Antimicrobial Resistance in a Tertiary Care Hospital in Armenia: 2016–2019
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Study Settings
2.3. Study Population, Data Sources and Variables
2.4. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- World Health Organization. World Antibiotic Awareness Week. Available online: https://www.who.int/campaigns/world-antimicrobial-awareness-week (accessed on 15 December 2020).
- World Health Organization. Antimicrobial Resistance. Available online: https://www.who.int/health-topics/antimicrobial-resistance (accessed on 15 December 2020).
- World Health Organization. Worldwide Country Situation Analysis: Response to Antimicrobial Resistance; World Health Organization: Geneva, Switzerland, 2015; ISBN 9789241564946. [Google Scholar]
- Government of Armenia. Transcript of the Meeting of the Goverment of Armenia; 8 July 2015, N 32; 2015. Available online: https://pdf.arlis.am/99255 (accessed on 7 February 2021).
- Navasardyan, N. Antibiotic Use: A Cross-Sectional Survey of Knowledge, Attitude, and Practice among Yerevan Adult Population; American University of Armenia: Yerevan, Armenia, 2016. [Google Scholar]
- Martirosyan, L. Survey on Self-Medication with Antibiotics in Yerevan; American University of Armenia: Yerevan, Armenia, 2005. [Google Scholar]
- World Health Organization. Antimicrobial Resistance, Key Facts. Available online: https://www.who.int/news-room/fact-sheets/detail/antimicrobial-resistance (accessed on 7 February 2021).
- EasyStat EasyStat: Data Science Platform for Quick and Easy Statistics. Available online: EasyStat.app (accessed on 7 February 2021).
- Dickstein, Y.; Temkin, E.; Ish Shalom, M.; Schwartz, D.; Carmeli, Y.; Schwaber, M.J. Trends in antimicrobial resistance in Israel, 2014–2017. Antimicrob. Resist. Infect. Control 2019, 8, 1–5. [Google Scholar] [CrossRef] [Green Version]
- Liu, C.; Yoon, E.J.; Kim, D.; Shin, J.H.; Shin, J.H.; Shin, K.S.; Kim, Y.A.; Uh, Y.; Kim, H.S.; Kim, Y.R.; et al. Antimicrobial resistance in South Korea: A report from the Korean global antimicrobial resistance surveillance system (Kor-GLASS) for 2017. J. Infect. Chemother. 2019, 25, 845–859. [Google Scholar] [CrossRef]
- Van Boeckel, T.P.; Pires, J.; Silvester, R.; Zhao, C.; Song, J.; Criscuolo, N.G.; Gilbert, M.; Bonhoeffer, S.; Laxminarayan, R. Global trends in antimicrobial resistance in animals in low- And middle-income countries. Science 2019, 365. [Google Scholar] [CrossRef] [Green Version]
- Ferri, M.; Ranucci, E.; Romagnoli, P.; Giaccone, V. Antimicrobial resistance: A global emerging threat to public health systems. Crit. Rev. Food Sci. Nutr. 2017, 57, 2857–2876. [Google Scholar] [CrossRef] [PubMed]
- European Centre for Disease Prevention and Control. Antimicrobial Resistance in the EU/EEA (EARS-Net), Annual Epidemiological Report for 2019; European Centre for Disease Prevention and Control: Stockholm, Sweden, 2020. [Google Scholar]
- World Health Organization. Global Action Plan on Antimicrobial Resistance; World Health Organization: Geneva, Switzerland, 2015; ISBN 9789241509763. [Google Scholar]
- Burow, E.; Käsbohrer, A. Risk Factors for Antimicrobial Resistance in Escherichia coli in Pigs Receiving Oral Antimicrobial Treatment: A Systematic Review. Microb. Drug Resist. 2017, 23, 194–205. [Google Scholar] [CrossRef] [PubMed]
- Hu, Y.; Matsui, Y.; Riley, W.L. Risk factors for fecal carriage of drug-resistant Escherichia coli: A systematic review and meta-analysis. Antimicrob. Resist. Infect. Control 2020, 9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kang, C.I.; Kim, S.H.; Park, W.B.; Lee, K.D.; Kim, H.B.; Kim, E.C.; Oh, M.D.; Choe, K.W. Risk factors for antimicrobial resistance and influence of resistance on mortality in patients with bloodstream infection caused by Pseudomonas aeruginosa. Microb. Drug Resist. 2005, 11, 68–74. [Google Scholar] [CrossRef] [PubMed]
- von Elm, E.; Altman, D.G.; Egger, M.; Pocock, S.J.; Gøtzsche, P.C.; Vandenbroucke, J.P.; Initiative, S. The Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) statement: Guidelines for reporting observational studies. Bull. World Health Organ. 2007, 85, 867–872. [Google Scholar] [CrossRef] [PubMed]
- Timbrook, T.T.; Spivak, E.S.; Hanson, K.E. Current and Future Opportunities for Rapid Diagnostics in Antimicrobial Stewardship. Med. Clin. N. Am. 2018, 102, 899–911. [Google Scholar] [CrossRef] [PubMed]
- Tsalik, E.L.; Bonomo, R.A.; Fowler, V.G. New Molecular Diagnostic Approaches to Bacterial Infections and Antibacterial Resistance. Annu. Rev. Med. 2018, 69, 379–394. [Google Scholar] [CrossRef] [PubMed]
- Bauer, K.A.; Perez, K.K.; Forrest, G.N.; Goff, D.A. Review of rapid diagnostic tests used by antimicrobial stewardship programs. Clin. Infect. Dis. 2014, 59, S134–S145. [Google Scholar] [CrossRef] [PubMed]
- Edmiston, C.E.; Garcia, R.; Barnden, M.; DeBaun, B.; Johnson, H.B. Rapid diagnostics for bloodstream infections: A primer for infection preventionists. Am. J. Infect. Control 2018, 46, 1060–1068. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Characteristics | Total, n = 107 | AMR Detected | p-Value | |||||
---|---|---|---|---|---|---|---|---|
Yes, n = 87 | No, n = 20 | |||||||
n | (SD/%) | n | (SD/%) | n | (SD/%) | |||
Age | 19 | (22) | 19 | (22) | 18 | (19) | 0.8 *** | |
Gender | Male | 67 | (63) | 54 | (81) | 13 | (19) | |
Female | 40 | (37) | 33 | (83) | 7 | (18) | 0.8 * | |
Visit Type | Primary Visit | 53 | (50) | 43 | (81) | 10 | (19) | |
Referred | 53 | (50) | 43 | (81) | 10 | (19) | 1 * | |
Missing | 1 | (1) | 1 | (100) | 0 | (0) | - | |
Outcome | Cured or Improved | 93 | (87) | 74 | (80) | 19 | (20) | |
No Improvement or Aggravated | 14 | (13) | 13 | (93) | 1 | (7) | 0.5 ** | |
Region | Yerevan/Capital City | 40 | (37) | 34 | (85) | 6 | (15) | |
Region | 67 | (63) | 53 | (79) | 14 | (21) | 0.5 * | |
Comorbidities | No | 59 | (55) | 45 | (76) | 14 | (24) | |
Yes | 42 | (39) | 36 | (86) | 6 | (14) | 0.2 * | |
Missing | 6 | (6) | 6 | (100) | 0 | (0) | - | |
Types of Specimen | Feces | 12 | (11) | 11 | (92) | 1 | (8) | |
Blood | 23 | (22) | 18 | (78) | 5 | (22) | 0.6 ** | |
Swab (throat) | 4 | (4) | 3 | (75) | 1 | (25) | 0.5 ** | |
Sputum | 17 | (16) | 14 | (82) | 3 | (18) | 0.6 ** | |
Swab (vaginal) | 1 | (1) | 1 | (100) | 0 | (0) | 1 ** | |
Urine | 35 | (33) | 31 | (89) | 4 | (11) | 1 ** | |
Spinal fluid | 2 | (2) | 2 | (100) | 0 | (0) | 1 ** | |
Swab (wound) | 6 | (6) | 4 | (67) | 2 | (33) | 0.3 * | |
Missing | 7 | (7) | 3 | (43) | 4 | (57) | - | |
Pathogen | Escherichia coli | 23 | (21) | 19 | (83) | 4 | (17) | |
Candida albicans | 1 | (1) | 0 | (0) | 1 | (100) | - | |
Enterococcus spp. | 6 | (6) | 5 | (83) | 1 | (17) | 1 ** | |
Aspergillus fumigatus | 8 | (7) | 8 | (100) | 0 | (0) | - | |
Klebsiella pneumoniae | 2 | (2) | 2 | (100) | 0 | (0) | - | |
Proteus mirabilis | 2 | (2) | 2 | (100) | 0 | (0) | - | |
Proteus vulgaris | 2 | (2) | 2 | (100) | 0 | (0) | - | |
Pseudomonas aeruginosa | 8 | (7) | 7 | (88) | 1 | (13) | 1 ** | |
Salmonella spp. | 5 | (5) | 3 | (60) | 2 | (40) | 0.3 ** | |
Shigella spp. | 3 | (3) | 2 | (67) | 1 | (33) | 0.5 ** | |
Staphylococcus aureus | 19 | (18) | 13 | (68) | 6 | (32) | 0.5 ** | |
Staphylococcus epidermidis | 11 | (10) | 10 | (91) | 1 | (9) | 0.6 ** | |
Streptococcus group A | 4 | (4) | 3 | (75) | 1 | (25) | 1 ** | |
Streptococcus pneumoniae | 8 | (7) | 7 | (88) | 1 | (13) | 1 ** | |
Yersinia pseudotuberculosis | 1 | (1) | 1 | (100) | 0 | (0) | - | |
Zygomycetes | 3 | (3) | 3 | (100) | 0 | (0) | - | |
Missing | 1 | (1) | 0 | (0) | 1 | (100) | - | |
Antimicrobial Adjustment Based on the AMR Test Results | No | 91 | (85) | 76 | (84) | 15 | (16) | |
Yes | 16 | (15) | 11 | (69) | 5 | (31) | 0.2 * |
Antimicrobials | Total Samples | Resistant Samples | % of Resistance * |
---|---|---|---|
Ampicillin | 86 | 36 | 42% |
Amoxicillin/Clavulanic Acid | 87 | 32 | 37% |
Cefuroxime | 82 | 21 | 26% |
Ceftriaxone | 90 | 19 | 21% |
Cefotaxime | 21 | 5 | 24% |
Ceftazidime | 48 | 12 | 25% |
Erythromycin | 37 | 18 | 49% |
Gentamycin | 46 | 8 | 17% |
Amikacin | 6 | 3 | 50% |
Doxycycline | 81 | 24 | 30% |
Chloramphenicol | 6 | 5 | 83% |
Moxifloxacin | 70 | 5 | 7% |
Ciprofloxacin | 91 | 14 | 15% |
Nitrofurantoin | 34 | 4 | 12% |
Cotrimoxazole | 67 | 32 | 48% |
Imipenem | 11 | 3 | 27% |
Nystatin | 8 | 7 | 88% |
Ketoconazole | 14 | 8 | 57% |
Fluconazole | 14 | 8 | 57% |
Itraconazole | 14 | 1 | 7% |
Voriconazole | 12 | 9 | 75% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Davtyan, H.; Grigoryan, R.; Niazyan, L.; Davidyants, M.; Ghalechyan, T.; Davtyan, K. Antimicrobial Resistance in a Tertiary Care Hospital in Armenia: 2016–2019. Trop. Med. Infect. Dis. 2021, 6, 31. https://doi.org/10.3390/tropicalmed6010031
Davtyan H, Grigoryan R, Niazyan L, Davidyants M, Ghalechyan T, Davtyan K. Antimicrobial Resistance in a Tertiary Care Hospital in Armenia: 2016–2019. Tropical Medicine and Infectious Disease. 2021; 6(1):31. https://doi.org/10.3390/tropicalmed6010031
Chicago/Turabian StyleDavtyan, Hayk, Ruzanna Grigoryan, Lyudmila Niazyan, Mher Davidyants, Tehmine Ghalechyan, and Karapet Davtyan. 2021. "Antimicrobial Resistance in a Tertiary Care Hospital in Armenia: 2016–2019" Tropical Medicine and Infectious Disease 6, no. 1: 31. https://doi.org/10.3390/tropicalmed6010031
APA StyleDavtyan, H., Grigoryan, R., Niazyan, L., Davidyants, M., Ghalechyan, T., & Davtyan, K. (2021). Antimicrobial Resistance in a Tertiary Care Hospital in Armenia: 2016–2019. Tropical Medicine and Infectious Disease, 6(1), 31. https://doi.org/10.3390/tropicalmed6010031