Resistance to Artemisinin Combination Therapies (ACTs): Do Not Forget the Partner Drug!
Abstract
:1. Background
2. Mechanisms of Resistance to Partner Drugs
2.1. Lumefantrine
2.2. Amodiaquine
2.3. Piperaquine
2.4. Sulfadoxine-Pyrimethamine
2.5. Mefloquine
2.6. Pyronaridine
3. Discussion
Funding
Conflicts of Interest
References
- Menard, D.; Dondorp, A. Antimalarial Drug Resistance: A Threat to Malaria Elimination. Cold Spring Harb. Perspect. Med. 2017, 7, a025619. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Woodrow, C.J.; White, N.J. The clinical impact of artemisinin resistance in Southeast Asia and the potential for future spread. FEMS Microbiol. Rev. 2017, 41, 34–48. [Google Scholar] [CrossRef] [PubMed]
- Ariey, F.; Witkowski, B.; Amaratunga, C.; Beghain, J.; Langlois, A.-C.; Khim, N.; Kim, S.; Duru, V.; Bouchier, C.; Ma, L.; et al. A molecular marker of artemisinin-resistant Plasmodium falciparum malaria. Nature 2014, 505, 50–55. [Google Scholar] [CrossRef] [PubMed]
- Ménard, D.; Khim, N.; Beghain, J.; Adegnika, A.A.; Shafiul-Alam, M.; Amodu, O.; Rahim-Awab, G.; Barnadas, C.; Berry, A.; Boum, Y.; et al. A Worldwide Map of Plasmodium falciparum K13-Propeller Polymorphisms. N. Eng. J. Med. 2016, 374, 2453–2464. [Google Scholar] [CrossRef] [PubMed]
- Das, S.; Saha, B.; Hati, A.K.; Roy, S. Evidence of Artemisinin-Resistant Plasmodium falciparum Malaria in Eastern India. N. Engl. J. Med. 2018, 379, 1962–1964. [Google Scholar] [CrossRef] [PubMed]
- Chenet, S.M.; Akinyi Okoth, S.; Huber, C.S.; Chandrabose, J.; Lucchi, N.W.; Talundzic, E.; Krishnalall, K.; Ceron, N.; Musset, L.; Macedo de Oliveira, A.; et al. Independent Emergence of the Plasmodium falciparum Kelch Propeller Domain Mutant Allele C580Y in Guyana. J. Infect. Dis. 2016, 213, 1472–1475. [Google Scholar] [CrossRef] [PubMed]
- Mathieu, L.; Cox, H.; Early, A.M.; Ade, M.-P.; Lazrek, Y.; Grant, Q.; Lucchi, N.W.; Udhayakumar, V.; Seme Fils, A.J.; Fidock, D.A.; et al. Artemisinin resistance and the pfk13 C580Y mutation in Guyana: A confirmed link and emergence. In Proceedings of the ASTMH Annual Meeting, New Orleans, LA, USA, 28 October–1 November 2018. [Google Scholar]
- Prosser, C.; Meyer, W.; Ellis, J.; Lee, R. Resistance screening and trend analysis of imported falciparum malaria in NSW, Australia (2010 to 2016). PLoS ONE 2018, 13, e0197369. [Google Scholar] [CrossRef]
- Taylor, S.M.; Parobek, C.M.; DeConti, D.K.; Kayentao, K.; Coulibaly, S.O.; Greenwood, B.M.; Tagbor, H.; Williams, J.; Bojang, K.; Njie, F.; et al. Absence of putative artemisinin resistance mutations among Plasmodium falciparum in Sub-Saharan Africa: A molecular epidemiologic study. J. Infect. Dis. 2015, 211, 680–688. [Google Scholar] [CrossRef]
- Kamau, E.; Campino, S.; Amenga-Etego, L.; Drury, E.; Ishengoma, D.; Johnson, K.; Mumba, D.; Kekre, M.; Yavo, W.; Mead, D.; et al. K13-propeller polymorphisms in Plasmodium falciparum parasites from sub-Saharan Africa. J. Infect. Dis. 2015, 211, 1352–1355. [Google Scholar] [CrossRef]
- Apinjoh, T.O.; Mugri, R.N.; Miotto, O.; Chi, H.F.; Tata, R.B.; Anchang-Kimbi, J.K.; Fon, E.M.; Tangoh, D.A.; Nyingchu, R.V.; Jacob, C.; et al. Molecular markers for artemisinin and partner drug resistance in natural Plasmodium falciparum populations following increased insecticide treated net coverage along the slope of mount Cameroon: Cross-sectional study. Infect. Dis. Poverty 2017, 6, 136. [Google Scholar] [CrossRef]
- Mbengue, A.; Bhattacharjee, S.; Pandharkar, T.; Liu, H.; Estiu, G.; Stahelin, R.V.; Rizk, S.S.; Njimoh, D.L.; Ryan, Y.; Chotivanich, K.; et al. A molecular mechanism of artemisinin resistance in Plasmodium falciparum malaria. Nature 2015, 520, 683–687. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tilley, L.; Straimer, J.; Gnädig, N.F.; Ralph, S.A.; Fidock, D.A. Artemisinin Action and Resistance in Plasmodium falciparum. Trends Parasitol. 2016, 32, 682–696. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- MalariaGEN Plasmodium falciparum Community Project. Genomic epidemiology of artemisinin resistant malaria. Elife 2016, 5, e08714. [Google Scholar] [CrossRef] [PubMed]
- WWARN Parasite Clearance Study Group, W.P.C.S.; Abdulla, S.; Ashley, E.A.; Bassat, Q.; Bethell, D.; Björkman, A.; Borrmann, S.; D’Alessandro, U.; Dahal, P.; Day, N.P.; et al. Baseline data of parasite clearance in patients with falciparum malaria treated with an artemisinin derivative: An individual patient data meta-analysis. Malar. J. 2015, 14, 359. [Google Scholar] [CrossRef] [PubMed]
- White, N.J. Clinical pharmacokinetics and pharmacodynamics of artemisinin and derivatives. Trans. R. Soc. Trop. Med. Hyg. 1994, 88 (Suppl. 1), 41–43. [Google Scholar] [CrossRef]
- Nosten, F.; White, N.J. Artemisinin-based combination treatment of falciparum malaria. Am. J. Trop. Med. Hyg. 2007, 77, 181–192. [Google Scholar] [CrossRef] [PubMed]
- Leang, R.; Barrette, A.; Bouth, D.M.; Menard, D.; Abdur, R.; Duong, S.; Ringwald, P. Efficacy of dihydroartemisinin-piperaquine for treatment of uncomplicated Plasmodium falciparum and Plasmodium vivax in Cambodia, 2008 to 2010. Antimicrob. Agents Chemother. 2013, 57, 818–826. [Google Scholar] [CrossRef] [PubMed]
- Saunders, D.L.; Vanachayangkul, P.; Lon, C. Dihydroartemisinin–Piperaquine Failure in Cambodia. N. Engl. J. Med. 2014, 371, 484–485. [Google Scholar] [CrossRef] [Green Version]
- WHO. WHO|Guidelines for the Treatment of Malaria, 3rd ed.; World Health Organization: Geneva, Switzerland, 2015; p. 316. [Google Scholar]
- EMEA. Assessment Report Pyramax Pyronaridine Tetraphosphate/Artesunate Procedure No.: EMEA/H/W/002319; EMEA: London, UK, 2012; p. 123. [Google Scholar]
- MMV Pyramax® (Pyronaridine-Artesunate). Available online: https://www.mmv.org/access/products-projects/pyramax-pyronaridine-artesunate (accessed on 23 January 2019).
- UNITAID. Global Malaria Diagnostic and Artemisinin Treatment Commodities Demand Forecast (Phase 2); UNITAID: Geneva, Switzerland, 2018; p. 89. [Google Scholar]
- Combrinck, J.M.; Mabotha, T.E.; Ncokazi, K.K.; Ambele, M.A.; Taylor, D.; Smith, P.J.; Hoppe, H.C.; Egan, T.J. Insights into the Role of Heme in the Mechanism of Action of Antimalarials. ACS Chem. Biol. Biol. 2013, 8, 133–137. [Google Scholar] [CrossRef]
- Martin, R.E.; Shafik, S.H.; Richards, S.N. Mechanisms of resistance to the partner drugs of artemisinin in the malaria parasite. Curr. Opin. Pharmacol. 2018, 42, 71–80. [Google Scholar] [CrossRef]
- Plucinski, M.M.; Talundzic, E.; Morton, L.; Dimbu, P.R.; Macaia, A.P.; Fortes, F.; Goldman, I.; Lucchi, N.; Stennies, G.; MacArthur, J.R.; et al. Efficacy of artemether-lumefantrine and dihydroartemisinin-piperaquine for treatment of uncomplicated malaria in children in Zaire and Uíge Provinces, angola. Antimicrob. Agents Chemother. 2015, 59, 437–443. [Google Scholar] [CrossRef] [PubMed]
- Plucinski, M.M.; Dimbu, P.R.; Macaia, A.P.; Ferreira, C.M.; Samutondo, C.; Quivinja, J.; Afonso, M.; Kiniffo, R.; Mbounga, E.; Kelley, J.S.; et al. Efficacy of artemether–lumefantrine, artesunate–amodiaquine, and dihydroartemisinin–piperaquine for treatment of uncomplicated Plasmodium falciparum malaria in Angola, 2015. Malar. J. 2017, 16, 62. [Google Scholar] [CrossRef]
- WHO. World Malaria Report 2017; WHO: Geneva, Switzerland, 2017; p. 196. [Google Scholar]
- Hamed, K.; Kuhen, K. No robust evidence of lumefantrine resistance. Antimicrob. Agents Chemother. 2015, 59, 5865–5866. [Google Scholar] [CrossRef] [PubMed]
- Davlantes, E.; Dimbu, P.R.; Ferreira, C.M.; Florinda Joao, M.; Pode, D.; Félix, J.; Sanhangala, E.; Andrade, B.N.; dos Santos Souza, S.; Talundzic, E.; et al. Efficacy and safety of artemether–lumefantrine, artesunate–amodiaquine, and dihydroartemisinin–piperaquine for the treatment of uncomplicated Plasmodium falciparum malaria in three provinces in Angola, 2017. Malar. J. 2018, 17, 144. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sidhu, A.B.S.; Uhlemann, A.-C.; Valderramos, S.G.; Valderramos, J.-C.; Krishna, S.; Fidock, D.A. Decreasing pfmdr1 copy number in plasmodium falciparum malaria heightens susceptibility to mefloquine, lumefantrine, halofantrine, quinine, and artemisinin. J. Infect. Dis. 2006, 194, 528–535. [Google Scholar] [CrossRef] [PubMed]
- Sisowath, C.; Strömberg, J.; Mårtensson, A.; Msellem, M.; Obondo, C.; Björkman, A.; Gil, J.P. In Vivo Selection of Plasmodium falciparum pfmdr1 86N Coding Alleles by Artemether-Lumefantrine (Coartem). J. Infect. Dis. 2005, 191, 1014–1017. [Google Scholar] [CrossRef] [PubMed]
- Sisowath, C.; Petersen, I.; Veiga, M.I.; Mårtensson, A.; Premji, Z.; Björkman, A.; Fidock, D.A.; Gil, J.P. In vivo selection of Plasmodium falciparum parasites carrying the chloroquine-susceptible pfcrt K76 allele after treatment with artemether-lumefantrine in Africa. J. Infect. Dis. 2009, 199, 750–757. [Google Scholar] [CrossRef] [PubMed]
- Yeka, A.; Kigozi, R.; Conrad, M.D.; Lugemwa, M.; Okui, P.; Katureebe, C.; Belay, K.; Kapella, B.K.; Chang, M.A.; Kamya, M.R.; et al. Artesunate/Amodiaquine Versus Artemether/Lumefantrine for the Treatment of Uncomplicated Malaria in Uganda: A Randomized Trial. J. Infect. Dis. 2016, 213, 1134–1142. [Google Scholar] [CrossRef] [PubMed]
- Venkatesan, M.; Gadalla, N.B.; Stepniewska, K.; Dahal, P.; Nsanzabana, C.; Moriera, C.; Price, R.N.; Mårtensson, A.; Rosenthal, P.J.; Dorsey, G.; et al. Polymorphisms in Plasmodium falciparum chloroquine resistance transporter and multidrug resistance 1 genes: Parasite risk factors that affect treatment outcomes for P. falciparum malaria after artemether-lumefantrine and artesunate-amodiaquine. Am. J. Trop. Med. Hyg. 2014, 91, 833–843. [Google Scholar] [CrossRef] [PubMed]
- Okell, L.C.; Reiter, L.M.; Ebbe, L.S.; Baraka, V.; Bisanzio, D.; Watson, O.J.; Bennett, A.; Verity, R.; Gething, P.; Roper, C.; et al. Emerging implications of policies on malaria treatment: Genetic changes in the Pfmdr-1 gene affecting susceptibility to artemether-lumefantrine and artesunate-amodiaquine in Africa. BMJ Glob. Health 2018, 3, e000999. [Google Scholar] [CrossRef] [PubMed]
- Mwai, L.; Diriye, A.; Masseno, V.; Muriithi, S.; Feltwell, T.; Musyoki, J.; Lemieux, J.; Feller, A.; Mair, G.R.; Marsh, K.; et al. Genome wide adaptations of Plasmodium falciparum in response to lumefantrine selective drug pressure. PLoS ONE 2012, 7, e31623. [Google Scholar] [CrossRef] [PubMed]
- Veiga, M.I.; Ferreira, P.E.; Jörnhagen, L.; Malmberg, M.; Kone, A.; Schmidt, B.A.; Petzold, M.; Björkman, A.; Nosten, F.; Gil, J.P. Novel polymorphisms in Plasmodium falciparum ABC transporter genes are associated with major ACT antimalarial drug resistance. PLoS ONE 2011, 6, e20212. [Google Scholar] [CrossRef] [PubMed]
- Coldiron, M.E.; Von Seidlein, L.; Grais, R.F. Seasonal malaria chemoprevention: Successes and missed opportunities. Malar. J. 2017, 16, 481. [Google Scholar] [CrossRef] [PubMed]
- Kaur, K.; Jain, M.; Reddy, R.P.; Jain, R. Quinolines and structurally related heterocycles as antimalarials. Eur. J. Med Chem. 2010, 45, 3245–3264. [Google Scholar] [CrossRef] [PubMed]
- Duraisingh, M.T.; Drakeley, C.J.; Muller, O.; Bailey, R.; Snounou, G.; Targett, G.A.; Greenwood, B.M.; Warhurst, D.C. Evidence for selection for the tyrosine-86 allele of the pfmdr 1 gene of Plasmodium falciparum by chloroquine and amodiaquine. Parasitology 1997, 114 Pt 3, 205–211. [Google Scholar] [CrossRef]
- Holmgren, G.; Gil, J.P.; Ferreira, P.M.; Veiga, M.I.; Obonyo, C.O.; Björkman, A. Amodiaquine resistant Plasmodium falciparum malaria in vivo is associated with selection of pfcrt 76T and pfmdr1 86Y. Infect. Genet. Evol. 2006, 6, 309–314. [Google Scholar] [CrossRef] [PubMed]
- Sá, J.M.; Twu, O.; Hayton, K.; Reyes, S.; Fay, M.P.; Ringwald, P.; Wellems, T.E. Geographic patterns of Plasmodium falciparum drug resistance distinguished by differential responses to amodiaquine and chloroquine. Proc. Natl. Acad. Sci. USA 2009, 106, 18883. [Google Scholar] [CrossRef] [PubMed]
- Sa, J.M.; Twu, O. Protecting the malaria drug arsenal: Halting the rise and spread of amodiaquine resistance by monitoring the PfCRT SVMNT type. Malar. J. 2010, 9, 374. [Google Scholar] [CrossRef]
- Beshir, K.; Sutherland, C.J.; Merinopoulos, I.; Durrani, N.; Leslie, T.; Rowland, M.; Hallett, R.L. Amodiaquine resistance in Plasmodium falciparum malaria in Afghanistan is associated with the pfcrt SVMNT allele at codons 72 to 76. Antimicrob. Agents Chemother. 2010, 54, 3714–3716. [Google Scholar] [CrossRef]
- WorldWide Antimalarial Resistance Network (WWARN) DP Study Group. The effect of dosing regimens on the antimalarial efficacy of dihydroartemisinin-piperaquine: A pooled analysis of individual patient data. PLoS Med. 2013, 10, e1001564. [Google Scholar]
- WHO. World Malaria Report 2018; WHO: Geneva, Switzerland, 2018; p. 210. [Google Scholar]
- Kakuru, A.; Jagannathan, P.; Muhindo, M.K.; Natureeba, P.; Awori, P.; Nakalembe, M.; Opira, B.; Olwoch, P.; Ategeka, J.; Nayebare, P.; et al. Dihydroartemisinin-Piperaquine for the Prevention of Malaria in Pregnancy. N. Engl. J. Med. 2016, 374, 928–939. [Google Scholar] [CrossRef] [PubMed]
- Desai, M.; Hill, J.; Fernandes, S.; Walker, P.; Pell, C.; Gutman, J.; Kayentao, K.; Gonzalez, R.; Webster, J.; Greenwood, B.; et al. Prevention of malaria in pregnancy. Lancet Infect. Dis. 2018, 18, e119–e132. [Google Scholar] [CrossRef]
- Eisele, T.P.; Bennett, A.; Silumbe, K.; Finn, T.P.; Chalwe, V.; Kamuliwo, M.; Hamainza, B.; Moonga, H.; Kooma, E.; Chizema Kawesha, E.; et al. Short-term Impact of Mass Drug Administration with Dihydroartemisinin Plus Piperaquine on Malaria in Southern Province Zambia: A Cluster-Randomized Controlled Trial. J. Infect. Dis. 2016, 214, 1831–1839. [Google Scholar] [CrossRef] [PubMed]
- Mwesigwa, J.; Achan, J.; Affara, M.; Wathuo, M.; Worwui, A.; Muhommed, N.I.; Kanuteh, F.; Prom, A.; Dierickx, S.; di Tanna, G.L.; et al. Mass drug administration with dihydroartemisinin-piperaquine and malaria transmission dynamics in The Gambia—A prospective cohort study. Clin. Infect. Dis. 2018. [Google Scholar] [CrossRef] [PubMed]
- Guler, J.L.; Rosenthal, P.J. Mass drug administration to control and eliminate malaria in Africa: How do we best utilize the tools at hand? Clin. Infect. Dis. 2018. [Google Scholar] [CrossRef] [PubMed]
- Amaratunga, C.; Lim, P.; Suon, S.; Sreng, S.; Mao, S.; Sopha, C.; Sam, B.; Dek, D.; Try, V.; Amato, R.; et al. Dihydroartemisinin–piperaquine resistance in Plasmodium falciparum malaria in Cambodia: A multisite prospective cohort study. Lancet Infect. Dis. 2016, 16, 357. [Google Scholar] [CrossRef]
- Amato, D.R.; Lim, P.; Miotto, O.; Amaratunga, C.; Dek, D.; Pearson, R.D.; Almagro-Garcia, J.; Neal, A.T.; Sreng, S.; Suon, S.; et al. Genetic markers associated with dihydroartemisinin–piperaquine failure in Plasmodium falciparum malaria in Cambodia: A genotype-phenotype association study. Lancet Infect. Dis. 2017, 17, 164–173. [Google Scholar] [CrossRef]
- Davis, T.M.E.; Hung, T.-Y.; Sim, I.-K.; Karunajeewa, H.A.; Ilett, K.F. Piperaquine. Drugs 2005, 65, 75–87. [Google Scholar] [CrossRef]
- Dhingra, S.K.; Redhi, D.; Combrinck, J.M.; Yeo, T.; Okombo, J.; Henrich, P.P.; Cowell, A.N.; Gupta, P.; Stegman, M.L.; Hoke, J.M.; et al. A Variant PfCRT Isoform Can Contribute to Plasmodium falciparum Resistance to the First-Line Partner Drug Piperaquine. MBio 2017, 8, e00303-17. [Google Scholar] [CrossRef]
- Witkowski, B.; Duru, V.; Khim, N.; Ross, L.S.; Saintpierre, B.; Beghain, J.; Chy, S.; Kim, S.; Ke, S.; Kloeung, N.; et al. A surrogate marker of piperaquine-resistant Plasmodium falciparum malaria: A phenotype–genotype association study. Lancet Infect. Dis. 2017, 17, 174–183. [Google Scholar] [CrossRef]
- Agrawal, S.; Moser, K.A.; Morton, L.; Cummings, M.P.; Parihar, A.; Dwivedi, A.; Shetty, A.C.; Drabek, E.F.; Jacob, C.G.; Henrich, P.P.; et al. Association of a Novel Mutation in the Plasmodium falciparum Chloroquine Resistance Transporter with Decreased Piperaquine Sensitivity. J. Infect. Dis. 2017, 216, 468–476. [Google Scholar] [CrossRef] [PubMed]
- Ross, L.S.; Dhingra, S.K.; Mok, S.; Yeo, T.; Wicht, K.J.; Kümpornsin, K.; Takala-Harrison, S.; Witkowski, B.; Fairhurst, R.M.; Ariey, F.; et al. Emerging Southeast Asian PfCRT mutations confer Plasmodium falciparum resistance to the first-line antimalarial piperaquine. Nat. Commun. 2018, 9, 3314. [Google Scholar] [CrossRef] [PubMed]
- Cowman, A.F.; Morry, M.J.; Biggs, B.A.; Cross, G.A.; Foote, S.J. Amino acid changes linked to pyrimethamine resistance in the dihydrofolate reductase-thymidylate synthase gene of Plasmodium falciparum. Proc. Natl. Acad. Sci. USA 1988, 85, 9109–9113. [Google Scholar] [CrossRef] [PubMed]
- Wang, P.; Read, M.; Sims, P.F.G.; Hyde, J.E. Sulfadoxine resistance in the human malaria parasite Plasmodium falciparum is determined by mutations in dihydropteroate synthetase and an additional factor associated with folate utilization. Mol Microbiol. 1997, 23, 979–986. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Plowe, C.V.; Cortese, J.F.; Djimde, A.; Nwanyanwu, O.C.; Watkins, W.M.; Winstanley, P.A.; Estrada-Franco, J.G.; Mollinedo, R.E.; Avila, J.C.; Cespedes, J.L.; et al. Mutations in Plasmodium falciparum dihydrofolate reductase and dihydropteroate synthase and epidemiologic patterns of pyrimethamine-sulfadoxine use and resistance. J. Infect. Dis. 1997, 176, 1590–1596. [Google Scholar] [CrossRef]
- Wang, P.; Lee, C.S.; Bayoumi, R.; Djimde, A.; Doumbo, O.; Swedberg, G.; Dao, L.D.; Mshinda, H.; Tanner, M.; Watkins, W.M.; et al. Resistance to antifolates in Plasmodium falciparum monitored by sequence analysis of dihydropteroate synthetase and dihydrofolate reductase alleles in a large number of field samples of diverse origins. Mol. Biochem Parasitol. 1997, 89, 161–177. [Google Scholar] [CrossRef]
- Naidoo, I.; Roper, C. Mapping “partially resistant”, “fully resistant”, and “super resistant” malaria. Trends Parasitol. 2013, 29, 505–515. [Google Scholar] [CrossRef]
- Roper, C.; Pearce, R.; Nair, S.; Sharp, B.; Nosten, F.; Anderson, T. Intercontinental Spread of Pyrimethamine-Resistant Malaria. Science 2004, 305, 1124. [Google Scholar] [CrossRef]
- WHO. WHO Policy Recommendation on Intermittent Preventive Treatment during Infancy with Sulphadoxine-Pyrimethamine (IPTi-SP) for Plasmodium falciparum Malaria Control in Africa; World Health Organization: Geneva, Switzerland, 2010; p. 3. [Google Scholar]
- Looareesuwan, S.; Kyle, D.E.; Viravan, C.; Vanijanonta, S.; Wilairatana, P.; Charoenlarp, P.; Canfield, C.J.; Webster, H.K. Treatment of patients with recrudescent falciparum malaria with a sequential combination of artesunate and mefloquine. Am. J. Trop. Med. Hyg. 1992, 47, 794–799. [Google Scholar] [CrossRef]
- Fitch, C.D. Ferriprotoporphyrin IX, phospholipids, and the antimalarial actions of quinoline drugs. Life Sci. 2004, 74, 1957–1972. [Google Scholar] [CrossRef]
- Cowman, A.F.; Galatis, D.; Thompson, J.K. Selection for mefloquine resistance in Plasmodium falciparum is linked to amplification of the pfmdr1 gene and cross-resistance to halofantrine and quinine. Proc. Natl. Acad. Sci. USA 1994, 91, 1143–1147. [Google Scholar] [CrossRef] [PubMed]
- Wilson, C.M.; Volkman, S.K.; Thaithong, S.; Martin, R.K.; Kyle, D.E.; Milhous, W.K.; Wirth, D.F. Amplification of pfmdr1 associated with mefloquine and halofantrine resistance in Plasmodium falciparum from Thailand. Mol. Biochem. Parasitol. 1993, 57, 151–160. [Google Scholar] [CrossRef]
- Price, R.N.; Uhlemann, A.-C.; Brockman, A.; McGready, R.; Ashley, E.; Phaipun, L.; Patel, R.; Laing, K.; Looareesuwan, S.; White, N.J.; et al. Mefloquine resistance in Plasmodium falciparum and increased pfmdr1 gene copy number. Lancet 2004, 364, 438–447. [Google Scholar] [CrossRef]
- Veiga, M.I.; Osório, N.S.; Ferreira, P.E.; Franzén, O.; Dahlstrom, S.; Lum, J.K.; Nosten, F.; Gil, J.P. Complex polymorphisms in the Plasmodium falciparum multidrug resistance protein 2 gene and its contribution to antimalarial response. Antimicrob. Agents Chemother. 2014, 58, 7390–7397. [Google Scholar] [CrossRef] [PubMed]
- Woodland, J.G.; Hunter, R.; Smith, P.J.; Egan, T.J. Chemical Proteomics and Super-resolution Imaging Reveal That Chloroquine Interacts with Plasmodium falciparum Multidrug Resistance-Associated Protein and Lipids. ACS Chem. Biol. 2018, 13, 2939–2948. [Google Scholar] [CrossRef]
- Wong, W.; Bai, X.-C.; Sleebs, B.E.; Triglia, T.; Brown, A.; Thompson, J.K.; Jackson, K.E.; Hanssen, E.; Marapana, D.S.; Fernandez, I.S.; et al. Mefloquine targets the Plasmodium falciparum 80S ribosome to inhibit protein synthesis. Nat. Microbiol. 2017, 2, 17031. [Google Scholar] [CrossRef]
- Sagara, I.; Beavogui, A.H.; Zongo, I.; Soulama, I.; Borghini-Fuhrer, I.; Fofana, B.; Camara, D.; Somé, A.F.; Coulibaly, A.S.; Traore, O.B.; et al. Safety and efficacy of re-treatments with pyronaridine-artesunate in African patients with malaria: A substudy of the WANECAM randomised trial. Lancet Infect. Dis. 2016, 16, 189–198. [Google Scholar] [CrossRef]
- West African Network for Clinical Trials of Antimalarial Drugs (WANECAM), T.W.A.N. for C.T. of A.D. Pyronaridine-artesunate or dihydroartemisinin-piperaquine versus current first-line therapies for repeated treatment of uncomplicated malaria: A randomised, multicentre, open-label, longitudinal, controlled, phase 3b/4 trial. Lancet 2018, 391, 1378–1390. [Google Scholar] [CrossRef]
- Leang, R.; Mairet-Khedim, M.; Chea, H.; Huy, R.; Khim, N.; Mey Bouth, D.; Dorina Bustos, M.; Ringwald, P.; Witkowski, B. Efficacy and safety of pyronaridine-artesunate plus single-dose primaquine for the treatment of uncomplicated Plasmodium falciparum malaria in eastern Cambodia. Antimicrob. Agents Chemother. 2019. [Google Scholar] [CrossRef]
- Leang, R.; Canavati, S.E.; Khim, N.; Vestergaard, L.S.; Borghini Fuhrer, I.; Kim, S.; Denis, M.B.; Heng, P.; Tol, B.; Huy, R.; et al. Efficacy and Safety of Pyronaridine-Artesunate for Treatment of Uncomplicated Plasmodium falciparum Malaria in Western Cambodia. Antimicrob. Agents Chemother. 2016, 60, 3884–3890. [Google Scholar] [CrossRef] [Green Version]
- Auparakkitanon, S.; Chapoomram, S.; Kuaha, K.; Chirachariyavej, T.; Wilairat, P. Targeting of hematin by the antimalarial pyronaridine. Antimicrob. Agents Chemother. 2006, 50, 2197–2200. [Google Scholar] [CrossRef]
- Madamet, M.; Briolant, S.; Amalvict, R.; Benoit, N.; Bouchiba, H.; Cren, J.; Pradines, B.; French National Centre for Imported Malaria Study Group. The Plasmodium falciparum chloroquine resistance transporter is associated with the ex vivo P. falciparum African parasite response to pyronaridine. Parasit. Vectors 2016, 9, 77. [Google Scholar] [CrossRef] [PubMed]
- Laufer, M.K.; Thesing, P.C.; Eddington, N.D.; Masonga, R.; Dzinjalamala, F.K.; Takala, S.L.; Taylor, T.E.; Plowe, C.V. Return of Chloroquine Antimalarial Efficacy in Malawi. N. Engl. J. Med. 2006, 355, 1959–1966. [Google Scholar] [CrossRef] [PubMed]
- Laufer, M.K.; Takala-Harrison, S.; Dzinjalamala, F.K.; Stine, O.C.; Taylor, T.E.; Plowe, C. V Return of chloroquine-susceptible falciparum malaria in Malawi was a reexpansion of diverse susceptible parasites. J. Infect. Dis. 2010, 202, 801–808. [Google Scholar] [CrossRef] [PubMed]
- Humphreys, G.S.; Merinopoulos, I.; Ahmed, J.; Whitty, C.J.M.; Mutabingwa, T.K.; Sutherland, C.J.; Hallett, R.L. Amodiaquine and artemether-lumefantrine select distinct alleles of the Plasmodium falciparum mdr1 gene in Tanzanian children treated for uncomplicated malaria. Antimicrob. Agents Chemother. 2007, 51, 991–997. [Google Scholar] [CrossRef] [PubMed]
- Pelleau, S.; Moss, E.L.; Dhingra, S.K.; Volney, B.; Casteras, J.; Gabryszewski, S.J.; Volkman, S.K.; Wirth, D.F.; Legrand, E.; Fidock, D.A.; et al. Adaptive evolution of malaria parasites in French Guiana: Reversal of chloroquine resistance by acquisition of a mutation in pfcrt. Proc. Natl. Acad. Sci. USA 2015, 112, 11672–11677. [Google Scholar] [CrossRef] [PubMed]
- Nsanzabana, C.; Djalle, D.; Guérin, P.J.; Ménard, D.; González, I.J. Tools for surveillance of anti-malarial drug resistance: An assessment of the current landscape. Malar. J. 2018, 17, 75. [Google Scholar] [CrossRef]
- Nsanzabana, C.; Ariey, F.; Beck, H.-P.; Ding, X.C.; Kamau, E.; Krishna, S.; Legrand, E.; Lucchi, N.; Miotto, O.; Nag, S.; et al. Molecular assays for antimalarial drug resistance surveillance: A target product profile. PLoS ONE 2018, 13, e0204347. [Google Scholar] [CrossRef]
- Hastings, I.M.; Watkins, W.M.; White, N.J. The evolution of drug-resistant malaria: The role of drug elimination half-life. Philos. Trans. R. Soc. Lond. B Biol. Sci. 2002, 357, 505–519. [Google Scholar] [CrossRef]
- Maiga, H.; Lasry, E.; Diarra, M.; Sagara, I.; Bamadio, A.; Traore, A.; Coumare, S.; Bahonan, S.; Sangare, B.; Dicko, Y.; et al. Seasonal Malaria Chemoprevention with Sulphadoxine-Pyrimethamine and Amodiaquine Selects Pfdhfr-dhps Quintuple Mutant Genotype in Mali. PLoS ONE 2016, 11, e0162718. [Google Scholar] [CrossRef]
- Zuber, J.A.; Takala-Harrison, S. Multidrug-resistant malaria and the impact of mass drug administration. Infect. Drug Resist. 2018, 11, 299–306. [Google Scholar] [CrossRef] [PubMed]
- Tun, K.M.; Jeeyapant, A.; Myint, A.H.; Kyaw, Z.T.; Dhorda, M.; Mukaka, M.; Cheah, P.Y.; Imwong, M.; Hlaing, T.; Kyaw, T.H.; et al. Effectiveness and safety of 3 and 5 day courses of artemether–lumefantrine for the treatment of uncomplicated falciparum malaria in an area of emerging artemisinin resistance in Myanmar. Malar. J. 2018, 17, 258. [Google Scholar] [CrossRef] [PubMed]
- Priotto, G.; Kabakyenga, J.; Pinoges, L.; Ruiz, A.; Eriksson, T.; Coussement, F.; Ngambe, T.; Taylor, W.R.J.; Perea, W.; Guthmann, J.-P.; et al. Artesunate and sulfadoxine-pyrimethamine combinations for the treatment of uncomplicated Plasmodium falciparum malaria in Uganda: A randomized, double-blind, placebo-controlled trial. Trans. R. Soc. Trop. Med. Hyg. 2003, 97, 325–330. [Google Scholar] [CrossRef]
- Mutabingwa, T.K.; Anthony, D.; Heller, A.; Hallett, R.; Ahmed, J.; Drakeley, C.; Greenwood, B.M.; Whitty, C.J.M. Amodiaquine alone, amodiaquine+sulfadoxine-pyrimethamine, amodiaquine+artesunate, and artemether-lumefantrine for outpatient treatment of malaria in Tanzanian children: A four-arm randomised effectiveness trial. Lancet 2005, 365, 1474–1480. [Google Scholar] [CrossRef]
- Taylor, S.M.; Parobek, C.M.; Aragam, N.; Ngasala, B.E.; Mårtensson, A.; Meshnick, S.R.; Juliano, J.J. Pooled deep sequencing of Plasmodium falciparum isolates: An efficient and scalable tool to quantify prevailing malaria drug-resistance genotypes. J. Infect. Dis. 2013, 208, 1998–2006. [Google Scholar] [CrossRef] [PubMed]
- Nag, S.; Dalgaard, M.D.; Kofoed, P.-E.; Ursing, J.; Crespo, M.; Andersen, L.O.; Aarestrup, F.M.; Lund, O.; Alifrangis, M. High throughput resistance profiling of Plasmodium falciparum infections based on custom dual indexing and Illumina next generation sequencing-technology. Sci. Rep. 2017, 7, 2398. [Google Scholar] [CrossRef] [PubMed]
- Talundzic, E.; Ravishankar, S.; Kelley, J.; Patel, D.; Plucinski, M.; Schmedes, S.; Ljolje, D.; Clemons, B.; Madison-Antenucci, S.; Arguin, P.M.; et al. Next-Generation Sequencing and Bioinformatics Protocol for Malaria Drug Resistance Marker Surveillance. Antimicrob. Agents Chemother. 2018, 62, e02474-17. [Google Scholar] [CrossRef]
- Hooft van Huijsduijnen, R.; Wells, T.N. The antimalarial pipeline. Curr. Opin. Pharmacol. 2018, 42, 1–6. [Google Scholar] [CrossRef]
- Ashley, E.A.; Phyo, A.P. Drugs in Development for Malaria. Drugs 2018, 78, 861–879. [Google Scholar] [CrossRef]
- Worldwide Antimalarial Resistance Network (WWARN) AL Dose Impact Study Group. The effect of dose on the antimalarial efficacy of artemether-lumefantrine: A systematic review and pooled analysis of individual patient data. Lancet Infect. Dis. 2015, 15, 692–702. [Google Scholar] [CrossRef]
- Kloprogge, F.; Workman, L.; Borrmann, S.; Tékété, M.; Lefèvre, G.; Hamed, K.; Piola, P.; Ursing, J.; Kofoed, P.E.; Mårtensson, A.; et al. Artemether-lumefantrine dosing for malaria treatment in young children and pregnant women: A pharmacokinetic-pharmacodynamic meta-analysis. PLoS Med. 2018, 15, e1002579. [Google Scholar] [CrossRef] [PubMed]
- Ursing, J.; Kofoed, P.-E.; Rodrigues, A.; Blessborn, D.; Thoft-Nielsen, R.; Björkman, A.; Rombo, L. Similar efficacy and tolerability of double-dose chloroquine and artemether-lumefantrine for treatment of Plasmodium falciparum infection in Guinea-Bissau: A randomized trial. J. Infect. Dis. 2011, 203, 109–116. [Google Scholar] [CrossRef] [PubMed]
- Ursing, J.; Rombo, L.; Bergqvist, Y.; Rodrigues, A.; Kofoed, P.-E. High-Dose Chloroquine for Treatment of Chloroquine-Resistant Plasmodium falciparum Malaria. J. Infect. Dis. 2016, 213, 1315–1321. [Google Scholar] [CrossRef] [PubMed]
- Dipanjan, B.; Shivaprakash, G.; Balaji, O. Triple Combination Therapy and Drug Cycling—Tangential Strategies for Countering Artemisinin Resistance. Curr. Infect. Dis Rep. 2017, 19, 25. [Google Scholar] [CrossRef] [PubMed]
- Dini, S.; Zaloumis, S.; Cao, P.; Price, R.N.; Fowkes, F.J.I.; van der Pluijm, R.W.; McCaw, J.M.; Simpson, J.A. Investigating the Efficacy of Triple Artemisinin-Based Combination Therapies for Treating Plasmodium falciparum Malaria Patients Using Mathematical Modeling. Antimicrob. Agents Chemother. 2018, 62, e01068-18. [Google Scholar] [CrossRef] [PubMed]
- Rossi, G.; De Smet, M.; Khim, N.; Kindermans, J.-M.; Menard, D. Emergence of Plasmodium falciparum triple mutant in Cambodia. Lancet Infect. Dis. 2017, 17, 1233. [Google Scholar] [CrossRef] [Green Version]
- Wojnarski, M.; Lin, J.; Gosi, P.; Spring, M.; Vanachayangkul, P.; Boonyalai, N.; Kuntawunginn, W.; Chaisatit, C.; Kirativanich, K.; Saingam, P.; et al. The emergence of multidrug resistant malaria parasites in Southeast Asia and implications on future malaria treatment Itinerary. In Proceedings of the ASTMH Annual Meeting, New Orleans, LA, USA, 28 October–1 November 2018. [Google Scholar]
- Najer, A.; Palivan, C.G.; Beck, H.-P.; Meier, W. Challenges in Malaria Management and a Glimpse at Some Nanotechnological Approaches. Adv. Exp. Med. Biol. 2018, 1052, 103–112. [Google Scholar] [PubMed]
- Walvekar, P.; Gannimani, R.; Govender, T. Combination drug therapy via nanocarriers against infectious diseases. Eur. J. Pharm. Sci. 2019, 127, 121–141. [Google Scholar] [CrossRef] [PubMed]
- Bakshi, R.P.; Tatham, L.M.; Savage, A.C.; Tripathi, A.K.; Mlambo, G.; Ippolito, M.M.; Nenortas, E.; Rannard, S.P.; Owen, A.; Shapiro, T.A. Long-acting injectable atovaquone nanomedicines for malaria prophylaxis. Nat. Commun. 2018, 9, 315. [Google Scholar] [CrossRef] [Green Version]
© 2019 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nsanzabana, C. Resistance to Artemisinin Combination Therapies (ACTs): Do Not Forget the Partner Drug! Trop. Med. Infect. Dis. 2019, 4, 26. https://doi.org/10.3390/tropicalmed4010026
Nsanzabana C. Resistance to Artemisinin Combination Therapies (ACTs): Do Not Forget the Partner Drug! Tropical Medicine and Infectious Disease. 2019; 4(1):26. https://doi.org/10.3390/tropicalmed4010026
Chicago/Turabian StyleNsanzabana, Christian. 2019. "Resistance to Artemisinin Combination Therapies (ACTs): Do Not Forget the Partner Drug!" Tropical Medicine and Infectious Disease 4, no. 1: 26. https://doi.org/10.3390/tropicalmed4010026
APA StyleNsanzabana, C. (2019). Resistance to Artemisinin Combination Therapies (ACTs): Do Not Forget the Partner Drug! Tropical Medicine and Infectious Disease, 4(1), 26. https://doi.org/10.3390/tropicalmed4010026