Antiviral Therapy for the Next Influenza Pandemic
Abstract
:1. Commentary
2. What Has Changed in the last Century When It Comes to the Treatment of Influenza?
3. Development of Antiviral Stockpiles for Pandemic Preparedness
4. Access to Antiviral Stockpiles in the 2009 Pandemic
5. In the Future, What Might Antiviral Stockpiles Look like and How Might They Be Used?
6. Conclusions
Funding
Acknowledgments
Conflicts of Interest
References
- Shanks, G.D. The ‘Influenza’ Vaccine Used during the Samoan Pandemic of 1918. Trop. Med. Infect. Dis. 2018, 3, 17. [Google Scholar] [CrossRef] [PubMed]
- Luke, T.C.; Kilbane, E.M.; Jackson, J.L.; Hoffman, S.L. Meta-analysis: Convalescent blood products for Spanish influenza pneumonia: A future H5N1 treatment? Ann. Intern. Med. 2006, 145, 599–609. [Google Scholar] [CrossRef] [PubMed]
- Group, I.F.I.P.S. INSIGHT FLU005: An Anti-Influenza Virus Hyperimmune Intravenous Immunoglobulin Pilot Study. J. Infect. Dis. 2016, 213, 574–578. [Google Scholar] [CrossRef]
- Koszalka, P.; Tilmanis, D.; Hurt, A.C. Influenza antivirals currently in late-phase clinical trial. Influenza Respir. Viruses 2017, 11, 240–246. [Google Scholar] [CrossRef] [PubMed]
- Hay, A.J.; Wolstenholme, A.J.; Skehel, J.J.; Smith, M.H. The molecular basis of the specific anti-influenza action of amantadine. EMBO J. 1985, 4, 3021–3024. [Google Scholar] [CrossRef] [PubMed]
- Bright, R.A.; Medina, M.J.; Xu, X.; Perez-Oronoz, G.; Wallis, T.R.; Davis, X.M.; Povinelli, L.; Cox, N.J.; Klimov, A.I. Incidence of adamantane resistance among influenza A (H3N2) viruses isolated worldwide from 1994 to 2005: A cause for concern. Lancet 2005, 366, 1175–1181. [Google Scholar] [CrossRef]
- Hayden, F.G.; Hay, A.J. Emergence and transmission of influenza a viruses resistant to amantadine and rimantadine. Curr. Top. Microbiol. Immunol. 1992, 176, 119–130. [Google Scholar]
- Dobson, J.; Whitley, R.J.; Pocock, S.; Monto, A.S. Oseltamivir treatment for influenza in adults: A meta-analysis of randomised controlled trials. Lancet 2015, 385, 1729–1737. [Google Scholar] [CrossRef]
- Abdel-Ghafar, A.N.; Chotpitayasunondh, T.; Gao, Z.; Hayden, F.G.; Nguyen, D.H.; de Jong, M.D.; Naghdaliyev, A.; Peiris, J.S.; Shindo, N.; Soeroso, S.; et al. Update on avian influenza a (H5N1) virus infection in humans. N. Engl. J. Med. 2008, 358, 261–273. [Google Scholar] [CrossRef] [PubMed]
- Hayden, F.G.; Sugaya, N.; Hirotsu, N.; Lee, N.; de Jong, M.D.; Hurt, A.C.; Ishida, T.; Sekino, H.; Yamada, K.; Portsmouth, S.; et al. Baloxavir Marboxil for Uncomplicated Influenza in Adults and Adolescents. N. Engl. J. Med. 2018, 379, 913–923. [Google Scholar] [CrossRef]
- Hayden, F.G.; Shindo, N. Influenza virus polymerase inhibitors in clinical development. Curr. Opin. Infect. Dis. 2019. [Google Scholar] [CrossRef]
- Takashita, E.; Kawakami, C.; Ogawa, R.; Morita, H.; Fujisaki, S.; Shirakura, M.; Miura, H.; Nakamura, K.; Kishida, N.; Kuwahara, T.; et al. Influenza A(H3N2) virus exhibiting reduced susceptibility to baloxavir due to a polymerase acidic subunit I38T substitution detected from a hospitalised child without prior baloxavir treatment, Japan, January 2019. Euro Surveill. Bull. Eur. Sur Les Mal. Transm. Eur. Commun. Dis. Bull. 2019, 24. [Google Scholar] [CrossRef] [PubMed]
- Jefferson, T.; Jones, M.; Doshi, P.; Spencer, E.A.; Onakpoya, I.; Heneghan, C.J. Oseltamivir for influenza in adults and children: Systematic review of clinical study reports and summary of regulatory comments. BMJ 2014, 348, g2545. [Google Scholar] [CrossRef] [PubMed]
- Muthuri, S.G.; Venkatesan, S.; Myles, P.R.; Leonardi-Bee, J.; Al Khuwaitir, T.S.; Al Mamun, A.; Anovadiya, A.P.; Azziz-Baumgartner, E.; Baez, C.; Bassetti, M.; et al. Effectiveness of neuraminidase inhibitors in reducing mortality in patients admitted to hospital with influenza A H1N1pdm09 virus infection: A meta-analysis of individual participant data. Lancet Respir. Med. 2014, 2, 395–404. [Google Scholar] [CrossRef]
- Adisasmito, W.; Chan, P.K.; Lee, N.; Oner, A.F.; Gasimov, V.; Aghayev, F.; Zaman, M.; Bamgboye, E.; Dogan, N.; Coker, R.; et al. Effectiveness of antiviral treatment in human influenza A(H5N1) infections: Analysis of a Global Patient Registry. J. Infect. Dis. 2010, 202, 1154–1160. [Google Scholar] [CrossRef] [PubMed]
- Sugaya, N.; Shinjoh, M.; Mitamura, K.; Takahashi, T. Very low pandemic influenza A (H1N1) 2009 mortality associated with early neuraminidase inhibitor treatment in Japan: Analysis of 1000 hospitalized children. J. Infect. 2011, 63, 288–294. [Google Scholar] [CrossRef] [PubMed]
- Burioni, R.; Canducci, F.; Clementi, M. Pregnancy and H1N1 infection. Lancet 2009, 374, 1417–1418. [Google Scholar] [CrossRef]
- Nakai, A.; Saito, S.; Unno, N.; Kubo, T.; Minakami, H. Review of the pandemic (H1N1) 2009 among pregnant Japanese women. J. Obstet. Gynaecol. Res. 2012, 38, 757–762. [Google Scholar] [CrossRef] [PubMed]
- Venkatesan, S.; Myles, P.R.; Leonardi-Bee, J.; Muthuri, S.G.; Al Masri, M.; Andrews, N.; Bantar, C.; Dubnov-Raz, G.; Gerardin, P.; Koay, E.S.C.; et al. Impact of Outpatient Neuraminidase Inhibitor Treatment in Patients Infected With Influenza A(H1N1)pdm09 at High Risk of Hospitalization: An Individual Participant Data Metaanalysis. Clin. Infect. Dis. Off. Publ. Infect. Dis. Soc. Am. 2017, 64, 1328–1334. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Berera, D.; Zambon, M. Antivirals in the 2009 pandemic--lessons and implications for future strategies. Influenza Other Respir. Viruses 2013, 7 (Suppl. 3), 72–79. [Google Scholar] [CrossRef]
- Gutierrez-Mendoza, L.M.; Schwartz, B.; Mendez de Lira Jde, J.; Wirtz, V.J. Oseltamivir storage, distribution and dispensing following the 2009 H1N1 influenza outbreak in Mexico. Bull. World Health Organ. 2012, 90, 782–787. [Google Scholar] [CrossRef] [PubMed]
- Lee, V.J.; Yap, J.; Cook, A.R.; Chen, M.I.; Tay, J.K.; Tan, B.H.; Loh, J.P.; Chew, S.W.; Koh, W.H.; Lin, R.; et al. Oseltamivir ring prophylaxis for containment of 2009 H1N1 influenza outbreaks. N. Engl. J. Med. 2010, 362, 2166–2174. [Google Scholar] [CrossRef] [PubMed]
- Moss, R.; McCaw, J.M.; Cheng, A.C.; Hurt, A.C.; McVernon, J. Reducing disease burden in an influenza pandemic by targeted delivery of neuraminidase inhibitors: Mathematical models in the Australian context. BMC Infect. Dis. 2016, 16, 552. [Google Scholar] [CrossRef] [PubMed]
Antiviral (Trade Name) | Mode of Action | Use in the 2009 Pandemic | Potential Use in a Future Pandemic |
---|---|---|---|
Amantadine/rimantadine (Symmetrel/Flumadine) | M2 ion channel inhibitor | Limited/no use due to the 2009 pandemic virus being adamantane-resistant at the time of emergence | Unlikely to be used in a future pandemic due to rapid selection of resistance |
Oseltamivir (Tamiflu) | Neuraminidase inhibitor | Major component of WHO and country stockpiles | Likely to remain a part of future stockpiles due to long “shelf-life”, ease of oral delivery and familiarity with its use for seasonal influenza |
Zanamivir (Relenza) | Neuraminidase inhibitor | Minor component of WHO and some country stockpiles | Likely to make up only a minor component or not be used due to inhaled delivery and low use for seasonal influenza. Has a low propensity to select for resistance, which is a benefit |
Peramivir (Rapivab) | Neuraminidase inhibitor | Some use in Japan where it was licensed. Small usage elsewhere under emergency use authorisation only | May be utilised in small quantities given it is approved for intravenous delivery, which may be optimal for some severely ill patients |
Laninamivir (Inavir) | Neuraminidase inhibitor | Was not available | May be used in Japan (the only country to license the antiviral for seasonal influenza use). Has benefits of single dose and low propensity to select for resistance, but is delivered via inhalation |
Favipiravir (Avigan) | Polymerase inhibitor (purine nucleoside altering role of PB1) | Was not available | Limited use due to concerns of teratogenicity. May be used in Japan if pandemic virus is resistant to other available antivirals. Unlikely to be used elsewhere |
Baloxavir (Xofluza) | Polymerase inhibitor (PA endonuclease) | Was not available | Likely to be a part of future stockpiles due to ease of dosing and delivery (single oral dose) and rapid virological effect |
© 2019 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hurt, A.C. Antiviral Therapy for the Next Influenza Pandemic. Trop. Med. Infect. Dis. 2019, 4, 67. https://doi.org/10.3390/tropicalmed4020067
Hurt AC. Antiviral Therapy for the Next Influenza Pandemic. Tropical Medicine and Infectious Disease. 2019; 4(2):67. https://doi.org/10.3390/tropicalmed4020067
Chicago/Turabian StyleHurt, Aeron C. 2019. "Antiviral Therapy for the Next Influenza Pandemic" Tropical Medicine and Infectious Disease 4, no. 2: 67. https://doi.org/10.3390/tropicalmed4020067
APA StyleHurt, A. C. (2019). Antiviral Therapy for the Next Influenza Pandemic. Tropical Medicine and Infectious Disease, 4(2), 67. https://doi.org/10.3390/tropicalmed4020067