Molecular Detection of Rickettsia spp. and Coxiella burnetii in Cattle, Water Buffalo, and Rhipicephalus (Boophilus) microplus Ticks in Luzon Island of the Philippines
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area and Collection of Samples
2.2. Extraction of DNA from Blood and Tick Samples
2.3. PCR Detection of Control Genes and Pathogens
2.4. Sequence and Data Analysis
3. Results
4. Discussion
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Bondoc, O.L. Genetic diversity and relationship of domestic buffalo and cattle breeds and crossbreeds (subfamily Bovinae) in the Philippines based on the cytochrome c oxidase I (COI) gene sequence. Philipp. Agric. Sci. 2013, 96, 93–102. [Google Scholar]
- Philippine Statistics Authority. Cattle Situation Report October to December 2019; Philippine Statistics Authority: Quezon City, Philippines, 2020. Available online: https://psa.gov.ph/livestock-poultry-iprs/cattle/inventory (accessed on 26 February 2020).
- Philippine Statistics Authority. Carabao Situation Report October to December 2019; Philippine Statistics Authority: Quezon City, Philippines, 2020. Available online: https://psa.gov.ph/livestock-poultry-iprs/carabao/inventory (accessed on 26 February 2020).
- Fournier, P.E.; Raoult, D. Current knowledge on the phylogeny and taxonomy of Rickettsia spp. Rickettsiology and Rickettsial Diseases—Fifth International Conference: Annals of the New York Academic. Sciences 2009, 1166, 1–11. [Google Scholar] [CrossRef]
- Angelakis, E.; Raoult, D. Q fever. Vet. Microbiol. 2010, 140, 297–309. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Azad, A.F.; Beard, C.B. Rickettsial pathogens and their arthropod vectors. Emerg. Infect. Dis. 1998, 4, 179–186. [Google Scholar] [CrossRef] [Green Version]
- Eremeeva, M.E.; Dasch, G.A. Challenges posed by tick-borne rickettsiae: Eco-epidemiology and public health implications. Front. Public Health 2015, 3, 1–17. [Google Scholar] [CrossRef]
- Guatteo, R.; Seegers, H.; Taurel, A.F.; Joly, A.; Beaudeau, F. Prevalence of Coxiella burnetii infection in domestic ruminants: A critical review. Vet. Microbiol. 2011, 149, 1–16. [Google Scholar] [CrossRef]
- OiE World Organisation for Animal Health 2012. Available online: https://www.oie.int/standard-setting/terrestrial-manual/access-online/ (accessed on 9 April 2017).
- Mcquiston, J.H.; Childs, J.E. Q Fever in Humans and Animals in the United States. Vector Borne Zoonotic Dis. 2002, 2, 179–191. [Google Scholar] [CrossRef]
- Jilintai, N.S.; Seino, N.; Matsumoto, K.; Hayakawa, D.; Suzuki, M.; Hata, H.; Kondo, S.; Yokoyama, N.; Inokuma, H. Serological and molecular survey of Rickettsial infection in cattle and sika deer in a pastureland in Hidaka District, Hokkaido, Japan. Jpn. J. Infect. Dis. 2008, 61, 315–317. [Google Scholar]
- Magouras, I.; Hunninghaus, J.; Scherrer, S.; Wittenbrink, M.M.; Hamburger, A.; Stärk, K.D.C.; Schüpbach-Regula, G. Coxiella burnetii Infections in Small Ruminants and Humans in Switzerland. Transbound. Emerg. Dis. 2015, 64, 204–212. [Google Scholar] [CrossRef]
- Paul, S.; Agger, J.F.; Agerholm, J.S.; Markussen, B. Prevalence and risk factors of Coxiella burnetii seropositivity in Danish beef and dairy cattle at slaughter adjusted for test uncertainty. Prev. Vet. Med. 2014, 113, 504–511. [Google Scholar] [CrossRef]
- Lyoo, K.S.; Kim, D.; Jang, H.G.; Lee, S.J.; Park, M.Y.; Hahn, T.W. Prevalence of Antibodies Against Coxiella burnetii in Korean Native Cattle, Dairy Cattle, and Dogs in South Korea. Vector-Borne Zoonotic Dis. 2017, 17, 213–216. [Google Scholar] [CrossRef] [PubMed]
- Eisawi, N.M.; Hassan, D.A.; Hussien, M.O.; Musa, A.B.; El Hussein, A.R.M. Seroprevalence of spotted fever group (SFG) rickettsiae infection in domestic ruminants in Khartoum State, Sudan. Vet. Med. Sci. 2017, 3, 91–98. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Astobiza, I.; Ruiz-Fons, F.; Piñero, A.; Barandika, J.F.; Hurtado, A.L.; García-Pérez, A.L. Estimation of Coxiella burnetii prevalence in dairy cattle in intensive systems by serological and molecular analyses of bulk-tank milk samples. J. Dairy Sci. 2012, 95, 1632–1638. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gyuranecz, M.; Dénés, B.; Hornok, S.; Kovács, P.; Horváth, G.; Jurkovich, V.; Varga, T.; Hajtós, I.; Szabó, R.; Magyar, T.; et al. Prevalence of Coxiella burnetii in Hungary: Screening of dairy cows, sheep, commercial milk samples, and ticks. Vector-Borne Zoonotic Dis. 2012, 12, 1–4. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sulyok, K.M.; Kreizinger, Z.; Hornstra, H.M.; Pearson, T.; Szigeti, A.; Dán, A.; Balla, E.; Keirn, P.S.; Gyuranecz, M. Genotyping of Coxiella burnetii from domestic ruminants and human in Hungary: Indication of various genotypes. BMC Vet. Res. 2014, 10, 107. [Google Scholar] [CrossRef] [Green Version]
- Pesquera, C.; Portillo, A.; Palomar, A.M.; Oteo, J.A. Investigation of tick-borne bacteria (Rickettsia spp., Anaplasma spp., Ehrlichia spp. and Borrelia spp.) in ticks collected from Andaean tapirs, cattle and vegetation from a protected area in Ecuador. Parasites Vectors 2015, 8, 46. [Google Scholar] [CrossRef] [Green Version]
- Cumbassa, A.; Barahona, M.J.; Cunha, M.V.; Azorin, B.; Fonseca, C.; Rosalino, L.M.; Tilburg, J.; Hagen, F.; Santos, A.S.; Botelho, A. Coxiella burnetti DNA detected in domestic ruminants and wildlife from Portugal. Vet. Microbiol. 2015, 180, 136–141. [Google Scholar] [CrossRef]
- Sumrandee, C.; Baimai, V.; Trinachartvanit, W.; Ahantarig, A. Molecular detection of Rickettsia, Anaplasma, Coxiella and Francisella bacteria in ticks collected from Artiodactyla in Thailand. Ticks Tick Borne Dis. 2016, 7, 678–689. [Google Scholar] [CrossRef]
- Karim, S.; Budachetri, K.; Mukherjee, N.; Williams, J.; Kausar, A.; Hassan, M.J.; Adamson, S.; Dowd, S.E.; Apanskevich, D.; Arijo, A.; et al. A study of ticks and tick-borne livestock pathogens in Pakistan. PLoS Negl. Trop. Dis. 2017, 11, e0005681. [Google Scholar] [CrossRef]
- Liu, D. Chapter 111—Rickettsia. In Molecular Medical Microbiology, 2nd ed.; Tang, Y., Liu, D., Schwartzman, J., Sussman, M., Poxton, I., Eds.; Elsevier Ltd.: Alpharetta, GA, USA, 2015; pp. 2043–2045. [Google Scholar]
- Bechah, Y.; Capo, C.; Mege, J.L.; Raoult, D. Rickettsial diseases: From Rickettsia-arthropod relationships to pathophysiology and animal models. Future Microbiol. 2008, 3, 223–236. [Google Scholar] [CrossRef]
- Aung, A.K.; Spelman, D.W.; Murray, R.J.; Graves, S. Rickettsial Infections in Southeast Asia: Implications for Local Populace and Febrile Returned Travelers. Am. J. Trop. Med. Hyg. 2014, 91, 451–460. [Google Scholar] [CrossRef] [PubMed]
- Maurin, M.; Raoult, D. Q fever. Clin. Microbiol. Rev. 1999, 12, 518–553. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Arricau-Bouvery, N.; Rodolakis, A. Is Q fever an emerging or re-emerging zoonosis? Vet. Res. 2005, 36, 327–349. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Parisi, A.; Fraccalvieri, R.; Cafiero, M.; Miccolupo, A.; Padalino, I.; Montagna, C.; Capuano, F.; Sottili, R. Detection of Coxiella burnetii-related abortion in Italian domestic ruminants using single-tube nested PCR. Vet. Microbiol. 2006, 118, 101–106. [Google Scholar] [CrossRef] [PubMed]
- Gürtler, L.; Bauerfeind, U.; Blümel, J.; Burger, R.; Drosten, C.; Gröner, A.; Heiden, M.; Hildebrandt, M.; Jansen, B.; Offergeld, R.; et al. Coxiella burnetti—Pathogenic Agent of Q (Query) Fever. Transfus. Med. Hemother. 2014, 41, 60–72. [Google Scholar] [CrossRef] [Green Version]
- Ybañez, A.P.; Mingala, C.N.; Ybañez, R.H.D. Historical review and insights on the livestock tick-borne disease research of a developing country: The Philippine scenario. Parasitol. Int. 2018, 67, 262–266. [Google Scholar] [CrossRef]
- Camer, G.A.; Alejandria, M.; Amor, M.; Satoh, H.; Muramatsu, Y.; Ueno, H.; Morita, C. Detection of Antibodies against Spotted Fever Group Rickettsia (SFGR), Typhus Group Rickettsia (TGR), and Coxiella burnetii in Human Febrile Patients in the Philippines. Jpn. J. Infect. Dis. 2003, 56, 26–28. [Google Scholar]
- Cardona, F. Serological Detection of Q–Fever in the Sera of Humans and Ruminants in Selected Areas in the Philippines. IAMURE Int. J. Ecol. Conserv. 2016, 18, 108–117. [Google Scholar] [CrossRef]
- Galay, R.L.; Manalo, A.A.L.; Dolores, S.L.D.; Aguilar, I.P.M.; Sandalo, K.A.C.; Cruz, K.B.; Divina, B.P.; Andoh, M.; Masatani, T.; Tanaka, T. Molecular detection of tick-borne pathogens in canine population and Rhipicephalus sanguineus (sensu lato) ticks from southern Metro Manila and Laguna, Philippines. Parasites Vectors 2018, 11, 1–8. [Google Scholar] [CrossRef]
- Barker, S.C.; Walker, A.R. Ticks of Australia. The species that infest domestic animals and humans. Zootaxa 2014, 3816, 1–144. [Google Scholar] [CrossRef]
- Belotindos, L.P.; Lazaro, J.V.; Villanueva, M.A.; Mingala, C.N. Molecular detection and characterization of Theileria species in the Philippines. Acta Parasitol. 2014, 59, 448–453. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ushijima, Y.; Oliver, J.J.; Keirans, J.; Tsurumi, M.; Kawabata, H.; Watanabe, H.; Fukunaga, M. Mitochondrial sequence variation in Carlos capensis (Neumann), a parasite of seabirds, collected on Torishima Island in Japan. J. Parasitol. 2003, 89, 196–198. [Google Scholar] [CrossRef]
- Mediannikov, O.Y.; Sidelnikov, Y.; Ivanov, L.; Mokretsova, E.; Fournier, P.E.; Tarasevich, I.; Raoult, D. Acute tick-borne rickettsiosis caused by Rickettsia heilongjiangensis in Russian Far East. Emerg. Infect. Dis. 2004, 10, 810–817. [Google Scholar] [CrossRef] [PubMed]
- Zhang, G.Q.; Nguyen, S.A.V.; To, H.; Ogawa, M.; Hotta, A.; Yamaguchi, T.; Kim, H.; Fukushi, H.; Hirai, K. Clinical Evaluation of a new PCR assay for detection of Coxiella burnetii in human serum samples. J. Clin. Microbiol. 1998, 36, 77–80. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Camer, G.A.; Masangkay, J.; Satoh, H.; Okabayashi, T.; Norizuki, S.; Motoi, Y.; Ueno, H.; Morita, C. Prevalence of spotted fever rickettsial antibodies in dogs and rodents in the Philippines. Jpn. J. Infect. Dis. 2000, 53, 162–163. [Google Scholar] [PubMed]
- Maina, A.N.; Jiang, J.; Omulo, S.A.; Cutler, S.J.; Ade, F.; Ogola, E.; Feikin, D.; Njenga, M.K.; Cleaveland, S.; Mpoke, S.; et al. High Prevalence of Rickettsia africae Variants in Amblyomma variegatum Ticks from Domestic Mammals in Rural Western Kenya: Implications for Human Health. Vector Borne Zoonotic Dis. 2014, 14, 693–702. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Monje, L.D.; Linares, M.C.; Beldomenico, P.M. Prevalence and infection intensity of Rickettsia massiliae in Rhipicephalus sanguineus sensu lato ticks from Mendoza, Argentina. Microbes Infect. 2016, 18, 701–705. [Google Scholar] [CrossRef] [PubMed]
- Eraso-Cadena, M.P.; Molina-Guzmán, L.P.; Cardona, X.; Cardona-Arias, J.A.; Ríos-Osorio, L.A.; Gutierrez-Builes, L.A. Serological evidence of exposure to some zoonotic microorganisms in cattle and humans with occupational exposure to livestock in Antioquia, Colombia. Cad. Saude. Publica 2018, 34, 1–16. [Google Scholar] [CrossRef] [PubMed]
- Edwards, K.T.; Goddard, J.; Jones, T.L.; Paddock, C.D.; Varela-Stokes, A.S. Cattle and the Natural History of Rickettsia parkeri in Mississippi. Vector Borne Zoonotic Dis. 2011, 11, 485–491. [Google Scholar] [CrossRef]
- Hornok, S.; Sugár, L.; Fernández de Mera, I.G.; de la Fuente, J.; Horváth, G.; Kovács, T.; Micsutka, A.; Gönczi, E.; Flaisz, B.; Takács, N.; et al. Tick- and fly-borne bacteria in ungulates: The prevalence of Anaplasma phagocytophilum, haemoplasmas and rickettsiae in water buffalo and deer species in Central Europe, Hungary. BMC Vet. Res. 2018, 14, 98. [Google Scholar] [CrossRef]
- Abanda, B.; Paguem, A.; Abdoulmoumini, M.; Kingsley, M.T.; Renz, A.; Eisenbarth, A. Molecular identification and prevalence of tick-borne pathogens in zebu and taurine cattle in North Cameroon. Parasites Vectors 2019, 12, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Paris, D.H.; Dumler, J.S. State of the art of diagnosis of rickettsial diseases: The use of blood specimens for diagnosis of scrub typhus, spotted fever group rickettsiosis, and murine typhus. Curr. Opin. Infect. Dis. 2016, 29, 433–439. [Google Scholar] [CrossRef] [Green Version]
- Roux, V.; Rydkina, E.; Eremeeva, M.; Raoult, D. Citrate synthase gene comparison, a new tool for phylogenetic analysis, and its application for the rickettsiae. Int. J. Syst. Biol. 1997, 47, 252–261. [Google Scholar] [CrossRef] [Green Version]
- Stenos, J.; Graves, S.R.; Unsworth, N.B. A highly sensitive and specific real-time PCR assay for the detection of spotted fever and typhus group rickettsiae. Am. J. Trop. Med. Hyg. 2005, 73, 1083–1085. [Google Scholar] [CrossRef]
- Santibañez, S.; Portillo, A.; Santibañez, P.; Polmar, A.M.; Oteo, J.A. Usefulness of rickettsial PCR assays for the molecular diagnoses of human rickettsioses. Enferm. Infecc. Microbiol. Clín. 2013, 31, 283–288. [Google Scholar] [CrossRef]
- Fernández de Mera, I.G.; Blanda, V.; Torina, A.; Dabaja, M.F.; Romeh, A.E.; Cabezas-Cruz, A.; De la Fuente, J. Identification and molecular characterization of spotted fever group rickettsiae in ticks collected from farm ruminants in Lebanon. Ticks Tick Borne Dis. 2018, 9, 104–108. [Google Scholar] [CrossRef] [PubMed]
- Cicculli, V.; Capai, L.; Quilichini, Y.; Masse, S.; Fernández-Alvarez, A.; Minodier, L.; Bompard, P.; Charrel, R.; Falchi, A. Molecular investigation of tick-borne pathogens in ixodid ticks infesting domestic animals (cattle and sheep) and small rodents (black rats) of Corsica, France. Ticks Tick Borne Dis. 2019, 10, 606–613. [Google Scholar] [CrossRef]
- Cicculli, V.; Oscar, M.; Casabianca, F.; Villechenaud, N.; Charrel, R.; de Lamballerie, X.; Falchi, A. Molecular Detection of Spotted-Fever Group Rickettsiae in Ticks Collected from Domestic and Wild Animals in Corsica, France. Pathogens 2019, 8, 138. [Google Scholar] [CrossRef] [Green Version]
- Guo, H.; Moumouni, P.A.A.; Thekisoe, O.; Gao, Y.; Liu, M.; Li, J.; Galon, E.M.; Efstratiou, A.; Wang, G.; Jirapattharasate, C.; et al. Genetic characterization of tick-borne pathogens in ticks infesting cattle and sheep from three South African provinces. Ticks Tick Borne Dis. 2019, 10, 875–882. [Google Scholar] [CrossRef]
- Phan, J.N.; Lu, C.R.; Bender, W.G.; Smoak, R.M., 3rd; Zhong, J. Molecular detection and identification of Rickettsia species in Ixodes pacificus in California. Vecto. Borne Zoonotic Dis. 2011, 11, 957–961. [Google Scholar] [CrossRef] [Green Version]
- Kurtti, T.J.; Felsheim, R.F.; Burkhardt, N.Y.; Oliver, J.D.; Heu, C.C.; Munderloh, U.G. Rickettsia buchneri sp. nov., a rickettsial endosymbiont of the blacklegged tick Ixodes scapularis. Int. J. Syst. Evol. Microbiol. 2015, 65, 965–970. [Google Scholar] [CrossRef] [PubMed]
- Agerholm, J.S. Coxiella burnetii associated reproductive disorders in domestic animals—A critical review. Acta Vet. Scand. 2013, 55, 1–11. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lorenz, H.; Jāger, C.; Willems, H.; Baljer, G. PCR Detection of Coxiella burnetii from Different Clinical Specimens, Especially Bovine Milk, on the Basis of DNA Preparation with a Silica Matrix. Appl. Environ. Microbiol. 1998, 64, 4234–4237. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Berri, M.; Souriau, A.; Crosby, M.; Crochet, D.; Lechopier, P.; Rodolakis, A. Relationships between the shedding of Coxiella burnetii, clinicial signs and serological responses of 34 sheep. Vet. Rec. 2001, 148, 502–505. [Google Scholar] [CrossRef]
- Arricau-Bouvery, N.; Souriau, A.; Lechopier, P.; Rodolakis, A. Experimental Coxiella burnetii infection in pregnant goats: Excretion routes. Vet. Res. 2003, 34, 423–433. [Google Scholar] [CrossRef] [Green Version]
- Guatteo, R.; Beaudeau, F.; Berri, M.; Rodolakis, A.; Joly, A.; Seegers, H. Shedding routes of Coxiella burnetii in dairy cows: Implications for detection and control. Vet. Res. 2006, 37, 827–833. [Google Scholar] [CrossRef] [Green Version]
- Muramatsu, Y.; Noriyo, U.; Thongchai, C.; Kramomtong, I.; Kriengsak, P.; Tamura, Y. Seroepidemiologic survey in Thailand of Coxiella burnetii infection in cattle and chickens and presence in ticks attached to cattle. Southeast Asian J. Trop. Med. Public Health 2014, 45, 1167–1172. [Google Scholar]
- Guizzo, M.G.; Parizi, L.F.; Nunes, R.D.; Schama, R.; Albano, R.M.; Tirloni, L.; Oldiges, D.P.; Vieira, R.P.; Oliveira, W.H.C.; Leite, M.S.; et al. A Coxiella mutualist symbiont is essential to the development of Rhipicephalus microplus. Sci. Rep. 2017, 7, 1–10. [Google Scholar] [CrossRef]
- Doung-ngern, P.; Chuxnum, T.; Pangjai, D.; Opaschaitat, P.; Kittiwan, N.; Rodtian, P.; Buameetoop, N.; Kersh, G.J.; Padungtod, P. Seroprevalence of Coxiella burnetii Antibodies among Ruminants and Occupationally Exposed People in Thailand, 2012–2013. Am. J. Trop. Med. Hyg. 2017, 96, 786–790. [Google Scholar] [CrossRef] [Green Version]
- Khor, C.S.; Mohd-Rahim, N.F.; Hassan, H.; Chandren, J.R.; Nore, S.; Johari, J.; Loong, S.; Abd-Jamil, J.; Khoo, J.; Lee, H.; et al. Seroprevalence of Q Fever Among the Indigenous People (Orang Asli) of Peninsular Malaysia. Vector Borne Zoonotic Dis. 2018, 18, 131–137. [Google Scholar] [CrossRef]
Cattle | Water Buffalo | Ticks * | ||||
---|---|---|---|---|---|---|
Province | n | No. (%) of C. burnetii-positive | n | No. (%) of C. burnetii- positive | n | No. (%) of C. burnetii- positive |
Cavite | 100 | 0 | 0 | -- | 89 | 0 |
Laguna | 111 | 0 | 11 | 0 | 18 | 0 |
Batangas | 120 | 0 | 8 | 0 | 50 | 0 |
Rizal | 87 | 2 (2.3) | 0 | -- | 0 | -- |
Quezon | 94 | 5 (5.3) | 89 | 3 (3.4) | 49 | 5 (10.2) |
Total | 512 | 7 (1.4) | 108 | 3 (2.8) | 206 | 5 (2.4) |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Galay, R.L.; Talactac, M.R.; Ambita-Salem, B.V.; Chu, D.M.M.; Costa, L.M.O.d.; Salangsang, C.M.A.; Caracas, D.K.B.; Generoso, F.H.; Babelonia, J.A.; Vergano, J.L.; et al. Molecular Detection of Rickettsia spp. and Coxiella burnetii in Cattle, Water Buffalo, and Rhipicephalus (Boophilus) microplus Ticks in Luzon Island of the Philippines. Trop. Med. Infect. Dis. 2020, 5, 54. https://doi.org/10.3390/tropicalmed5020054
Galay RL, Talactac MR, Ambita-Salem BV, Chu DMM, Costa LMOd, Salangsang CMA, Caracas DKB, Generoso FH, Babelonia JA, Vergano JL, et al. Molecular Detection of Rickettsia spp. and Coxiella burnetii in Cattle, Water Buffalo, and Rhipicephalus (Boophilus) microplus Ticks in Luzon Island of the Philippines. Tropical Medicine and Infectious Disease. 2020; 5(2):54. https://doi.org/10.3390/tropicalmed5020054
Chicago/Turabian StyleGalay, Remil L., Melbourne R. Talactac, Bea V. Ambita-Salem, Dawn Maureen M. Chu, Lali Marie O. dela Costa, Cinnamon Mae A. Salangsang, Darwin Kyle B. Caracas, Florante H. Generoso, Jonathan A. Babelonia, Joeneil L. Vergano, and et al. 2020. "Molecular Detection of Rickettsia spp. and Coxiella burnetii in Cattle, Water Buffalo, and Rhipicephalus (Boophilus) microplus Ticks in Luzon Island of the Philippines" Tropical Medicine and Infectious Disease 5, no. 2: 54. https://doi.org/10.3390/tropicalmed5020054
APA StyleGalay, R. L., Talactac, M. R., Ambita-Salem, B. V., Chu, D. M. M., Costa, L. M. O. d., Salangsang, C. M. A., Caracas, D. K. B., Generoso, F. H., Babelonia, J. A., Vergano, J. L., Berana, L. C., Sandalo, K. A. C., Divina, B. P., Alvarez, C. R., Mago, E. R., Andoh, M., & Tanaka, T. (2020). Molecular Detection of Rickettsia spp. and Coxiella burnetii in Cattle, Water Buffalo, and Rhipicephalus (Boophilus) microplus Ticks in Luzon Island of the Philippines. Tropical Medicine and Infectious Disease, 5(2), 54. https://doi.org/10.3390/tropicalmed5020054