HSV-2 Infection as a Potential Cofactor for HIV Disease Progression and Selection of Drug Resistance Mutations in Adults under WHO-Recommended First-Line Antiretroviral Therapy: A Multicentric, Cross-Sectional Study in Cameroon, Central African Republic, Chad, and Gabon
Abstract
:1. Introduction
2. Material and Methods
2.1. Inclusion Sites and Study Population
2.2. Collection of Biological Specimens
2.3. Monitoring Tests
2.4. Viral Subtype Determination
2.5. Genotyping for Antiretroviral Resistance Mutations
2.6. Statistical Analyses
3. Results
3.1. Study Population
3.2. Genetic Diversity of HIV-1 Variants in Central Africa
3.3. HSV-2 Serology and HIV Disease Progression
3.4. HSV-2 Serology and Selection of Resistance Mutations in HIV-1 Protease and Reverse Transcriptase Genes
4. Discussion
4.1. Concerning the Population Studied
4.2. Genetic Diversity of HIV-1 Strains
4.3. HSV-2 Serology and HIV Disease Progression
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Amat-Roze, J.-M. Les inegalites geographiques de l’infection a vih et du sida en Afrique sud-saharienne. Soc. Sci. Med. 1993, 36, 1247–1256. [Google Scholar] [CrossRef]
- WHO. Epidemiologie du VIH/SIDA. Available online: http://www.who.int/mediacentre/factsheets/fs360/fr/ (accessed on 15 October 2017).
- WHO. Global Summary of the HIV/AIDS Epidemic; World Health Organisation: Geneva, Switzerland, 2014; Available online: http://www.whoint/hiv/data/epi_core_dec2014png?ua=1 (accessed on 15 October 2017).
- Doualla-Bell, F.; Turner, D.; Loemba, H.; Petrella, M.; Brenner, B.; Wainberg, M.A. HIV drug resistance and optimization of antiviral treatment in resource-poor countries. Med. Sci. 2004, 20, 882–886. [Google Scholar]
- Nachega, J.B.; Marconi, V.C.; Van Zyl, G.; Gardner, E.M.; Preiser, W.; Hong, S.Y.; Mills, E.J.; Gross, R. HIV Treatment Adherence, Drug Resistance, Virologic Failure: Evolving Concepts. Infect. Disord.-Drug Targets 2011, 11, 167–174. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mbopi-Kéou, F.-X.; Djomassi, L.D.; Monebenimp, F. Study of factors related to adherence to antiretroviral therapy among patients followed at HIV/AIDS Unit in the District Hospital of Dschang, cameroon. Pan Afr. Med. J. 2012, 12, 55. [Google Scholar] [PubMed]
- Mbopi-Kéou, F.-X.; Voundi, E.V.; Kalla, G.C.M.; Emah, I.; Angwafo, F.; Muna, W. Facteurs influençant l’initiation au traitement antirétroviral des personnes vivant avec le VIH dans les Centres de Traitement Agréés de Bamenda et de Bertoua au Cameroun. Pan Afr. Med. J. 2014, 17, 6. [Google Scholar] [CrossRef] [PubMed]
- Fokam, J.; Elat, J.-B.N.; Billong, S.C.; Kembou, E.; Nkwescheu, A.S.; Obam, N.M.; Essiane, A.; Torimiro, J.N.; Ekanmian, G.K.; Ndjolo, A.; et al. Monitoring HIV Drug Resistance Early Warning Indicators in Cameroon: A Study Following the Revised World Health Organization Recommendations. PLoS ONE 2015, 10, e0129210. [Google Scholar] [CrossRef] [Green Version]
- Schmid, M.F.; Hecksel, C.W.; Rochat, R.H.; Bhella, D.; Chiu, W.; Rixon, F.J. A tail-like assembly at the portal vertex in intact herpes simplex type-1 virions. PLoS Pathog. 2012, 8, 1002961–1002971. [Google Scholar] [CrossRef]
- Sutcliffe, C.G.; Van Dijk, J.H.; Bolton, C.; Persaud, D.; Moss, W.J. Effectiveness of antiretroviral therapy among HIV-infected children in sub-Saharan Africa. Lancet Infect. Dis. 2008, 8, 477–489, Review Erratum in Lancet Infect. Dis. 2009, 9, 736. [Google Scholar] [CrossRef]
- Moriuchi, M.; Moriuchi, H.; Williams, R.; Straus, S.E. Herpes simplex virus infection induces replication of human immunodeficiency virus type 1. Virology 2000, 278, 534–540. [Google Scholar] [CrossRef]
- Van de Perre, P.; Segondy, M.; Foulongne, V.; Ouedraogo, A.; Konate, I.; Huraux, J.-M.; Mayaud, P.; Nagot, N. Herpes simplex virus and HIV-1: Deciphering viral synergy. Lancet Infect. Dis. 2008, 8, 490–497. [Google Scholar] [CrossRef]
- Lin, D.Y.; Fischl, M.A.; Schoenfeld, D.A. Evaluating the Role of CD4-lymphocyte Counts as Surrogate Endpoints in Human Immunodeficiency Virus Clinical Trials. Stat. Med. 1993, 12, 835–842. [Google Scholar] [CrossRef]
- Mellors, J.W.; Munoz, A.; Giorgi, J.V.; Margolick, J.B.; Tassoni, C.J.; Gupta, P.; Kingsley, L.A.; Todd, J.A.; Saah, A.J.; Detels, R.; et al. Plasma viral load and CD4+lymphocytes as prognostic markers of HIV-1 infection. Ann. Intern. Med. 1997, 126, 946–954. [Google Scholar] [CrossRef]
- Mellors, J.W.; Rinaldo, C.R.; Gupta, P.; White, R.M.; Todd, J.A.; Kingsley, L.A. In HIV-1 infection predicted by the quantity of virus in plasma. Science 1996, 272, 1167–1170. [Google Scholar] [CrossRef]
- Boender, T.S.; Hoenderboom, B.M.; Sigaloff, K.; Hamers, R.L.; Wellington, M.; Shamu, T.; Siwale, M.; Maksimos, E.E.F.L.; Nankya, I.; Kityo, C.M.; et al. Pretreatment HIV Drug Resistance Increases Regimen Switches in Sub-Saharan Africa. Clin. Infect. Dis. 2015, 61, 1749–1758. [Google Scholar] [CrossRef]
- Koyalta, D.; Charpentier, C.; Beassamda, J.; Rey, E.; Si-Mohamed, A.; Djemadji-Oudjeil, N.; Bélec, L. High frequency of antiretroviral drug resistance among HIV-infected adults receiving first-line highly active antiretroviral therapy in N’Djaména. Clin. Infect. Dis. 2009, 49, 155–159. [Google Scholar] [CrossRef]
- Nahmias, A.J.; Lee, F.K.; Beckman-Nahmias, S. Sero-epidemiological and sociological patterns of herpes simplex virus infection in the world. Scand. J. Infect. Dis. Suppl. 1990, 69, 19–36. [Google Scholar]
- Barnabas, R.V.; Celum, C. Infectious Co-factors in HIV-1 transmission Herpes Simplex Virus type-2 and HIV-1: New Insights and interventions. Curr. HIV Res. 2012, 10, 228–237. [Google Scholar] [CrossRef]
- Looker, K.J.; Elmes, J.; Gottlieb, S.L.; Schiffer, J.T.; Vickerman, P.; Turner, K.M.E.; Boily, M.-C. Effect of HSV-2 infection on subsequent HIV acquisition: An updated systematic review and meta-analysis. Lancet Infect. Dis. 2017, 17, 1303–1316. [Google Scholar] [CrossRef] [Green Version]
- Akinyi, B.; Odhiambo, C.; Otieno, F.; Inzaule, S.; Oswago, S.; Kerubo, E.; Ndivo, R.; Zeh, C. Prevalence, incidence and correlates of HSV-2 infection in an HIV incidence adolescent and adult cohort study in western Kenya. PLoS ONE 2017, 12, e0178907. [Google Scholar] [CrossRef] [Green Version]
- Hu, K.; He, S.; Xiao, J.; Li, M.; Luo, S.; Zhang, M.; Hu, Q. Interaction between herpesvirus entry mediator and HSV-2 glycoproteins mediates HIV-1 entry of HSV-2-infected epithelial cells. J. Gen. Virol. 2017, 98, 2351–2361. [Google Scholar] [CrossRef]
- Mbopi-Keou, F.X.; Gresenguet, G.; Mpe, A. Interactions between herpes simplex virus type 2 and HIV-1 infection in African women: Opportunities for intervention. J. Infect. Dis. 2000, 182, 1090–1096. [Google Scholar] [CrossRef]
- Calistri, A.; Parolin, C.; Pizzato, M.; Calvi, P.; Giaretta, I.; Palu, G. Herpes simplex virus chronically infected human T lymphocytes are susceptible to HIV-1 super infection and support HIV-1 pseudotyping. J. Acquir. Immune Defic. Syndr. 1999, 21, 90–98. [Google Scholar]
- Celum, C.; Wald, A.; Lingappa, J.; Magaret, A.; Wang, R.; Mugo, N.; Mujugira, A.; Baeten, J.M. Acyclovir and Transmission of HIV-1 from Persons Infected with HIV-1 and HSV-2. N. Engl. J. Med. 2010, 362, 427–439. [Google Scholar] [CrossRef] [Green Version]
- Lingappa, J.R.; Baeten, J.M.; Wald, A.; Hughes, J.P.; Thomas, K.K.; Mujugira, A. Daily aciclovir for HIV-1 disease progression in people dually infected with HIV-1 and herpes simplex virus type 2: A randomised placebo-controlled trial. Lancet 2010, 375, 824–833. [Google Scholar] [CrossRef] [Green Version]
- McMahon, M.A.; Stivers, J.T.; Siliciano, J.D.; Siliciano, R.F.; Kohli, R.M.; Lai, J.; Liu, J.O. The Antiherpetic Drug Acyclovir Inhibits HIV Replication and Selects the V75I Reverse Transcriptase Multidrug Resistance Mutation. J. Biol. Chem. 2008, 283, 31289–31293. [Google Scholar] [CrossRef] [Green Version]
- Tan, D.-H.; Murphy, K.; Shah, P.; Walmlsey, S.-L. Herpes simplex virus type 2 and HIV disease progression: A systematic review of observational studies. BMC Infect. Dis. 2013, 13, 502. [Google Scholar] [CrossRef] [Green Version]
- Mouliom, F.H.N.; Nguwoh, P.S.; Fokam, J. Prevalence of Herpes Simplex Virus 1 and 2 infections among people living with HIV in Yaounde. A serologic study. Health Sci. Dis. 2016, 17, 1–5. [Google Scholar]
- Ozouaki, F.; Ndjoyi-Mbiguino, A.; Legoff, J.; Onas, N.; Kendjo, E.; Si-Mohamed, A.; Mbopi-Keou, F.X.; Malkin, J.E.; Belec, L. Genital shedding of herpes simplex virus type 2 in childbearing-aged and pregnant women living in Gabon. Int. J. STD AIDS 2006, 17, 124–127. [Google Scholar] [CrossRef]
- Brodie, D.; Handan, W.; Ramjee, G.; Team, M. Prevalence of Herpes Simplex Virus 2 (HSV-2) infection and associated risk factors in a cohort of HIV negative women in Durban, South Africa. BMC Res. Notes 2016, 9, 510. [Google Scholar]
- Vidal, N.; Koyalta, D.; Richard, C. High genetic diversity of HIV-1 strains in Chad West Central Africa. J. Acquir. Immune Defic. Syndr. 2003, 33, 239–246. [Google Scholar] [CrossRef]
- Roxby, A.; Drake, A.; John-Stewart, G. Herpes simplex virus type 2, genital ulcers and HIV-1 disease progression in postpartum women. PLoS ONE 2011, 6, e19947–e19948. [Google Scholar] [CrossRef]
- Mohraz, M.; Aghakhani, A.; Moayedi-Nia, S.; Banifazl, M.; Janbakhsh, A.; Mamishi, S. No Role of Herpes Simplex Virus Type 2 (HSV-2) Infection on HIV Progression in Naïve HIV Patients. Iran. Biomed. J. 2018, 22, 123–128. [Google Scholar]
- Anoma, C.; Fransen, K.; Vuylsteke, k. Quantitative cervicovaginal HIV shedding and genital ulcers among female sex workers (FSWs) in Abidjan, Côte d’Ivoire. In Proceedings of the XIII International AIDS Conference, Durban, South Africa, 9–14 July 2000. [WePpA1368]. [Google Scholar]
- Duffus, W.; Mermin, J.; Bunnell, R.; Byers, R. Herpes simplex virus type-2 infection and HIV viral load. Int. J. STD AIDS 2005, 7, 33–35. [Google Scholar] [CrossRef]
- Gray, R.; Li, X.; Wawer, M. Determinants of HIV-1 load in subjects with early and later HIV infections, in a general-population cohort of Rakai, Uganda. J. Infect. Dis. 2004, 189, 1209–1215. [Google Scholar] [CrossRef] [Green Version]
- Looker, K.J.; Welton, J.N.J.; Sabin, K.M.; Dalal, S.; Vickerman, P.; Turner, K.M.E.; Boily, M.-C.; Gottlieb, S.L. Global and regional estimates of the contribution of herpes simplex virus type 2 infection to HIV incidence: A population attributable fraction analysis using published epidemiological data. Lancet Infect. Dis. 2020, 20, 240–249. [Google Scholar] [CrossRef] [Green Version]
- Mayaud, P.; Belec, L. L’importance de l’herpès comme cofacteur du VIH. Transcriptase 2000, 87, 45–49. [Google Scholar]
- WHO. Antiretroviral Therapy for HIV Infection in Adults and Adolescents: Recommendations for a Public Health Approach. Available online: https://www.who.int/hiv/pub/guidelines/artadultguidelines.pdf (accessed on 15 February 2018).
- Biason-Lauber, A.; De Filippo, G.; Konrad, D.; Scarano, G.; Nazzaro, A.; Schoenle, E. WNT4 deficiency-a clinical phenotype distinct from the classic Mayer-Rokitansky-Kuster-Hauser syndrome: A case report. Hum. Reprod. 2007, 22, 224–229. [Google Scholar] [CrossRef] [Green Version]
Characteristics of Patients | Total | Cameroon | Central African Republic | Gabon | Chad | p |
---|---|---|---|---|---|---|
Number | 302 | 201 | 34 | 30 | 37 | |
Age (years, mean ± σ) | 47 ± 10 | 48 ± 9 | 46 ± 8 | 45 ± 10 | 41 ± 10 | NS |
Sex (n, (%)) | ||||||
✓ Men | 116 (38) | 73 (36) | 12 (35) | 11 (37) | 20 (54) | NS |
✓ Women | 186 (62) | 128 (63) | 22 (65) | 19 (63) | 17 (46) | NS |
Duration de antiretroviral treatment | - | - | - | - | - | - |
(months, mean ± σ) | 41 ± 33 | 50 ± 35 | 14 ± 13 | 23 ± 15 | 28 ± 25 | <0.001 |
HIV viral load (log copies/mL, mean ± σ) | 3.91 ± 0.86 | 3.89 ± 0.89 | 4.12 ± 0.62 | 3.71 ± 0.84 | 4.00 ± 0.85 | 0.028 |
CD4 T-cells (/µL, mean ± σ) | 518 ± 269 | 537 ± 275 | 420 ± 235 | 578 ± 259 | 455 ± 259 | <0.04 |
HSV-2 seropositivity (n, (%)) | 96 (32) | 58 (29) | 15 (44) | 8 (17) | 15 (40) | NS |
Antiretroviral resistance variants (n, (%)) | 170 (56) | 104 (52) | 28 (82) | 13 (43) | 25 (68) | 0.002 |
Antiretroviral resistance variants to PI (n, (%)) | 56 (19) | 37 (18) | 6 (18) | 3 (10) | 10 (27) | NS |
Antiretroviral resistance variants to NNRTI (n, (%)) | 110 (26) | 67 (33) | 24 (70) | 25 (17) | 19 (51) | <0.001 |
Antiretroviral resistance variants to NRTI (n, (%)) | 109 (25) | 58 (29) | 23 (67) | 8 (29) | 14 (38) | <0.001 |
n | HSV-2 Seronegative (n, (%)] | HSV-2 Seropositive (n, (%)] | p | |
---|---|---|---|---|
Cameroon | 201 | 143 (71) | 58 (29) | |
HIV viral load (mean ± σ) * | 3.47 ± 0.45 | 4.90 ± 0.91 | <0.001 | |
CD4 T-cell count (mean ± σ) ** | 656 ± 217 | 243 ± 161 | <0.001 | |
Gabon | 30 | 22 (73) | 8 (27) | |
HIV viral load (mean ± σ) * | 3.33 ± 0.24 | 4.75 ± 1.02 | <0.001 | |
CD4 T-cell count (mean ± σ) ** | 702 ± 161 | 236 ± 135 | <0.001 | |
Central African Republic | 34 | 19 (56) | 15 (44) | |
HIV viral load (mean ± σ) * | 3.72 ± 0.44 | 4.63 ± 0.41 | <0.001 | |
CD4 T-cell count (mean ± σ) ** | 551 ± 219 | 255 ± 128 | <0.001 | |
Chad | 37 | 22 (59) | 15 (41) | |
HIV viral load (mean ± σ) * | 3.48 ± 0.45 | 4.75 ± 0.74 | <0.001 | |
CD4 T-cell count (mean ± σ) ** | 605 ± 217 | 255 ± 128 | <0.001 | |
TOTAL | 302 | 206 (68) | 96 (32) | |
HIV viral load (mean ± σ) * | 3.48 ± 0.44 | 4.82 ± 0.83 | <0.001 | |
CD4 T-cell count (mean ± σ) ** | 646 ± 212 | 243 ± 144 | <0.001 |
HSV-2 Seronegative n = 206 (n (%)) | HSV-2 Seropositive n = 96 (n (%)) | p | OR (IC95%) £ | |
---|---|---|---|---|
Mutations to NNRTI | ||||
V90I | 9 (4) | 5 (5) | NS | - |
A98G/S | 4 (2) | 15 (16) | <0.001 | 9.5 (2.8; 34.4) |
L100I | 0 (0) | 3 (3) | NS | - |
K101H/I/R | 4 (2) | 19 (20) | <0.001 | 12.4 (3.8; 44.8) |
K103H/N/S/T | 20 (9) | 37 (38) | <0.001 | 5.8 (3.0; 11.3) |
K103R | 1 (1) | 2 (2) | NS | - |
V106A/I/M | 8 (4) | 8 (8) | NS | - |
E138A/G/Q/R/S | 9 (4) | 5 (5) | NS | - |
V179L | 16 (8) | 13 (14) | NS | - |
V179D/F/I/M/T | 6 (3) | 1 (1) | NS | - |
Y181C/I | 8 (4) | 0 (0) | NS | - |
Y181V | 1 (1) | 11 (12) | <0.001 | 26.5 (3.5; 55.8) |
Y188C/H/L | 1 (1) | 4 (4) | NS | |
G190A/S | 5 (2) | 15 (16) | <0001 | 7.4 (2.4; 24.3) |
G190C/E/Q/T/VH221Y | 0 (0) | 0 (0) | - | |
P225H | 3 (1) | 9 (9) | 0.003 | 7.0 (1.7; 23.2) |
M230I/L/V | 3 (3) | 0 (0) | NS | - |
P236L | 0 (0) | 0 (0) | - | - |
Mutations to NRTI | ||||
M41L | 3 (1) | 14 (15) | <0.001 | 11.5 (3.0. 52.0) |
E44D | 0 (0) | 7 (7) | <0.001 | - |
K65R | 1 (1) | 2 (2) | NS | - |
D67N | 6 (3) | 19 (20) | <0.001 | 16.7 (4.5; 73.1) |
T69D/N/S | 5 (2) | 11 (12) | <0.001 | 5.2 (1.6; 17.7) |
Insertion 69 | 0 (0) | 0 (0) | - | |
K70E/R | 8 (4) | 20 (21) | <0.001 | 6.5 (2.4; 11.7) |
L74V/I | 0 (0) | 0 (0) | - | - |
V75A/M/S/T | 4 (2) | 10 (10) | 0.003 | 5.8 (1.6; 22.9) |
F77L | 1 (1) | 3 (3) | NS | - |
Y115F | 1 (1) | 1 (1) | NS | - |
Q151M | 1 (1) | 6 (6) | 0.02 | 13.6 (1.6; 305) |
M184V | 31 (15) | 64 (67) | <0.001 | 11.3 (6.1; 20.8) |
L210W | 3 (2) | 6 (6) | 0.055 NS | |
T215Y/F | 11 (4) | 28 (29) | <0.001 | 7.3 (3.2; 7.5) |
T215A/C/D/E/G/H/I/L/S/ | 2 (1) | 5 (5) | NS | |
K219Q/E | 5 (2) | 13 (14) | <0.001 | 6.3 (2,0;15,2) |
HSV-2 Seronegative n = 206 (n, (%)] | HSV-2 Seropositive n = 96 (n, (%)) | p | OR (IC95%) £ | |
---|---|---|---|---|
Protease Inhibitor Resistance Mutations | ||||
L10F/I/L/M/R/V | 72 (35) | 39 (40) | NS | - |
V11I | 8 (4) | 3 (3) | NS | - |
I15A/L/V | 40 (19) | 33 (34) | 0.004 | 2.2 (1.2; 3.9) |
G16A/E | 57 (28) | 29 (30) | NS | - |
K20I/M/R/T | 150 (73) | 69 (72) | NS | - |
L24I | 0 (0) | 1 (1) | NS | - |
L33F/I/V | 3 (1) | 2 (2) | NS | - |
E34A/G/K | 11 (5) | 0(0) | 0.048 | 0.0 (0.0; 0/9) |
M36I/L/V | 192 (93) | 87 (91) | NS | |
M46I/L/V | 9 (4) | 11 (11) | (0.02) | 2.8 (1.1; 7.7) |
I47V/A | 0 (0) | 0 (0) | - | - |
G48V | 0 (0) | 0 (0) | - | - |
I50L/V | 0 (0) | 0 (0) | - | - |
F53L/W/Y | 2 (1) | 0 (0) | NS | - |
I54V/A/S/T/L/M | 0(0) | 5 (5) | 0.05 | - |
Q58E | 3 (1) | 3 (3) | NS | - |
D60E | 32 (15) | 17 (18) | NS | - |
I62V | 34 (16) | 13 (13) | NS | - |
L63P/V | 111 (53) | 48 (50) | NS | - |
H69K/N/Q | 189 (92) | 84 (87) | NS | - |
A71V/T/I/L | 6 (2) | 5 (5) | NS | - |
G73S/T/C/A/V | 1 (1) | 0 (0) | NS | - |
T74P | 4(2) | 5 (5) | NS | - |
L76V | 3 (2) | 3 (3) | NS | - |
V82A/F/M/S/T | 16 (8) | 15 (16) | 0.036 | 2.2 (0.9; 4.9) |
I84V | 1 (1) | 2 (2) | NS | - |
I85V | 3 (2) | 2 (2) | NS | - |
N88S/D | 0 (0) | 1 (1) | NS | - |
L89I/M/R/T/V | 184 (89) | 81 (84) | NS | - |
L90M | 4 (2) | 5 (5) | NS | - |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mihimit, A.; Adawaye, C.; Péré, H.; Costiniuk, C.; Koyalta, D.; Mbopi-Keou, F.-X.; Bouassa, R.-S.M.; Talla, F.; Moussa, S.; Longo, J.D.D.; et al. HSV-2 Infection as a Potential Cofactor for HIV Disease Progression and Selection of Drug Resistance Mutations in Adults under WHO-Recommended First-Line Antiretroviral Therapy: A Multicentric, Cross-Sectional Study in Cameroon, Central African Republic, Chad, and Gabon. Trop. Med. Infect. Dis. 2020, 5, 136. https://doi.org/10.3390/tropicalmed5030136
Mihimit A, Adawaye C, Péré H, Costiniuk C, Koyalta D, Mbopi-Keou F-X, Bouassa R-SM, Talla F, Moussa S, Longo JDD, et al. HSV-2 Infection as a Potential Cofactor for HIV Disease Progression and Selection of Drug Resistance Mutations in Adults under WHO-Recommended First-Line Antiretroviral Therapy: A Multicentric, Cross-Sectional Study in Cameroon, Central African Republic, Chad, and Gabon. Tropical Medicine and Infectious Disease. 2020; 5(3):136. https://doi.org/10.3390/tropicalmed5030136
Chicago/Turabian StyleMihimit, Abdoulaye, Chatté Adawaye, Hélène Péré, Cecilia Costiniuk, Donato Koyalta, François-Xavier Mbopi-Keou, Ralph-Sydney Mboumba Bouassa, Frédéric Talla, Sandrine Moussa, Jean De Dieu Longo, and et al. 2020. "HSV-2 Infection as a Potential Cofactor for HIV Disease Progression and Selection of Drug Resistance Mutations in Adults under WHO-Recommended First-Line Antiretroviral Therapy: A Multicentric, Cross-Sectional Study in Cameroon, Central African Republic, Chad, and Gabon" Tropical Medicine and Infectious Disease 5, no. 3: 136. https://doi.org/10.3390/tropicalmed5030136
APA StyleMihimit, A., Adawaye, C., Péré, H., Costiniuk, C., Koyalta, D., Mbopi-Keou, F. -X., Bouassa, R. -S. M., Talla, F., Moussa, S., Longo, J. D. D., Tchombou, B. H. -Z., Grésenguet, G., Charpentier, C., & Bélec, L. (2020). HSV-2 Infection as a Potential Cofactor for HIV Disease Progression and Selection of Drug Resistance Mutations in Adults under WHO-Recommended First-Line Antiretroviral Therapy: A Multicentric, Cross-Sectional Study in Cameroon, Central African Republic, Chad, and Gabon. Tropical Medicine and Infectious Disease, 5(3), 136. https://doi.org/10.3390/tropicalmed5030136