The Growing Importance of Tuberculosis Preventive Therapy and How Research and Innovation Can Enhance Its Implementation on the Ground
Abstract
:1. Introduction
2. Challenges with the Diagnosis and Treatment of Active TB
2.1. Screening and Diagnosis
2.2. Initiating Anti-TB Treatment
2.3. Providing Effective Treatment
2.4. Taking Account of Post-Tuberculosis Morbidity and Mortality
2.5. Implications of Shortfalls in Diagnosis, Treatment and Cure of TB
3. Current Status and Management of TB Preventive Therapy
3.1. Identifying High Risk Groups for TB Preventive Therapy
3.2. Diagnosis of LTBI
3.3. TB Preventive Therapy Regimens
4. Research and Innovation to Improve Delivery and Uptake of TB Preventive Therapy
4.1. Expanding the High-Risk Groups for TB Preventive Therapy
4.2. Better Tests for LTBI
4.3. Ruling Out Active TB
4.4. Expanding and Refining the Use of 3HP
4.5. Recording and Reporting
4.6. Consideration of Other TB Prevention Activities
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
Disclaimer
References
- World Health Organization. The End TB Strategy. Available online: https://www.who.int/tb/End_TB_brochure.pdf?ua=1 (accessed on 20 March 2020).
- Houben, R.M.G.J.; Dodd, P.J. The Global Burden of Latent Tuberculosis Infection: A Re-estimation Using Mathematical Modelling. PLoS Med. 2016, 13, e1002152. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Political Declaration on the Fight Against Tuberculosis. Co-facilitators’ Revised Text; United Nations: New York, NY, USA, 2018.
- World Health Organization. Global Tuberculosis Report 2019; World Health Organization: Geneva, Switzerland, 2019. [Google Scholar]
- Getnet, F.; Demissie, M.; Assefa, N.; Mengistie, B.; Worku, A. Delay in diagnosis of pulmonary tuberculosis in low-and middle-income settings: Systematic review and meta-analysis. BMC Pulm. Med. 2017, 17, 202. [Google Scholar] [CrossRef] [PubMed]
- Bello, S.; Afolabi, R.F.; Ajayi, D.T.; Sharma, T.; Owoeye, D.O.; Oduyoye, O.; Jasanya, J. Empirical evidence of delays in diagnosis and treatment of pulmonary tuberculosis: Systematic review and meta-regression analysis. BMC Public Health 2019, 19, 820. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kweza, P.F.; Van Schalkwyk, C.; Abraham, N.; Uys, M.; Claassens, M.M.; Medina-Marino, A. Estimating the magnitude of missed pulmonary TB patients by primary health care clinics, South Africa. Int. J. Tuberc. Lung Dis. 2017, 22, 264–272. [Google Scholar] [CrossRef] [PubMed]
- Murongazvombo, A.S.; Dlodlo, R.A.; Shewade, H.D.; Robertson, V.; Hirao, S.; Pikira, E.; Zhanero, C.; Taruvinga, R.K.; Andifasi, P.; Tshuma, C. Where, when, and how many tuberculosis patients are lost from presumption until treatment initiation? A step by step assessment in a rural district in Zimbabwe. Int. J. Infect. Dis. 2019, 78, 113–120. [Google Scholar] [CrossRef] [Green Version]
- Marks, G.B.; Nguyen, N.V.; Nguyen, P.T.B.; Nguyen, T.-A.; Nguyen, H.B.; Tran, K.H.; Nguyen, S.V.; Luu, K.B.; Tran, D.T.T.; Vo, Q.T.N.; et al. Community-wide Screening for Tuberculosis in a High-Prevalence Setting. N. Engl. J. Med. 2019, 381, 1347–1357. [Google Scholar] [CrossRef]
- Koura, K.G.; Trébucq, A.; Schwoebel, V. Do active case-finding projects increase the number of tuberculosis cases notified at national level? Int. J. Tuberc. Lung Dis. 2017, 21, 73–78. [Google Scholar] [CrossRef]
- Dey, A.; Thekkur, P.; Ghosh, A.; Dasgupta, T.; Bandopadhyay, S.; Lahiri, A.; Sanju, S.V.C.; Dinda, M.K.; Sharma, V.; Dimari, N.; et al. Active Case Finding for Tuberculosis through TOUCH Agents in Selected High TB Burden Wards of Kolkata, India: A Mixed Methods Study on Outcomes and Implementation Challenges. Trop. Med. Infect. Dis. 2019, 4, 134. [Google Scholar] [CrossRef] [Green Version]
- Shamanewadi, A.N.; Naik, P.R.; Thekkur, P.; Madhukumar, S.; Nirgude, A.S.; Pavithra, M.B.; Poojar, B.; Sharma, V.; Urs, A.P.; Nisarga, B.V.; et al. Enablers and Challenges in the Implementation of Active Case Findings in a Selected District of Karnataka, South India: A Qualitative Study. Tuberc. Res. Treat. 2020, 2020, 9746329. [Google Scholar] [CrossRef] [Green Version]
- Onozaki, I.; Law, I.; Sismanidis, C.; Zignol, M.; Glaziou, P.; Floyd, K. National tuberculosis prevalence surveys in Asia, 1990–2012: An overview of results and lessons learned. Trop. Med. Int. Health 2015, 20, 1128–1145. [Google Scholar] [CrossRef]
- MacPherson, P.; Houben, R.M.G.J.; Glynn, J.R.; Corbett, E.L.; Kranzer, K. Pre-treatment loss to follow-up in tuberculosis patients in low- and lower-middle-income countries and high-burden countries: A systematic review and meta-analysis. Bull. World Health Organ. 2014, 92, 126–138. [Google Scholar] [CrossRef] [PubMed]
- Cox, H.; Dickson-Hall, L.; Ndjeka, N.; van’t Hoog, A.; Grant, A.; Cobelens, F.; Stevens, W.; Nicol, M. Delays and loss to follow-up before treatment of drug-resistant tuberculosis following implementation of Xpert MTB/RIF in South Africa: A retrospective cohort study. PLoS Med. 2017, 14, e1002238. [Google Scholar] [CrossRef] [PubMed]
- Onyoh, E.F.; Kuaban, C.; Lin, H.H. Pre-Treatment loss to follow-up of pulmonary tuberculosis patients in two regions of Cameroon. Int. J. Tuberc. Lung Dis. 2018, 22, 378–384. [Google Scholar] [CrossRef] [PubMed]
- Htet, K.K.K.; Soe, K.T.; Kumar, A.M.V.; Saw, S.; Maung, H.M.W.; Myint, Z.; Khine, T.M.M.; Aung, S.T. Rifampicin-resistant tuberculosis patients in Myanmar in 2016: How many are lost on the path to treatment? Int. J. Tuberc. Lung Dis. 2018, 22, 385–392. [Google Scholar] [CrossRef]
- Gillespie, S.H.; Crook, A.M.; McHugh, T.D.; Mendel, C.M.; Meredith, S.K.; Murray, S.R.; Pappas, F.; Phillips, P.P.J.; Nunn, A.J. Four-Month Moxifloxacin-Based Regimens for Drug-Sensitive Tuberculosis. N. Engl. J. Med. 2014, 371, 1577–1587. [Google Scholar] [CrossRef] [Green Version]
- Merle, C.S.; Fielding, K.; Sow, O.B.; Gninafon, M.; Lo, M.B.; Mthiyane, T.; Odhiambo, J.; Amukoye, E.; Bah, B.; Kassa, F.; et al. A four-month gatifloxacin-containing regimen for treating tuberculosis. N. Engl. J. Med. 2014, 371, 1588–1598. [Google Scholar] [CrossRef]
- Jindani, A.; Harrison, T.S.; Nunn, A.J.; Phillips, P.P.J.; Churchyard, G.J.; Charalambous, S.; Hatherill, M.; Geldenhuys, H.; McIlleron, H.M.; Zvada, S.P.; et al. High-Dose Rifapentine with Moxifloxacin for Pulmonary Tuberculosis. N. Engl. J. Med. 2014, 371, 1599–1608. [Google Scholar] [CrossRef] [Green Version]
- Nunn, A.J.; Phillips, P.P.J.; Meredith, S.K.; Chiang, C.-Y.; Conradie, F.; Dalai, D.; van Deun, A.; Dat, P.-T.; Lan, N.; Master, I.; et al. A Trial of a Shorter Regimen for Rifampin-Resistant Tuberculosis. N. Engl. J. Med. 2019, 380, 1201–1213. [Google Scholar] [CrossRef]
- Trebucq, A.; Schwoebel, V.; Kashongwe, Z.; Bakayoko, A.; Kuaban, C.; Noeske, J.; Hassane, S.; Souleymane, B.; Piubello, A.; Ciza, F.; et al. Treatment outcome with a short multidrug-resistant tuberculosis regimen in nine African countries. Int. J. Tuberc. Lung Dis. 2018, 22, 17–25. [Google Scholar] [CrossRef] [PubMed]
- Furin, J.; Cox, H.; Pai, M. Tuberculosis. Lancet 2019, 393, 1642–1656. [Google Scholar] [CrossRef]
- Heldal, E.; Dlodlo, R.A.; Mlilo, N.; Nyathi, B.B.; Zishiri, C.; Ncube, R.T.; Siziba, N.; Sandy, C. Local staff making sense of their tuberculosis data: Key to quality care and ending tuberculosis. Int. J. Tuberc. Lung Dis. 2019, 23, 612–618. [Google Scholar] [CrossRef]
- Menzies, N.A.; Gomez, G.B.; Bozzani, F.; Chatterjee, S.; Foster, N.; Baena, I.G.; Laurence, Y.V.; Qiang, S.; Siroka, A.; Sweeney, S.; et al. Cost-effectiveness and resource implications of aggressive action on tuberculosis in China, India, and South Africa: A combined analysis of nine models. Lancet Glob. Health 2016, 4, e816–e826. [Google Scholar] [CrossRef] [Green Version]
- Harries, A.D.; Dlodlo, R.A.; Brigden, G.; Mortimer, K.; Jensen, P.; Fujiwara, P.I.; Castro, J.L.; Chakaya, J.M. Should we consider a ‘fourth 90’ for tuberculosis? Int. J. Tuberc. Lung Dis. 2019, 23, 1253–1256. [Google Scholar] [CrossRef]
- Reuter, A.; Tisile, P.; Von Delft, D.; Cox, H.; Cox, V.; Ditiu, L.; Garcia-Prats, A.; Koenig, S.; Lessem, E.; Nathavitharana, R.; et al. The devil we know: Is the use of injectable agents for the treatment of MDR-TB justified? Int. J. Tuberc. Lung Dis. 2017, 21, 1114–1126. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mason, P.H.; Sweetland, A.C.; Fox, G.J.; Halovic, S.; Nguyen, T.A.; Marks, G.B. Tuberculosis and mental health in the Asia-Pacific. Australas. Psychiatry 2016, 24, 553–555. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alene, K.A.; Clements, A.C.A.; McBryde, E.S.; Jaramillo, E.; Lönnroth, K.; Shaweno, D.; Gulliver, A.; Viney, K. Mental health disorders, social stressors, and health-related quality of life in patients with multidrug-resistant tuberculosis: A systematic review and meta-analysis. J. Infect. 2018, 77, 357–367. [Google Scholar] [CrossRef] [PubMed]
- Romanowski, K.; Baumann, B.; Basham, C.A.; Ahmad Khan, F.; Fox, G.J.; Johnston, J.C. Long-term all-cause mortality in people treated for tuberculosis: A systematic review and meta-analysis. Lancet Infect. Dis. 2019, 19, 1129–1137. [Google Scholar] [CrossRef]
- Quaife, M.; Houben, R.M.G.J.; Allwood, B.; Cohen, T.; Coussens, A.K.; Harries, A.D.; van Kampen, S.; Marx, F.M.; Sweeney, S.; Wallis, R.S.; et al. Post-tuberculosis mortality and morbidity: Valuing the hidden epidemic. Lancet Respir. Med. 2020, 8, 332–333. [Google Scholar] [CrossRef]
- Harries, A.D.; Kumar, A.M.V.; Satyanarayana, S.; Thekkur, P.; Lin, Y.; Dlodlo, R.A.; Zachariah, R. How Can Operational Research Help to Eliminate Tuberculosis in the Asia Pacific Region? Trop. Med. Infect. Dis. 2019, 4, 47. [Google Scholar] [CrossRef] [Green Version]
- Latent Tuberculosis Infection. Updated and Consolidated Guidelines for Programmatic Management. 2018; World Health Organization: Geneva, Switzerland, 2018.
- World Health Organization. Rapid Communication on Forthcoming Changes to the Programmatic Management of Tuberculosis Preventive Treatment. Available online: http://apps.who.int/bookorders. (accessed on 21 March 2020).
- Campbell, J.; Winters, N.; Menzies, D. Absolute risk of tuberculosis among untreated populations with a positive tuberculin skin test or interferon-gamma release assay result: Systematic review and meta-analysis. BMJ 2020, 368, m549. [Google Scholar] [CrossRef] [Green Version]
- Harries, A.D.; Kumar, A.M.V.; Satyanarayana, S.; Takarinda, K.C.; Timire, C.; Dlodlo, R.A. Treatment for latent tuberculosis infection in low- and middle-income countries: Progress and challenges with implementation and scale-up. Expert Rev. Respir. Med. 2020, 14, 195–208. [Google Scholar] [CrossRef] [PubMed]
- Chandrasekaran, P.; Mave, V.; Thiruvengadam, K.; Gupte, N.; Yogendra Shivakumar, S.V.B.; Hanna, L.E.; Kulkarni, V.; Kadam, D.; Dhanasekaran, K.; Paradkar, M.; et al. Tuberculin skin test and QuantiFERON-Gold In Tube assay for diagnosis of latent TB infection among household contacts of pulmonary TB patients in high TB burden setting. PLoS ONE 2018, 13, e0199360. [Google Scholar] [CrossRef]
- Getahun, H.; Matteelli, A.; Chaisson, R.E.; Raviglione, M. Latent Mycobacterium tuberculosis infection. N. Engl. J. Med. 2015, 372, 2127–2135. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Behr, M.A.; Edelstein, P.H.; Ramakrishnan, L. Is Mycobacterium tuberculosis infection life long? BMJ 2019, 367, l5770. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Den Boon, S.; Matteelli, A.; Ford, N.; Getahun, H. Continuous isoniazid for the treatment of latent tuberculosis infection in people living with HIV. AIDS 2016, 30, 797–801. [Google Scholar] [CrossRef]
- Hamada, Y.; Ford, N.; Schenkel, K.; Getahun, H. Three-month weekly rifapentine plus isoniazid for tuberculosis preventive treatment: A systematic review. Int. J. Tuberc. Lung Dis. 2018, 22, 1422–1428. [Google Scholar] [CrossRef] [PubMed]
- Swindells, S.; Ramchandani, R.; Gupta, A.; Benson, C.A.; Leon-Cruz, J.; Mwelase, N.; Jean Juste, M.A.; Lama, J.R.; Valencia, J.; Omoz-Oarhe, A.; et al. One month of rifapentine plus isoniazid to prevent HIV-related Tuberculosis. N. Engl. J. Med. 2019, 380, 1001–1011. [Google Scholar] [CrossRef]
- Treatment Action Group. An Activist’s Guide to Rifapentine for the Treatment of TB Infection—Treatment Action Group. Available online: https://www.treatmentactiongroup.org/publication/an-activists-guide-to-rifapentine-for-the-treatment-of-tb-infection/ (accessed on 21 March 2020).
- Simon Schaaf, H.; Gie, R.P.; Kennedy, M.; Beyers, N.; Hesseling, P.B.; Donald, P.R. Evaluation of young children in contact with adult multidrug-resistant pulmonary tuberculosis: A 30-month follow-up. Pediatrics 2002, 109, 765–771. [Google Scholar] [CrossRef] [Green Version]
- Garcia-Prats, A.J.; Zimri, K.; Mramba, Z.; Schaaf, H.S.; Hesseling, A.C. Children exposed to multidrug-resistant tuberculosis at a homebased day care centre: A contact investigation. Int. J. Tuberc. Lung Dis. 2014, 18, 1292–1298. [Google Scholar] [CrossRef]
- Bamrah, S.; Brostrom, R.; Dorina, F.; Setik, L.; Song, R.; Kawamura, L.M.; Heetderks, A.; Mase, S. Treatment for LTBI in contacts of MDR-TB patients, Federated States of Micronesia, 2009–2012. Int. J. Tuberc. Lung Dis. 2014, 18, 912–918. [Google Scholar] [CrossRef] [Green Version]
- Trieu, L.; Proops, D.C.; Ahuja, S.D. Moxifoxacin prophylaxis against MDR TB, NEW YORK, NEW YORK, USA. Emerg. Infect. Dis. 2015, 21, 500–503. [Google Scholar] [CrossRef] [Green Version]
- Fox, G.J.; Schaaf, H.S.; Mandalakas, A.; Chiappini, E.; Zumla, A.; Marais, B.J. Preventing the spread of multidrug-resistant tuberculosis and protecting contacts of infectious cases. Clin. Microbiol. Infect. 2017, 23, 147–153. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lawn, S.D.; Bekker, L.G.; Wood, R. How effectively does HAART restore immune responses to Mycobacterium tuberculosis? Implications for tuberculosis control. AIDS 2005, 19, 1113–1124. [Google Scholar] [CrossRef] [PubMed]
- Gupta, A.; Wood, R.; Kaplan, R.; Bekker, L.-G.; Lawn, S.D. Tuberculosis Incidence Rates during 8 Years of Follow-Up of an Antiretroviral Treatment Cohort in South Africa: Comparison with Rates in the Community. PLoS ONE 2012, 7, e34156. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- World Health Organization. Recommendations for Investigating Contacts of Persons with Infectious Tuberculosis in Low-and Middle-Income Countries; WHO: Geneva, Switzerland, 2012; ISBN 9789241504492. [Google Scholar]
- Cho, P.J.Y.; Wu, C.Y.; Johnston, J.; Wu, M.Y.; Shu, C.C.; Lin, H.H. Progression of chronic kidney disease and the risk of tuberculosis: An observational cohort study. Int. J. Tuberc. Lung Dis. 2019, 23, 555–562. [Google Scholar] [CrossRef]
- GBD Chronic Kidney Disease Collaboration. Global, regional, and national burden of chronic kidney disease, 1990–2017: A systematic analysis for the Global Burden of Disease Study 2017. Lancet 2020, 395, 709–733. [Google Scholar] [CrossRef] [Green Version]
- Stevenson, C.R.; Critchley, J.A.; Forouhi, N.G.; Roglic, G.; Williams, B.G.; Dye, C.; Unwin, N.C. Diabetes and the risk of tuberculosis: A neglected threat to public health? Chronic Illn. 2007, 3, 228–245. [Google Scholar] [CrossRef]
- Jeon, C.Y.; Murray, M.B. Diabetes mellitus increases the risk of active tuberculosis: A systematic review of 13 observational studies. PLoS Med. 2008, 5, e152. [Google Scholar]
- Noubiap, J.J.; Nansseu, J.R.; Nyaga, U.F.; Nkeck, J.R.; Endomba, F.T.; Kaze, A.D.; Agbor, V.N.; Bigna, J.J. Global prevalence of diabetes in active tuberculosis: A systematic review and meta-analysis of data from 2·3 million patients with tuberculosis. Lancet Glob. Health 2019, 7, e448–e460. [Google Scholar] [CrossRef] [Green Version]
- McAllister, S.M.; Koesoemadinata, R.C.; Santoso, P.; Soetedjo, N.N.M.; Kamil, A.; Permana, H.; Ruslami, R.; Critchley, J.A.; van Crevel, R.; Hill, P.C.; et al. High tuberculosis incidence among people living with diabetes in Indonesia. Trans. R. Soc. Trop. Med. Hyg. 2020, 114, 79–85. [Google Scholar] [CrossRef]
- Soh, A.Z.; Chee, C.B.E.; Wang, Y.T.; Yuan, J.M.; Koh, W.P. Diabetes and body mass index in relation to risk of active tuberculosis: A prospective population-based cohort. Int. J. Tuberc. Lung Dis. 2019, 23, 1277–1282. [Google Scholar] [CrossRef] [PubMed]
- International Diabetes Federation. IDF Diabetes Atlas, 9th ed.; International Diabetes Federation, 2019; Available online: https://diabetesatlas.org/upload/resources/2019/IDF_Atlas_9th_Edition_2019.pdf (accessed on 21 March 2020).
- International Union against Tuberculosis Committee on Prophylaxis. Efficacy of various durations of isoniazid preventive therapy for tuberculosis: Five years of follow-up in the IUAT trial. International union against tuberculosis committee on prophylaxis. Bull. World Health Organ. 1982, 60, 555–564. [Google Scholar]
- Goletti, D.; Lee, M.R.; Wang, J.Y.; Walter, N.; Ottenhoff, T.H.M. Update on tuberculosis biomarkers: From correlates of risk, to correlates of active disease and of cure from disease. Respirology 2018, 23, 455–466. [Google Scholar] [CrossRef]
- Zak, D.E.; Penn-Nicholson, A.; Scriba, T.J.; Thompson, E.; Suliman, S.; Amon, L.M.; Mahomed, H.; Erasmus, M.; Whatney, W.; Hussey, G.D.; et al. A blood RNA signature for tuberculosis disease risk: A prospective cohort study. Lancet 2016, 387, 2312–2322. [Google Scholar] [CrossRef] [Green Version]
- Harries, A.D.; Kumar, A.M.V. Challenges and Progress with Diagnosing Pulmonary Tuberculosis in Low- and Middle-Income Countries. Diagnostics 2018, 8, 78. [Google Scholar] [CrossRef] [Green Version]
- World Health Organization. Chest Radiography in Tuberculosis Detection; WHO, Ed.; WHO: Geneva, Switzerland, 2016; ISBN 9789241511506. [Google Scholar]
- Sengai, T.; Timire, C.; Harries, A.D.; Tweya, H.; Kavenga, F.; Shumba, G.; Tavengerwei, J.; Ncube, R.; Zishiri, C.; Mapfurira, M.J.; et al. Mobile targeted screening for tuberculosis in Zimbabwe: Diagnosis, linkage to care and treatment outcomes. Public Health Action 2019, 9, 159–165. [Google Scholar] [CrossRef] [PubMed]
- Datta, B.; Prakash, A.K.; Ford, D.; Tanwar, P.K.; Goyal, P.; Chatterjee, P.; Vipin, S.; Jaiswal, A.; Trehan, N.; Ayyagiri, K. Comparison of clinical and cost-effectiveness of two strategies using mobile digital x-ray to detect pulmonary tuberculosis in rural India. BMC Public Health 2019, 19, 99. [Google Scholar] [CrossRef] [PubMed]
- Qin, Z.Z.; Sander, M.S.; Rai, B.; Titahong, C.N.; Sudrungrot, S.; Laah, S.N.; Adhikari, L.M.; Carter, E.J.; Puri, L.; Codlin, A.J.; et al. Using artificial intelligence to read chest radiographs for tuberculosis detection: A multi-site evaluation of the diagnostic accuracy of three deep learning systems. Sci. Rep. 2019, 9, 15000. [Google Scholar] [CrossRef] [Green Version]
- Moro, R.N.; Scott, N.A.; Vernon, A.; Tepper, N.K.; Goldberg, S.V.; Schwartzman, K.; Leung, C.C.; Schluger, N.W.; Belknap, R.W.; Chaisson, R.E.; et al. Exposure to latent tuberculosis treatment during pregnancy the PREVENT TB and the iadhere trials. Ann. Am. Thorac. Soc. 2018, 15, 570–580. [Google Scholar] [CrossRef]
- Gupta, A.; Montepiedra, G.; Aaron, L.; Theron, G.; McCarthy, K.; Bradford, S.; Chipato, T.; Vhembo, T.; Stranix-Chibanda, L.; Onyango-Makumbi, C.; et al. Isoniazid preventive therapy in HIV-infected pregnant and postpartum women. N. Engl. J. Med. 2019, 381, 1333–1346. [Google Scholar] [CrossRef]
- World Health Organization. Updated Recommendations on First-Line and Second-Line Antiretroviral Regimens and Post-Exposure Prophylaxis and Recommendations on Early Infant Diagnosis of HIV; WHO, Ed.; WHO: Geneva, Switzerland, 2018. [Google Scholar]
- Bliven-Sizemore, E.E.; Sterling, T.R.; Shang, N.; Benator, D.; Schwartzman, K.; Reves, R.; Drobeniuc, J.; Bock, N.; Villarino, M.E. Three months of weekly rifapentine plus isoniazid is less hepatotoxic than nine months of daily isoniazid for LTBI. Int. J. Tuberc. Lung Dis. 2015, 19, 1039–1044. [Google Scholar] [CrossRef] [Green Version]
- Doan, T.N.; Fox, G.J.; Meehan, M.T.; Scott, N.; Ragonnet, R.; Viney, K.; Trauer, J.M.; McBryde, E.S. Cost-effectiveness of 3 months of weekly rifapentine and isoniazid compared with other standard treatment regimens for latent tuberculosis infection: A decision analysis study. J. Antimicrob. Chemother. 2019, 74, 218–227. [Google Scholar] [CrossRef] [PubMed]
- Belknap, R.; Holland, D.; Feng, P.J.; Millet, J.P.; Cayla, J.A.; Martinson, N.A.; Wright, A.; Chen, M.P.; Moro, R.N.; Scott, N.A.; et al. Self-administered versus directly observed once-weekly isoniazid and rifapentine treatment of latent tuberculosis infection. Ann. Intern. Med. 2017, 167, 689–697. [Google Scholar] [CrossRef] [PubMed]
- Lam, C.K.; Pilote, K.M.G.; Haque, A.; Burzynski, J.; Chuck, C.; Macaraig, M. Using video technology to increase treatment completion for patients with latent tuberculosis infection on 3-month isoniazid and rifapentine: An implementation study. J. Med. Internet Res. 2018, 20, e287. [Google Scholar] [CrossRef] [PubMed]
- Kumar, A.A.; De Costa, A.D.; Das, A.; Srinivasa, G.A.; D’Souza, G.; Rodrigues, R. Mobile health for tuberculosis management in south India: Is video-based directly observed treatment an acceptable alternative? J. Med. Internet Res. 2019, 7, e11687. [Google Scholar] [CrossRef]
- Datiko, D.G.; Yassin, M.A.; Theobald, S.J.; Cuevas, L.E. A community-based isoniazid preventive therapy for the prevention of childhood tuberculosis in Ethiopia. Int. J. Tuberc. Lung Dis. 2017, 21, 1002–1007. [Google Scholar] [CrossRef] [Green Version]
- Tait, D.R.; Hatherill, M.; Van Der Meeren, O.; Ginsberg, A.M.; Van Brakel, E.; Salaun, B.; Scriba, T.J.; Akite, E.J.; Ayles, H.M.; Bollaerts, A.; et al. Final Analysis of a Trial of M72/AS01E Vaccine to Prevent Tuberculosis. N. Engl. J. Med. 2019, 381, 2429–2439. [Google Scholar] [CrossRef]
- Suthar, A.B.; Lawn, S.D.; del Amo, J.; Getahun, H.; Dye, C.; Sculier, D.; Sterling, T.R.; Chaisson, R.E.; Williams, B.G.; Harries, A.D.; et al. Antiretroviral therapy for prevention of tuberculosis in adults with hiv: A systematic review and meta-analysis. PLoS Med. 2012, 9, e1001270. [Google Scholar] [CrossRef]
- Park, S.; Yang, B.R.; Song, H.J.; Jang, S.H.; Kang, D.Y.; Park, B.J. Metformin and tuberculosis risk in elderly patients with diabetes mellitus. Int. J. Tuberc. Lung Dis. 2019, 23, 924–930. [Google Scholar] [CrossRef]
- Dye, C.; Lönnroth, K.; Jaramillo, E.; Williams, B.G.; Raviglione, M. Trends in tuberculosis incidence and their determinants in 134 countries. Bull. World Health Organ. 2009, 87, 683–691. [Google Scholar] [CrossRef]
- Siroka, A.; Ponce, N.A.; Lönnroth, K. Association between spending on social protection and tuberculosis burden: A global analysis. Lancet Infect. Dis. 2016, 16, 473–479. [Google Scholar] [CrossRef] [Green Version]
- Reid, M.J.A.; Arinaminpathy, N.; Bloom, A.; Bloom, B.R.; Boehme, C.; Chaisson, R.; Chin, D.P.; Churchyard, G.; Cox, H.; Ditiu, L.; et al. Building a tuberculosis-free world: The Lancet Commission on tuberculosis. Lancet 2019, 393, 1331–1384. [Google Scholar] [CrossRef] [Green Version]
- Lee, Y.; Raviglione, M.C.; Flahault, A. Use of Digital Technology to Enhance Tuberculosis Control: Scoping Review. J. Med. Internet Res. 2020, 22, e15727. [Google Scholar] [CrossRef] [PubMed] [Green Version]
WHO Region | PLHIV Newly Enrolled in Care Who Were Given TB Preventive Treatment a % | Household Children (aged < 5) Contacts of Bacteriologically Confirmed TB Patients Who Were Given TB Preventive Treatment % |
---|---|---|
Africa | 60 | 29 |
Americas | 9 | 55 |
Eastern Mediterranean | 13 | 23 |
European | 69 | >100 |
South-East Asia | 15 | 26 |
Western Pacific | 39 | 12 |
Global | 49 | 27 |
2A: Global | ||
Cohorts of TB patients registered for treatment | Registered in cohort N | Treatment Success % |
New/previously treated patients registered in 2017 a | 6,381,295 | 84 |
HIV-positive TB patients registered in 2017 | 445,922 | 75 |
MDR/RR-TB patients started on SLD in 2016 | 126,089 | 56 |
XDR-TB patients started on SLD in 2016 | 9258 | 39 |
2B: South-East Asia Region | ||
Cohorts of TB patients registered for treatment | Registered in cohort N | Treatment Success % |
New/previously treated patients registered in 2017 a | 2,746,023 | 82 |
HIV-positive TB patients registered in 2017 | 56,872 | 71 |
MDR/RR-TB patients started on SLD in 2016 | 40,725 | 52 |
XDR-TB patients started on SLD in 2016 | 2567 | 31 |
2C: Western Pacific Region | ||
Cohorts of TB patients registered for treatment | Registered in cohort N | Treatment Success % |
New/previously treated patients registered in 2017 a | 1,360,505 | 91 |
HIV-positive TB patients registered in 2017 | 12,170 | 79 |
MDR/RR-TB patients started on SLD in 2016 | 14,602 | 59 |
XDR-TB patients started on SLD in 2016 | 88 | 58 |
Category | Type of Person | Need for Systematic Testing of LTBI | Treatment of LTBI |
---|---|---|---|
1 |
| Yes | Recommended if LTBI test is positive |
2 |
| Yes for all Category 2 | Recommended if LTBI test is positive for all Category 2 |
3 | In countries with low TB incidence:
| Yes for all Category 3 | Recommended if LTBI test is positive for all Category 3 |
4 |
| No for all Category 4 | Recommended if LTBI testing is done on individual basis and LTBI test is found to be positive |
Treatment Regimen | Duration | Dosage Frequency | Common Abbreviation |
---|---|---|---|
Rifampicin | 3–4 months | Daily | 3R/4R |
Rifampicin and isoniazid | 3–4 months | Daily | 3RH/4RH |
Rifapentine and isoniazid | 3 months | Weekly | 3HP |
Rifapentine and isoniazid | 4 weeks | Daily | 1HP |
Research questions around index patient |
|
| |
Research questions around household contacts |
|
| |
| |
|
Issues Around 3HP | Category | Research and Evidence Needed |
---|---|---|
Caution and safety | Children < 2 years | Acceptability of water-dispersible formulations: one trial underway |
Pregnant women | Frequency of maternal adverse events and pregnancy adverse outcomes | |
PWID on OST | Frequency of opiate withdrawal syndrome and measures needed to avoid it | |
Women on oral or injectable contraceptives | Interactions with contraceptives and possible dosage adjustments | |
Drug-drug interactions in PLHIV | 3HP interactions with nevirapine, efavirenz and protease inhibitors | |
Acceptable formulations | Pill burden: 10 pills once a week: 6 pills of rifapentine 3 pills of isoniazid 1 pill of pyridoxine | Simpler fixed-dose combination—e.g., three tablets combined rifapentine (300 mg) and isoniazid (300 mg) once a week |
Monitoring for adverse events | Drug-induced hepatitis and acute liver failure | How to monitor without laboratory infrastructure and how to educate people and health care workers about hepatitis and acute liver failure |
Administration of medication | Clinic-based DOT or self-administered treatment or VOT through smartphones | Locally based operational research on how best to administer 3HP in terms of medication adherence, safety and treatment completion |
Number of courses of 3HP | PLHIV living in high TB exposure environments | The need, if any, of repeat courses of 3HP to further reduce risk of TB and the frequency of these repeat courses |
Name | Age | Sex | Relationship to index patient | Symptom Screen Positive Negative Not done | CXR Positive Negative Not done | Active TB diagnosis Yes No | Eligible for TPT Yes No | Reason for non-eligibility a | TPT started Yes (Date) No | TPT completed Yes (Date) No | TB status at 12 months after TPT completion No TB (Date) TB (Date) |
Number of household contacts < 5 years: | Number of other household contacts: |
Number diagnosed with TB: | Number diagnosed with TB: |
Number given TPT: | Number given TPT: |
Number finished TPT: | Number finished TPT: |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Harries, A.D.; Kumar, A.M.V.; Satyanarayana, S.; Thekkur, P.; Lin, Y.; Dlodlo, R.A.; Khogali, M.; Zachariah, R. The Growing Importance of Tuberculosis Preventive Therapy and How Research and Innovation Can Enhance Its Implementation on the Ground. Trop. Med. Infect. Dis. 2020, 5, 61. https://doi.org/10.3390/tropicalmed5020061
Harries AD, Kumar AMV, Satyanarayana S, Thekkur P, Lin Y, Dlodlo RA, Khogali M, Zachariah R. The Growing Importance of Tuberculosis Preventive Therapy and How Research and Innovation Can Enhance Its Implementation on the Ground. Tropical Medicine and Infectious Disease. 2020; 5(2):61. https://doi.org/10.3390/tropicalmed5020061
Chicago/Turabian StyleHarries, Anthony D., Ajay M.V. Kumar, Srinath Satyanarayana, Pruthu Thekkur, Yan Lin, Riitta A. Dlodlo, Mohammed Khogali, and Rony Zachariah. 2020. "The Growing Importance of Tuberculosis Preventive Therapy and How Research and Innovation Can Enhance Its Implementation on the Ground" Tropical Medicine and Infectious Disease 5, no. 2: 61. https://doi.org/10.3390/tropicalmed5020061
APA StyleHarries, A. D., Kumar, A. M. V., Satyanarayana, S., Thekkur, P., Lin, Y., Dlodlo, R. A., Khogali, M., & Zachariah, R. (2020). The Growing Importance of Tuberculosis Preventive Therapy and How Research and Innovation Can Enhance Its Implementation on the Ground. Tropical Medicine and Infectious Disease, 5(2), 61. https://doi.org/10.3390/tropicalmed5020061