Syndemic Factors Associated with Zika Virus Infection Prevalence and Risk Factors in a Cohort of Women Living in Endemic Areas for Arboviruses in Northeast Brazil
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. Data Collection
2.3. Laboratory Tests
2.4. Statistical Analysis
3. Results
3.1. Prevalence of ZIKV, DENV, and CHIKV Infection
3.2. Factors Associated with ZIKV
3.3. Syndemic Factors for ZIKV Infection
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Campbell-Lendrum, D.; Manga, L.; Bagayoko, M.; Sommerfeld, J. Climate change and vector-borne diseases: What are the implications for public health research and policy? Philos. Trans. R. Soc. B Biol. Sci. 2015, 370, 20130552. [Google Scholar] [CrossRef] [PubMed]
- Kraemer, M.U.; Reiner, R.C., Jr.; Brady, O.J.; Messina, J.P.; Gilbert, M.; Pigott, D.M.; Yi, D.; Johnson, K.; Earl, L.; Marczak, L.B.; et al. Past and future spread of the arbovirus vectors Aedes aegypti and Aedes albopictus. Nat. Microbiol. 2019, 4, 854–863. [Google Scholar] [CrossRef]
- Liu, B.; Gao, X.; Ma, J.; Jiao, Z.; Xiao, J.; Hayat, M.A.; Wang, H. Modeling the present and future distribution of arbovirus vectors Aedes aegypti and Aedes albopictus under climate change scenarios in Mainland China. Sci. Total Environ. 2019, 664, 203–214. [Google Scholar] [CrossRef] [PubMed]
- Bhatt, S.; Gething, P.W.; Brady, O.J.; Messina, J.P.; Farlow, A.W.; Moyes, C.L.; Drake, J.M.; Brownstein, J.S.; Hoen, A.G.; Sankoh, O.; et al. The global distribution and burden of dengue. Nature 2013, 496, 504–507. [Google Scholar] [CrossRef]
- PAHO. Epidemiological Update: Dengue, chikungunya and Zika Washington; Pan American Health Organization: Washington, DC, USA; World Health Organization: Geneva, Switzerland, 2023. [Google Scholar]
- Ximenes, R.A.d.A.; Miranda-Filho, D.d.B.; Montarroyos, U.R.; Martelli, C.M.T.; Araújo, T.V.B.D.; Brickley, E.; Albuquerque, M.D.F.P.M.D.; Souza, W.V.; Ventura, L.O.; Ventura, C.V.; et al. Zika-related adverse outcomes in a cohort of pregnant women with rash in Pernambuco, Brazil. PLoS Neglected Trop. Dis. 2021, 15, e0009216. [Google Scholar] [CrossRef] [PubMed]
- Teixeira, M.G.; da Conceição NCosta, M.; de Oliveira, W.K.; Nunes, M.L.; Rodrigues, L.C. The epidemic of Zika virus–related microcephaly in Brazil: Detection, control, etiology, and future scenarios. Am. J. Public Health 2016, 106, 601–605. [Google Scholar] [CrossRef]
- WHO. ZIKA Epidemiology Update; World Health Organization: Geneva, Switzerland, 2022. [Google Scholar]
- Nery, N., Jr.; Aguilar Ticona, J.P.; Gambrah, C.; Doss-Gollin, S.; Aromolaran, A.; Rastely-Júnior, V.; Lessa, M.; Sacramento, G.A.; Cruz, J.S.; de Oliveira, D.; et al. Social determinants associated with Zika virus infection in pregnant women. PLoS Neglected Trop. Dis. 2021, 15, e0009612. [Google Scholar] [CrossRef]
- Dalvi, A.P.R.; Gibson, G.; Ramos, A.N., Jr.; Bloch, K.V.; Sousa, G.d.S.d.; da Silva, T.L.N.; Braga, J.U.; Castro, M.C.; Werneck, G.L. Sociodemographic and environmental factors associated with dengue, Zika, and chikungunya among adolescents from two Brazilian capitals. PLoS Neglected Trop. Dis. 2023, 17, e0011197. [Google Scholar] [CrossRef]
- Saúde SdVe (Ed.) Boletim Epidemiológico Síndrome Congênita Associada à Infecção Pelo Vírus Zika; Ministério da Saúde: Brasília, Brazil, 2022. [Google Scholar]
- Campos, M.C.; Dombrowski, J.G.; Phelan, J.; Marinho, C.R.F.; Hibberd, M.; Clark, T.G.; Campino, S. Zika might not be acting alone: Using an ecological study approach to investigate potential co-acting risk factors for an unusual pattern of microcephaly in Brazil. PLoS ONE 2018, 13, e0201452. [Google Scholar] [CrossRef]
- Souza, W.V.d.; Albuquerque, M.d.F.P.M.d.; Vazquez, E.; Bezerra, L.C.A.; Mendes, A.D.C.G.; Lyra, T.M.; Araujo, T.V.B.D.; Oliveira, A.L.S.D.; Braga, M.C.; Ximenes, R.A.D.A.; et al. Microcephaly epidemic related to the Zika virus and living conditions in Recife, Northeast Brazil. BMC Public Health 2018, 18, 130. [Google Scholar] [CrossRef]
- Barbeito-Andrés, J.; Pezzuto, P.; Higa, L.; Dias, A.A.; Vasconcelos, J.M.; Santos, T.M.P.; Ferreira, J.C.C.G.; Ferreira, R.O.; Dutra, F.F.; Rossi, A.D.; et al. Congenital Zika syndrome is associated with maternal protein malnutrition. Sci. Adv. 2020, 6, eaaw6284. [Google Scholar] [CrossRef]
- Singer, M. The spread of Zika and the potential for global arbovirus syndemics. Glob. Public Health 2017, 12, 1–18. [Google Scholar] [CrossRef] [PubMed]
- Morano, J.P.; Holt, D.A. The social determinants of health contextualized for the Zika virus. Int. J. Infect. Dis. 2017, 65, 142–143. [Google Scholar] [CrossRef] [PubMed]
- Diniz, D. Zika virus and women. Cad. Saude Publica 2016, 32, e00046316. [Google Scholar] [PubMed]
- Stolow, J.; Kendall, C.; Pinheiro, F.M.L.; da Rocha Feitosa, M.C.; de Almeida Furtado, K.A.; Martins, A.F.; Dos Santos, M.P.A.; Ellery, A.E.L.; Dias, L.; de Holanda Barreto, I.C.; et al. Fertility decision-making during the Zika virus epidemic in Brazil: Where is the decision? Sex. Reprod. Healthc. 2022, 32, 100722. [Google Scholar] [CrossRef]
- Singer, M. Introduction to Syndemics: A Critical Systems Approach to Public and Community Health; John Wiley & Sons: Hoboken, NJ, USA, 2009. [Google Scholar]
- Ceará IdPeEEd (Ed.) Perfil Municipal de Fortaleza Tema VIII: O Mapa da Extrema Pobreza; Secretaria do planejamento e Gestão Fortaleza: Fortaleza, Brazil, 2012. [Google Scholar]
- IBGE. Projeções da População; Instituto Brasileiro de Geografia e Estatística: Brasilia, Brazil, 2020. [Google Scholar]
- PAHO. Guidelines for Surveillance of Zika Virus Disease and Its Complications; Pan American Health Organization: Washington, DC, USA, 2016. [Google Scholar]
- Correia, F.; Kerr, L.; Frota, C.; Barreto, I.; Almeida, R.; Pamplona, L.; Araújo, L.; Myiajima, F.; Lima, S.; Araújo, F.; et al. Factors associated with Chikungunya infection in a cohort of women aged 15-39 y in Fortaleza, Brazil. Trans. R. Soc. Trop. Med. Hyg. 2021, 115, 1070–1079. [Google Scholar] [CrossRef]
- Ehmen, C.; Medialdea-Carrera, R.; Brown, D.; de Filippis, A.M.B.; de Sequeira, P.C.; Nogueira, R.M.R.; Brasil, P.; Calvet, G.A.; Blessmann, J.; Mallmann, A.; et al. Accurate detection of Zika virus IgG using a novel immune complex binding ELISA. Trop. Med. Int. Health 2021, 26, 89–101. [Google Scholar] [CrossRef]
- L’Huillier, A.G.; Hamid-Allie, A.; Kristjanson, E.; Papageorgiou, L.; Hung, S.; Wong, C.F.; Stein, D.R.; Olsha, R.; Goneau, L.W.; Dimitrova, K.; et al. Evaluation of Euroimmun anti-Zika virus IgM and IgG enzyme-linked immunosorbent assays for Zika virus serologic testing. J. Clin. Microbiol. 2017, 55, 2462–2471. [Google Scholar] [CrossRef]
- Alves, L.V.; Leal, C.A.; Alves, J.G.B. Zika virus seroprevalence in women who gave birth during Zika virus outbreak in Brazil-a prospective observational study. Heliyon 2020, 6, e04817. [Google Scholar] [CrossRef]
- Brasil, P.; Pereira, J.P., Jr.; Moreira, M.E.; Ribeiro Nogueira, R.M.; Damasceno, L.; Wakimoto, M.; Rabello, R.S.; Valderramos, S.G.; Halai, U.A.; Salles, T.S.; et al. Zika virus infection in pregnant women in Rio de Janeiro. N. Engl. J. Med. 2016, 375, 2321–2334. [Google Scholar] [CrossRef]
- Frota, C.C.; Correia, F.G.S.; Alves Vasconcelos, L.R.; de Sousa, P.R.C.; Ferreira, M.L.d.S.; Saraiva, S.P.; Ferreira, R.M.; Romcy, K.A.M.; Pinheiro, R.F.; de Oliveira, R.T.G.; et al. Positivity of dengue, chikungunya, and Zika infections in women in Northeast Brazil post-Zika epidemic. Pathog. Glob. Health 2023, 117, 485–492. [Google Scholar] [CrossRef] [PubMed]
- Victora, C.G.; Huttly, S.R.; Fuchs, S.C.; Olinto, M.T. The role of conceptual frameworks in epidemiological analysis: A hierarchical approach. Int. J. Epidemiol. 1997, 26, 224–227. [Google Scholar] [CrossRef] [PubMed]
- Fuchs, S.C.; Victora, C.G.; Fachel, J. Hierarchical model: A proposal for model to be applied in the investigation of risk factors for dehydrating diarrhea. Rev. Saude Publica 1996, 30, 168–178. [Google Scholar] [CrossRef] [PubMed]
- Haby, M.M.; Pinart, M.; Elias, V.; Reveiz, L. Prevalence of asymptomatic Zika virus infection: A systematic review. Bull. World Health Organ. 2018, 96, 402. [Google Scholar] [CrossRef]
- Li, Z.; Wang, J.; Cheng, X.; Hu, H.; Guo, C.; Huang, J.; Chen, Z.; Lu, J. The worldwide seroprevalence of DENV, CHIKV and ZIKV infection: A systematic review and meta-analysis. PLoS Neglected Trop. Dis. 2021, 15, e0009337. [Google Scholar] [CrossRef]
- Mathé, P.; Egah, D.Z.; Müller, J.A.; Shehu, N.Y.; Obishakin, E.T.; Shwe, D.D.; Pam, V.C.; Okolo, M.O.; Yilgwan, C.; Gomerep, S.S.; et al. Low Zika virus seroprevalence among pregnant women in North Central Nigeria, 2016. J. Clin. Virol. 2018, 105, 35–40. [Google Scholar] [CrossRef]
- Paixão, E.S.; Teixeira, M.G.; Rodrigues, L.C. Zika, chikungunya and dengue: The causes and threats of new and re-emerging arboviral diseases. BMJ Glob. Health 2018, 3 (Suppl. S1), e000530. [Google Scholar] [CrossRef]
- Pavão, A.L.B.; Barcellos, C.; Pedroso, M.; Boccolini, C.; Romero, D. The role of Brazilian National Health Information Systems in assessing the impact of Zika virus outbreak. Rev. Soc. Bras. Med. Trop. 2017, 50, 450–457. [Google Scholar] [CrossRef]
- Cohen, D.A.; Scribner, R.A.; Farley, T.A. A structural model of health behavior: A pragmatic approach to explain and influence health behaviors at the population level. Prev. Med. 2000, 30, 146–154. [Google Scholar] [CrossRef]
- Saúde SdVe (Ed.) Orientações Integradas de Vigilância e Atenção à Saúde no Âmbito da Emergência de Saúde Pública de Importância Nacional; Ministério da Saúde: Brasília, Brazil, 2017. [Google Scholar]
- Diniz, D.; Gumieri, S.; Bevilacqua, B.G.; Cook, R.J.; Dickens, B.M. Zika virus infection in Brazil and human rights obligations. Int. J. Gynecol. Obstet. 2017, 136, 105–110. [Google Scholar] [CrossRef]
Laboratory Variables | Wave 1 † (n = 1496) | Wave 2 † (n = 1173) | ||
---|---|---|---|---|
n (%) | 95%CI | n (%) | 95%CI | |
ZIKV infection | ||||
IgG | 602 (41.4) | (38.8–43.9) | 131 (15.1) | (43.9–49.6) |
IgM | 10 (0.7) | (0.4–1.3) | 5 (0.7) | (0.3–1.6) |
RT-PCR | 40 (3.1) | (2.3–4.2) | - | - |
Total Prevalence †† | 626 (43.0) | (40.5–45.6) | 649 (44.7) | (42–47.1) |
CHIKV infection | ||||
IgG | 434 (29.8) | (27.5, 32.3) | 218 (29.5) | (26.4, 32.9) |
IgM | 148 (10.2) | (8.7, 11.8) | 35 (4.7) | (3.4, 6.6) |
RT-PCR | 42 (3.3) | (2.4, 4.4) | - | - |
Total Prevalence †† | 538 (36.8) | (34.3, 39.2) | 558 (38.1) | (35.6, 40.6) |
DENV infection | ||||
IgG | 1255 (86.2) | (84.3, 88) | 595 (80.2) | (77.2, 82.9) |
IgM | 41 (2.8) | (2.1, 4) | 82 (11.1) | (9, 13.5) |
RT-PCR | 51 (4) | (3.1, 5.2) | - | - |
Total Prevalence †† | 1266 (87) | (85.1, 89) | 1292 (88.7) | (87, 90.2) |
Variables | Positive ZIKV † | Crude OR | p-Value †† | ||
---|---|---|---|---|---|
n (%) | 95%CI | OR | 95%CI | ||
Socioeconomic and demographic | |||||
Age group (n = 1382) | n = 649 | ||||
15 to 19 | 111 (38.4) | (32.9, 44.1) | 1 | 1 | 0.005 * |
20 to 29 | 334 (48.9) | (45.2, 52.7) | 1.53 | (1.16, 2.03) ** | |
30 to 39 | 204 (49.8) | (44.9, 54.6) | 1.59 | (1.17, 2.16) ** | |
Self-identified race or skin color (n = 1373) | (n = 647) | 0.45 | |||
White | 70 (44.3) | (36.8, 52.1) | 1 | 1 | |
Non-white | 577 (47.5) | (44.7, 50.3) | 1.13 | (0.81, 1.59) | |
Educational Level (n = 1381) | 0.01 ** | ||||
Complete elementary or less | 243 (51.9) | (47.4, 56.4) | 1 | 1 | |
High school or higher | 405 (44.4) | (41.2, 47.6) | 0.74 | (0.59, 0.92) | |
Socioeconomic status (n = 1392) | n = 649 | ||||
A, B and C1 (Higher) | 258 (43.2) | (39.3, 47.2) | 1 | 1 | 0.05 |
C2 (Middle) | 300 (49.3) | (45.2, 53.2) | 1.27 | (1.01, 1.60) | |
D and E (Lower) | 91 (51.7) | (44.3, 59.2) | 1.41 | (1.02, 2.0) | |
Beneficiary of Cash Transfer Program (n = 1382) | n = 649 | ||||
Yes | 365 (48.4) | (44.8, 51.9) | 1 | 1 | 0.23 |
No | 284 (45.2) | (41.4, 49.1) | 0.88 | (0.71, 1.09) | |
Beneficiary of State Social Programs (n = 1373) | n = 647 | ||||
Yes | 377 (48.2) | (44.6, 51.6) | 1 | 1 | 0.38 |
No | 270 (46.0) | (41.8, 49.8) | 0.91 | (0.73, 1.13) | |
Employment Situation (n = 1382) | n = 649 | ||||
Not working or unemployed | 411 (45.8) | (42.5, 49) | 1 | 1 | 0.27 |
Employed | 238 (49.2) | (44.7, 53.6) | 1.16 | (0.90, 1.48) | |
Number of Children (n = 1379) | n = 647 | ||||
None | 161 (41.0) | (36.1, 46.0) | 1 | 1 | 0.01 ** |
1 | 239 (48.6) | (44.1, 53) | 1.36 | (1.05, 1.79) ** | |
2 or more | 247 (50.1) | (45.9, 54.6) | 1.45 | (1.11, 1.90) ** | |
Household Residents (n = 1381) | n = 649 | ||||
<4 | 257 (44.9) | (40.8, 48.9) | 1 | 1 | 0.17 |
≥4 | 392 (48.5) | (45.2, 52.0) | 1.16 | (0.93, 1.44) | |
Household characteristics | |||||
Water source (n = 1375) | n = 646 | ||||
Public System | 564 (46.1) | (43.3, 48.9) | 1 | 1 | 0.07 |
Well or spring | 82 (54.0) | (46, 61.7) | 1.37 | (0.97, 1.92) | |
Street Condition (n = 1382) | n = 649 | ||||
Paved | 546 (48.0) | (44.9, 50.7) | 1 | 1 | 0.14 |
Not Paved | 103 (43.0) | (36.6, 49.1) | 0.81 | (0.61, 1.08) | |
Water storage needed (n = 1378) | n = 652 | ||||
No | 438 (45.1) | (42, 48.2) | 1 | 1 | 0.03 * |
Yes | 209 (51.5) | (47, 56.3) | 1.30 | (1.02, 1.63) | |
Garbage collection (n = 1368) | n = 642 | ||||
Twice a week or more | 629 (46.6) | (43.9, 49.3) | 1 | 1 | 0.05 |
Once a week | 13 (68.4) | (45.1, 85.1) | 2.48 | (0.78, 0.97) | |
Medical History | |||||
Pregnant at the interview (n = 1372) | n = 645 | ||||
No | 546 (49.6) | (46.6, 52.6) | 1 | 1 | 0.0001 *** |
Yes | 99 (36.5) | (31.0, 42.4) | 0.59 | (0.44, 0.77) | |
Chikungunya virus infection (n = 1382) | n = 649 | ||||
Negative | 372 (43.4) | (40.1, 46.7) | 1 | 1 | <0.001 *** |
Positive | 277 (649) | (48.4, 57) | 1.45 | 1.17, 1.81 | |
Self-report of Family History of Arbovirus Infections # (n = 1299) | n = 649 | ||||
No | 218 (39.6) | (35.6, 43.8) | 1 | 1 | 0.001 *** |
Yes | 431 (51.8) | (48.4, 55.2) | 1.64 | (1.31, 2.04) | |
Health-related behaviors | |||||
Reported prenatal care (1372) | n = 645 | ||||
No or not pregnant | 553 (49.5) | (46.5, 52.4) | 1 | 1 | 0.001 *** |
Yes | 84 (35.3) | (29.5, 41.6) | 0.56 | (0.42, 0.74) | |
Repellent use (1372) | n = 614 | ||||
Correctly | 87 (38.0) | (32, 44.5) | 1 | 1 | 0.001 *** |
Incorrectly or not use | 527 (49.2) | (46.3, 52.2) | 1.58 | (1.18, 2.12) | |
Knowledge about Zika prevention (n = 1382) | n = 649 | ||||
None | 191 (51.6) | (46.5, 56.7) | 1 | 1 | 0.03 * |
One or more | 458 (45.3) | (42.3, 48.3) | 0.77 | (0.61, 0.98) |
Variables | Block 1 | Block 2 | Block 3 | |||
---|---|---|---|---|---|---|
OR | 95%CI | OR | 95%CI | OR | 95%CI | |
Age group | ||||||
15 to 19 | 1 | 1 | ||||
20 to 29 | 1.64 | (1.24, 2.19) *** | ||||
30 to 39 | 1.72 | (1.26, 2.35) *** | ||||
Educational Level | ||||||
Elementary complete or less | 1 | 1 | ||||
Complete High School or higher | 0.70 | (0.56, 0.90) ** | ||||
Water storage | ||||||
No | 1 | 1 | ||||
Yes | 1.29 | (1.02, 1.64) * | ||||
Reported prenatal visits | ||||||
No or not pregnant | 1 | 1 | ||||
Yes | 0.60 | (0.44, 0.82) ** | ||||
Repellent use | ||||||
Correctly | 1 | 1 | ||||
Incorrectly or not use | 1.39 | (1.02, 1.88) * | ||||
Family history of arboviruses | ||||||
Negative | 1 | 1 | ||||
Positive | 1.42 | (1.13, 1.79) * |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kerr, L.; Sanhueza-Sanzana, C.; Leal, M.; Aguiar, I.; Allel, K.; Sandoval, M.H.; Frota, C.C.; Aguiar, M.T.; Martins, A.F.; Dias, L.; et al. Syndemic Factors Associated with Zika Virus Infection Prevalence and Risk Factors in a Cohort of Women Living in Endemic Areas for Arboviruses in Northeast Brazil. Trop. Med. Infect. Dis. 2025, 10, 67. https://doi.org/10.3390/tropicalmed10030067
Kerr L, Sanhueza-Sanzana C, Leal M, Aguiar I, Allel K, Sandoval MH, Frota CC, Aguiar MT, Martins AF, Dias L, et al. Syndemic Factors Associated with Zika Virus Infection Prevalence and Risk Factors in a Cohort of Women Living in Endemic Areas for Arboviruses in Northeast Brazil. Tropical Medicine and Infectious Disease. 2025; 10(3):67. https://doi.org/10.3390/tropicalmed10030067
Chicago/Turabian StyleKerr, Ligia, Carlos Sanhueza-Sanzana, Marto Leal, Italo Aguiar, Kasim Allel, Moisés H. Sandoval, Cristiane Cunha Frota, Marco Túlio Aguiar, Adriano Ferreira Martins, Livia Dias, and et al. 2025. "Syndemic Factors Associated with Zika Virus Infection Prevalence and Risk Factors in a Cohort of Women Living in Endemic Areas for Arboviruses in Northeast Brazil" Tropical Medicine and Infectious Disease 10, no. 3: 67. https://doi.org/10.3390/tropicalmed10030067
APA StyleKerr, L., Sanhueza-Sanzana, C., Leal, M., Aguiar, I., Allel, K., Sandoval, M. H., Frota, C. C., Aguiar, M. T., Martins, A. F., Dias, L., Almeida, R. L. F. d., Carvalho, F. H. C., Correia, F. G. S., Pires Neto, R. d. J., Araújo, F. M., Lima, S. T. S. d., Mello, L. M. S., Nogueira, L. d. L., Leitão, T. d. M. J. S., ... Kendall, C. (2025). Syndemic Factors Associated with Zika Virus Infection Prevalence and Risk Factors in a Cohort of Women Living in Endemic Areas for Arboviruses in Northeast Brazil. Tropical Medicine and Infectious Disease, 10(3), 67. https://doi.org/10.3390/tropicalmed10030067