africa: Destination-specific data pooled from three European prospective studies. BMC Infect. Dis. 2018, 18, 341. [Google Scholar] [CrossRef] [PubMed]
- Dethlefsen, L.; Huse, S.; Sogin, M.L.; Relman, D.A. The Pervasive Effects of an Antibiotic on the Human Gut Microbiota, as Revealed by Deep 16S rRNA Sequencing. PLoS Biol. 2008, 6, e280. [Google Scholar] [CrossRef]
- Ahmed, A.M.; Motoi, Y.; Sato, M.; Maruyama, A.; Watanabe, H.; Fukumoto, Y.; Shimamoto, T. Zoo animals as reservoirs of gram-negative bacteria harboring integrons and antimicrobial resistance genes. Appl. Environ. Microbiol. 2007, 73, 6686–6690. [Google Scholar] [CrossRef] [PubMed]
- Shnaiderman-Torban, A.; Steinman, A.; Meidan, G.; Paitan, Y.; Ahmad, W.A.; Navon-Venezia, S. Petting zoo animals as an emerging reservoir of extended-spectrum β-lactamase and AmpC-producing Enterobacteriaceae. Front. Microbiol. 2019, 10, 2488. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Z.; Jiang, S.; Qi, M.; Liu, H.; Zhang, S.; Liu, H.; Zhou, Z.; Wang, L.; Wang, C.; Luo, Y.; et al. Prevalence and characterization of antibiotic resistance genes and integrons in Escherichia coli isolates from captive non-human primates of 13 zoos in China. Sci. Total Environ. 2021, 798, 149268. [Google Scholar] [CrossRef] [PubMed]
- Memish, Z.A.; Steffen, R.; White, P.; Dar, O.; Azhar, E.I.; Sharma, A.; Zumla, A. Mass gatherings medicine: Public health issues arising from mass gathering religious and sporting events. Lancet 2019, 393, 2073–2084. [Google Scholar] [CrossRef] [PubMed]
- Smith-Palmer, A.; Oates, K.; Webster, D.; Taylor, S.; Scott, K.J.; Smith, G.; Parcell, B.; Lindstrand, A.; Wallensten, A.; Fredlund, H.; et al. Outbreak of neisseria meningitidis capsular group w among scouts returning from the world Scout Jamboree, Japan, 2015. Eurosurveillance 2016, 21, 8–14. [Google Scholar] [CrossRef] [PubMed]
- Jacobsson, S.; Stenmark, B.; Hedberg, S.T.; Mölling, P.; Fredlund, H. Neisseria meningitidis carriage in Swedish teenagers associated with the serogroup W outbreak at the World Scout Jamboree, Japan 2015. Apmis 2018, 126, 337–341. [Google Scholar] [CrossRef] [PubMed]
- Leangapichart, T.; Rolain, J.M.; Memish, Z.A.; Al-Tawfiq, J.A.; Gautret, P. Emergence of drug resistant bacteria at the Hajj: A systematic review. Travel Med. Infect. Dis. 2017, 18, 3–17. [Google Scholar] [CrossRef] [PubMed]
- Pao, L.T.; Tashani, M.; King, C.; Rashid, H.; Khatami, A. Antimicrobial Resistance Associated with Mass Gatherings: A Systematic Review. Trop. Med. Infect. Dis. 2024, 10, 2. [Google Scholar] [CrossRef]
- Jani, K.; Dhotre, D.; Bandal, J.; Shouche, Y.; Suryavanshi, M.; Rale, V.; Sharma, A. World’s Largest Mass Bathing Event Influences the Bacterial Communities of Godavari, a Holy River of India. Microb. Ecol. 2018, 76, 706–718. [Google Scholar] [CrossRef] [PubMed]
- Ahammad, Z.S.; Sreekrishnan, T.R.; Hands, C.L.; Knapp, C.W.; Graham, D.W. Increased waterborne blaNDM-1 resistance gene abundances associated with seasonal human pilgrimages to the Upper Ganges River. Environ. Sci. Technol. 2014, 48, 3014–3020. [Google Scholar] [CrossRef]
- Vollaard, E.J.; Clasener, H.A. Colonization resistance. Antimicrob. Agents Chemother. 1994, 38, 409–414. [Google Scholar] [CrossRef]
- Schwaber, M.J.; Navon-Venezia, S.; Kaye, K.S.; Ben-Ami, R.; Schwartz, D.; Carmeli, Y. Clinical and economic impact of bacteremia with extended-spectrum-β- lactamase-producing Enterobacteriaceae. Antimicrob. Agents Chemother. 2006, 50, 1257–1262. [Google Scholar] [CrossRef] [PubMed]
- Ramphal, R.; Ambrose, P.G. Extended-spectrum β-lactamases and clinical outcomes: Current data. Clin. Infect. Dis. 2006, 42 (Suppl. S4), S164–S172. [Google Scholar] [CrossRef] [PubMed]
- Denis, B.; Lafaurie, M.; Donay, J.L.; Fontaine, J.P.; Oksenhendler, E.; Raffoux, E.; Hennequin, C.; Allez, M.; Socie, G.; Maziers, N.; et al. Prevalence, risk factors, and impact on clinical outcome of extended-spectrum beta-lactamase-producing Escherichia coli bacteraemia: A five-year study. Int. J. Infect. Dis. 2015, 39, 1–6. [Google Scholar] [CrossRef]
- Søraas, A.; Sundsfjord, A.; Sandven, I.; Brunborg, C.; Jenum, P.A. Risk Factors for Community-Acquired Urinary Tract Infections Caused by ESBL-Producing Enterobacteriaceae—A Case-Control Study in a Low Prevalence Country. PLoS ONE 2013, 8, e69581. [Google Scholar] [CrossRef] [PubMed]
- Patjas, A.; Martelius, A.; Ollgren, J.; Kantele, A. International travel increases risk of urinary tract infection caused by extended-spectrum beta-lactamase-producing Enterobacterales —Three-arm case-control study. J. Travel Med. 2024, 31, taad155. [Google Scholar] [CrossRef] [PubMed]
- Dall, L.B.; Lausch, K.R.; Gedebjerg, A.; Fuursted, K.; Storgaard, M.; Larsen, C.S. Do probiotics prevent colonization with multi-resistant Enterobacteriaceae during travel? A randomized controlled trial. Travel Med. Infect. Dis. 2019, 27, 81–86. [Google Scholar] [CrossRef] [PubMed]
- Frost, I.; Van Boeckel, T.P.; Pires, J.; Craig, J.; Laxminarayan, R. Global geographic trends in antimicrobial resistance: The role of international travel. J. Travel Med. 2019, 26, 91–125. [Google Scholar] [CrossRef] [PubMed]
- Migault, C.; Kanagaratnam, L.; Nguyen, Y.; Lebrun, D.; Giltat, A.; Hentzien, M.; Bajolet, O.; Drame, M.; Bani-Sadr, F. Poor knowledge among French travellers of the risk of acquiring multidrug-resistant bacteria during travel. J. Travel Med. 2016, 24, taw073. [Google Scholar] [CrossRef] [PubMed]
- Piyaphanee, W.; Stoney, R.J.; Asgeirsson, H.; Appiah, G.D.; Díaz-Menéndez, M.; Barnett, E.D.; Gautret, P.; Libman, M.; Schlagenhauf, P.; Leder, K.; et al. Healthcare seeking during travel: An analysis by the GeoSentinel surveillance network of travel medicine providers. J. Travel Med. 2023, 30, 15–19. [Google Scholar] [CrossRef] [PubMed]
- Torrell, J.M.R.; Aumatell, C.M.; Ramos, S.M.; Mestre, L.G.; Salas, C.M. Reduction of travellers’ diarrhoea by WC/rBS oral cholera vaccine in young, high-risk travellers. Vaccine 2009, 27, 4074–4077. [Google Scholar] [CrossRef] [PubMed]
- Riddle, M.S.; Connor, B.A.; Beeching, N.J.; DuPont, H.L.; Hamer, D.H.; Kozarsky, P.; Libman, M.; Steffen, R.; Taylor, D.; Tribble, D.R.; et al. Guidelines for the prevention and treatment of travelers’ diarrhea: A graded expert panel report. J. Travel Med. 2017, 24, S57–S74. [Google Scholar] [CrossRef]
- Kantele, A.; Mero, S.; Kirveskari, J.; Lääveri, T. Increased risk for ESBL-producing bacteria from co-administration of loperamide and antimicrobial drugs for travelers’ diarrhea. Emerg. Infect. Dis. 2016, 22, 117–120. [Google Scholar] [CrossRef] [PubMed]
- Monsálvez, V.; Bierge, P.; Machado, M.L.; Pich, O.Q.; Nuez-Zaragoza, E.; Roca, C.; Jiménez-Lozano, A.I.; Martínez-Perez, Á.; Gomila-Grange, A.; Vera-Garcia, I.; et al. Prevalence and Risk Factors for Colonization by Multidrug-Resistant Microorganisms among Long-Term Travelers and Recently Arrived Migrants. Microorganisms 2024, 12, 8–17. [Google Scholar] [CrossRef] [PubMed]
- Davies, M.; Galazzo, G.; van Hattem, J.M.; Arcilla, M.S.; Melles, D.C.; de Jong, M.D.; Schultsz, C.; Wolffs, P.; McNally, A.; van Schaik, W.; et al. Enterobacteriaceae and Bacteroidaceae provide resistance to travel-associated intestinal colonization by multi-drug resistant Escherichia coli. Gut Microbes 2022, 14, 2060676. [Google Scholar] [CrossRef] [PubMed]
- Sazawal, S.; Hiremath, G.; Dhingra, U.; Malik, P.; Deb, S.; Black, R.E. Efficacy of probiotics in prevention of acute diarrhoea: A meta-analysis of masked, randomised, placebo-controlled trials. Lancet Infect. Dis. 2006, 6, 374–382. [Google Scholar] [CrossRef] [PubMed]
- McFarland, L.V. Meta-analysis of probiotics for the prevention of traveler’s diarrhea. Travel Med. Infect. Dis. 2007, 5, 97–105. [Google Scholar] [CrossRef] [PubMed]
Risk Factor | Reference |
---|---|
Travel to a low- or middle-income tropical or subtropical countries | Kajova et al. (2021) [2], Arcilla et al. (2017) [3], Tham et al. (2010) [4], Seijas-Pereda et al. (2024) [40], Meurs et al. (2020) [62], Voor In’T Holt et al. (2020) [63], Lübbert et al. (2015) [64], Schaumburg et al. (2019) [65], Ruppé et al. (2018) [66] |
Travel to Asia—especially the Indian subcontinent | Tham et al. (2010) [4], Seijas-Pereda et al. (2024) [40], Meurs et al. (2020) [62], Voor In’T Holt et al. (2020) [63], Ruppé et al. (2018) [66] |
Traveller’s diarrhoea | Östholm-Balkhed et al. (2013) [23], Kantele et al. (2015) [67], Muzembo et al. (2022) [68] |
Chronic intestinal disease | Arcilla et al. (2017) [3] |
Duration of stay | Kuenzli et al. (2014) [69], Vading et al. (2016) [70] |
Visiting friends and family | Meurs et al. (2020) [62], Hassing et al. (2015) [71], Worby et al. (2023) [72] |
Staying at a hotel | Meurs et al. [62], von Wintersdorff et al. (2014) [73] |
Consuming street food, local ice creams, or local pastries | Arcilla et al. (2017) [3], Kuenzli et al. (2014) [69] |
Age | Östholm-Balkhed et al. (2013) [23], Miranda et al. (2016) [24], Lääveri et al. (2018) [74], Kantele et al. (2015) [67] |
Antibiotic use | Kajova et al. [2], Dethlefsen et al. (2008) [75], Kantele et al. (2015) [67] |
Contact with animals | Ahmed et al. (2007) [76], Shnaiderman-Torban et al. (2019) [77], Zhu et al. (2021) [78] |
Use of a healthcare facility abroad | Kajova et al. [2], Vading et al. (2016) [70] |
Trip to mass gatherings | Memish et al. (2019) [79], Smith-Palmer et al. (2016) [80], Jacobsson et al. (2018) [81], Al-Tawfiq et al. (2015) [16], Leangapichart et al. (2017) [82], Pao et al. (2024) [83], Jani et al. (2018) [84], Ahammad et al. (2014) [85] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mendes Pedro, D.; Santos, D.; Meneses, M.; Gonçalves, F.; Domingos, G.J.; Caneiras, C. Risk of Colonization with Multidrug-Resistant Gram-Negative Bacteria Among Travellers and Migrants: A Narrative Review. Trop. Med. Infect. Dis. 2025, 10, 26. https://doi.org/10.3390/tropicalmed10010026
Mendes Pedro D, Santos D, Meneses M, Gonçalves F, Domingos GJ, Caneiras C. Risk of Colonization with Multidrug-Resistant Gram-Negative Bacteria Among Travellers and Migrants: A Narrative Review. Tropical Medicine and Infectious Disease. 2025; 10(1):26. https://doi.org/10.3390/tropicalmed10010026
Chicago/Turabian StyleMendes Pedro, Diogo, Daniela Santos, Maria Meneses, Fátima Gonçalves, Gonçalo Jantarada Domingos, and Cátia Caneiras. 2025. "Risk of Colonization with Multidrug-Resistant Gram-Negative Bacteria Among Travellers and Migrants: A Narrative Review" Tropical Medicine and Infectious Disease 10, no. 1: 26. https://doi.org/10.3390/tropicalmed10010026
APA StyleMendes Pedro, D., Santos, D., Meneses, M., Gonçalves, F., Domingos, G. J., & Caneiras, C. (2025). Risk of Colonization with Multidrug-Resistant Gram-Negative Bacteria Among Travellers and Migrants: A Narrative Review. Tropical Medicine and Infectious Disease, 10(1), 26. https://doi.org/10.3390/tropicalmed10010026