Decreasing Trends in Antibiotic Consumption in Public Hospitals from 2014 to 2017 Following the Decentralization of Drug Procurement in Myanmar
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. General Setting
2.3. Specific Setting—The Structure of Health Facilities
2.4. Drug Procurement Before and After Decentralization
2.5. Anatomical Therapeutic Chemical (ATC)/Defined Daily Dose (DDD) Classification System
2.6. Study Inclusion and Periods
2.7. Data Variables, Sources of Data, and Statistical Analysis
3. Results
3.1. Characteristics of The Study Population (Included Hospitals)
3.2. Trend in Antibiotic Consumption in Total Defined Daily Doses (DDD)
3.3. Proportion (%) of Total Antibiotic Consumption by Pharmacological Subgroup
3.4. Antibiotic Consumption in Defined Daily Doses and Proportions by Access, Watch, and Reserve Categories
3.5. Antibiotic Consumption by Route of Administration
3.6. The Top Ten Most Consumed Antibiotics by Hospital Category
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Open access statement and disclaimer
References
- WHO. World Health Organization. The Evolving Threat of Antimicrobial Resistance: Options for Action; WHO: Geneva, Switzerland, 2012; Available online: https://apps.who.int/iris/handle/10665/44812 (accessed on 5 July 2019).
- WHO. World Health Organization. Global Action Plan on Antimicrobial Resistance. 2015. Available online: https://www.who.int/antimicrobial-resistance/global-action-plan/en/ (accessed on 3 July 2019).
- WHO. World Health Organization. Antimicrobial Resistance—Global Report on Surveillance; WHO: Geneva, Switzerland, 2014; Available online: https://www.who.int/antimicrobial-resistance/publications/surveillancereport/en/ (accessed on 4 July 2019).
- Cecchini, M.; Langer, J.; Slawomirski, L. Antimicrobial Resistance in G7 Countries and Beyond—Economic Issues, Policies, and Options for Action; Organization for Economic Co-operation and Development: Paris, France, 2015; Available online: https://www.oecd.org/els/health-systems/Antimicrobial-Resistance-in-G7-Countries-and-Beyond.pdf (accessed on 4 July 2019).
- Costelloe, C.; Metcalfe, C.; Lovering, A.; Mant, D.; Hay, A.D. Effect of antibiotic prescribing in primary care on antimicrobial resistance in individual patients: Systematic review and meta-analysis. BMJ 2010, 340, 2096. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Goossens, H.; Ferech, M.; Vander Stichele, R.; Elseviers, M. Outpatient antibiotic use in Europe and association with resistance: A cross-national database study. Lancet 2005, 365, 579–587. [Google Scholar] [CrossRef]
- Malhotra-Kumar, S.; Lammens, C.; Coenen, S.; Van Herck, K.; Goossens, H. Effect of azithromycin and clarithromycin therapy on pharyngeal carriage of macrolide-resistant streptococci in healthy volunteers: A randomized, double-blind, placebo-controlled study. Lancet 2007, 369, 482–490. [Google Scholar] [CrossRef]
- Bangladesh Report: Antibiotic Use and Resistance in Bangladesh. Situation Analysis and Recommendations on Antibiotic Resistance. The GARP-Bangladesh National Working Group. GARP-Bangladesh and CDDEP, 2018. Available online: https://cddep.org/wp-content/uploads/2018/08/antibiotic-use-and-resistance-in-bangladesh.pdf (accessed on 26 March 2021).
- Holloway, K.A.; Kotwani, A.; Batmanabane, G.; Puri, M.; Tisocki, K. Antibiotic use in South East Asia and policies to promote appropriate use: Reports from country situational analyses. BMJ 2017, 358, 2291. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- WHO. World Health Organization. Global Antimicrobial Resistance Report; WHO: Geneva, Switzerland, 2020; Available online: https://apps.who.int/iris/bitstream/handle/10665/332081/9789240005587-eng.pdf (accessed on 26 March 2021).
- NHL. National Health Laboratory. Analysis Report on Hospital Antimicrobial Resistance in Myanmar, 2017; National Public Health Laboratory, Ministry of Health and Sports: Yangoon, Myanmar, 2017. Available online: https://nhlmyanmar.gov.mm/ (accessed on 1 April 2021).
- Zellweger, R.M.; Carrique-Mas, J.; Limmathurotsakul, D.; Day, N.P.J.; Thwaites, G.E.; Baker, S. Antimicrobial Resistance Network. A current perspective on antimicrobial resistance in Southeast Asia. J. Antimicrob. Chemother. 2017, 72, 2963–2972. Available online: https://adoptaware.org/ (accessed on 4 July 2019). [CrossRef] [PubMed] [Green Version]
- MOHS. Ministry of Health and Sports. Hospital Statistics Report (2014–2016); Ministry of Health and Sports: Naypyitaw, Myanmar, 2018; p. 26. [Google Scholar]
- Kathleen, A.H. Myanmar Drug Policy and Pharmaceuticals in Health Care Delivery. Mission Report 19–26 October 2011. Available online: http://www.searo.who.int/entity/medicines/myanmar_situational_analysis.pdf?ua=1 (accessed on 4 July 2019).
- WHO. World Health Organization: Report on Surveillance of Antibiotic Consumption. 2016–2018 Early Implementation. Available online: https://www.who.int/medicines/areas/rational_use/oms-amr-amc-report-2016-2018/en/ (accessed on 4 July 2019).
- Von Elm, E.; Altman, D.G.; Egger, M.; Pocock, S.J.; Gotzsche, P.C.; Vandenbroucke, J.P. The Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) Statement: Guidelines for reporting observational studies. Ann. Intern. Med. 2007, 147, 573–577. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yin, J.; Li, Q.; Sun, Q. Antibiotic consumption in Shandong Province, China: An analysis of provincial pharmaceutical centralized bidding procurement data at public healthcare institutions, 2012–2016. J. Antimicrob. Chemother. 2018, 73, 814–820. [Google Scholar] [CrossRef] [PubMed]
- WHO. World Health Organization. Critically Important Antimicrobials for Human Medicine. 6th Revision. 2018. Available online: https://apps.who.int/iris/bitstream/handle/10665/312266/9789241515528-eng.pdf (accessed on 3 February 2021).
- MOHS. Ministry of Health and Sports. National List of Essential Medicines, 2016; Ministry of Health and Sports: Naypyitaw, Myanmar, 2017. Available online: https://www.mohs.gov.mm/page/5491 (accessed on 3 February 2021).
Fiscal Year 1 | ||||||||
---|---|---|---|---|---|---|---|---|
2014–2015 | 2015–2016 | 2016–2017 | 2017–2018 | |||||
n | (%) | n | (%) | n | (%) | n | (%) | |
Total hospitals | 975 | 1054 | 1115 | 1122 | ||||
Study hospitals | 325 | (33) | 338 | (32) | 346 | (31) | 347 | (31) |
<200 beds 2 | 297 | 310 | 318 | 319 | ||||
≥200 beds | 10 | 10 | 10 | 10 | ||||
Central | 18 | 18 | 18 | 18 |
Fiscal Year 1 | Hospitals | Total DDD | |||
---|---|---|---|---|---|
<200 beds | ≥200 beds | Central 3 | |||
DDD | DDD/1000/day 2 | DDD | DDD | DDD | |
2014–2015 | 3,601,294 | 0.6 | 1,578,391 | 1,943,167 | 7,122,852 |
2015–2016 | 3,260,830 | 0.5 | 1,751,267 | 1,832,981 | 6,845,078 |
2016–2017 | 1,928,872 | 0.3 | 534,712 | 1,545,929 | 4,009,513 |
2017–2018 | 2,359,850 | 0.3 | 2,217,806 | 1,217,248 | 5,794,904 |
Hospitals | Fiscal year 1 | Pharmacological Subgroup (ATC3) 3 | |||||||
---|---|---|---|---|---|---|---|---|---|
Tetracyclines (J01A) | Beta-Lactam and Penicillins (J01C) | Other Beta-Lactam Antibacterials (J01D) | Sulfonamides-Trimethoprim (J01E) | Macrolides, Lincosamides and Streptogamins (J01F) | Aminoglycosides (J01G) | Quinolones (J01M) | Other Antibacterials (J01X) 2,3 | ||
<200 beds | 2014–2015 | 341,080 (10) | 1,115,189 (31) | 640,011 (18) | 239,871 (7) | 247,499 (7) | 25,216 (1) | 817,478 (23) | 174,950 (5) |
2015–2016 | 143,545 (4) | 861,710 (26) | 860,029 (26) | 95,829 (3) | 348,554 (11) | 75,981(2) | 621,285 (19) | 253,897 (8) | |
2016–2017 | 39,650 (2) | 560,301 (29) | 595,635 (31) | 81,150 (4) | 213,969 (11) | 27,095 (1) | 298,645 (16) | 112,427 (6) | |
2017–2018 | 59,000 (3) | 722,661 (31) | 517,036 (22) | 36,455 (2) | 377,208 (16) | 34,114 (1) | 363,673 (15) | 249,703 (11) | |
≥200 beds | 2014–2015 | 56,000 (4) | 584,873 (37) | 312,369 (20) | 10,750 (1) | 160,925 (10) | 25,450 (2) | 326,199 (21) | 101,825 (7) |
2015–2016 | 33,050 (2) | 1,004,295 (57) | 232,598 (13) | 28,740 (2) | 216,501 (12) | 16,748 (1) | 142,490 (8) | 76,843 (4) | |
2016–2017 | 18,000 (3) | 99,418 (19) | 190,784 (36) | 3550 (1) | 86,752 (16) | 5593 (1) | 107,711(20) | 22,903 (4) | |
2017–2018 | 9000 (0) | 1,717,691 (78) | 249,901 (11) | 850 (0) | 93,979 (4) | 6183 (0) | 130,702 (6) | 9500 (0.4) | |
Central | 2014–2015 | 27,000 (1) | 448,807 (23) | 557,132 (29) | 57,456 (3) | 179,395 (9) | 12,367 (1) | 458,260 (24) | 202,751 (10) |
2015–2016 | 79,010 (4) | 406,433 (22) | 643,577 (35) | 16,193 (1) | 158,750 (9) | 36,071 (2) | 347,180 (19) | 145,768 (8) | |
2016–2017 | 49,800 (3) | 511,177 (33) | 537,896 (35) | 2075 (0) | 116,631(8) | 31,182 (2) | 237,458 (16) | 59,712 (4) | |
2017–2018 | 22,000 (2) | 408,771 (34) | 392,999 (32) | 6325 (1) | 150,261 (12) | 15,008 (1) | 210,995 (17) | 10,889 (1) |
Hospital | Fiscal Year 1 | AWaRe Categories | |||
---|---|---|---|---|---|
Access DDD (%) | Watch DDD (%) | Reserve DDD (%) | Other DDD (%) | ||
<200 beds | 2014–2015 | 1,613,768 (45) | 1,459,106 (41) | 0 | 528,419 (15) |
2015–2016 | 1,233,435 (38) | 1,483,655 (46) | 0 | 543,740 (17) | |
2016–2017 | 786,805 (41) | 840,763 (44) | 0 | 301,304 (16) | |
2017–2018 | 969,988 (41) | 1,064,843 (45) | 0 | 325,019 (14) | |
≥200 beds | 2014–2015 | 646,544 (41) | 765,407 (49) | 3100 (0.2) | 163,340 (10) |
2015–2016 | 1,087,374 (62) | 550,777(32) | 2500 (0.1) | 110,616 (6) | |
2016–2017 | 154,036 (29) | 334,789 (63) | 0 | 45,886 (9) | |
2017–2018 | 166,5026 (75) | 426,146 (19) | 0 | 126,634 (6) | |
Central | 2014–2015 | 730,985 (38) | 1,081,992 (56) | 3300 (0.2) | 126,890 (7) |
2015–2016 | 713,071 (39) | 1,060,916 (58) | 225 (0.01) | 58,769 (3) | |
2016–2017 | 684,973 (44) | 812,504 (53) | 0 | 48,452 (3) | |
2017–2018 | 465,093 (38) | 687,671 (57) | 0 | 64,484 (5) | |
2014–2015 | 2,991,297 (42) | 3,306,505 (46) | 6400 (0.1) | 818,649 (11) | |
Total | 2015–2016 | 3,033,880 (44) | 3,095,348 (45) | 2725 (0.03) | 713,125 (10) |
2016–2017 | 1,625,814 (41) | 1,988,056 (50) | 0 | 395,642 (10) | |
2017–2018 | 3,100,107 (53) | 2,178,660 (38) | 0 | 516,137 (9) |
Hospitals | Route of Administration | Fiscal Year 1 | |||
---|---|---|---|---|---|
2014–2015 DDD (%) | 2015–2016 DDD (%) | 2016–2017 DDD (%) | 2017–2018 DDD (%) | ||
<200 beds | Oral | 3,116,615 (86) | 2,653,428 (81) | 1,527,336 (79) | 1,911,336 (81) |
Parenteral | 484,679 (14) | 607,402 (19) | 401,536 (21) | 448,514 (19) | |
≥200 beds | Oral | 1,199,454 (76) | 814,179 (47) | 427,406 (80) | 665,214 (30) |
Parenteral | 378,937 (24) | 937,088 (54) | 107,306 (20) | 1,552,592 (70) | |
Central | Oral | 1,384,785 (71) | 1,326,631 (72) | 1,049,283 (68) | 961,659 (79) |
Parenteral | 558,382 (29) | 506,350 (28) | 496,646 (32) | 255,589 (21) |
Hospital | |||||
---|---|---|---|---|---|
<200 beds | ≥200 beds | Central | |||
Antibiotic Substance | Proportion | Antibiotic Substance | Proportion | Antibiotic Substance | Proportion |
Combinations of penicillins (J01CR50) | 16.4 | Azithromycin (J01FA10) | 15.1 | Amoxicillin and enzyme inhibitor (J01CR02) | 19.8 |
Azithromycin (J01FA10) | 11.3 | Cefixime (J01DD08) | 14.0 | Cefixime (J01DD08) | 19.2 |
Cefalexin (J01DB01) | 10.7 | Combinations of penicillins (J01CR50) | 11.5 | Levofloxacin (J01MA12) | 14.4 |
Cefixime (J01DD08) | 10.5 | Amoxicillin (J01CA04) | 11.4 | Azithromycin (J01FA10) | 10.4 |
Ciprofloxacin (J01MA02) | 9.5 | Amoxicillin and enzyme inhibitor (J01CR02) | 7.9 | Cefuroxime (J01DC02) | 5.2 |
Amoxicillin (J01CA04) | 8.9 | Ciprofloxacin (J01MA02) | 6.8 | Cefalexin (J01DB01) | 4.6 |
Doxycycline (J01AA02) | 6.2 | Levofloxacin (J01MA12) | 6.5 | Amoxicillin (J01CA04) | 4.5 |
Sulfamethoxazole and trimethoprim (J01EE01) | 4.9 | Cefalexin (J01DB01) | 4.5 | Doxycycline (J01AA02) | 3.8 |
Norfloxacin (J01MA06) | 4.7 | Metronidazole (P01AB01) | 4.3 | Ciprofloxacin (J01MA02) | 3.7 |
Amoxicillin and enzyme inhibitor (J01CR02) | 3.7 | Doxycycline (J01AA02) | 3.7 | Ofloxacin (J01MA01) | 2.3 |
Hospital | |||||
---|---|---|---|---|---|
<200 beds | ≥200 beds | Central | |||
Antibiotic Substance | Proportion 1 | Antibiotic Substance | Proportion 1 | Antibiotic Substance | Proportion 1 |
Metronidazole (J01XD01) | 28.0 | Amoxicillin and enzyme inhibitor (J01CR02) | 72.3 | Ceftriaxone (J01DD04) | 27.4 |
Ceftriaxone (J01DD04) | 24.1 | Procaine benzylpenicillin (J01CE09) | 5.8 | Amoxicillin and enzyme inhibitor (J01CR02) | 15.6 |
Levofloxacin (J01MA12) | 9.8 | Ceftriaxone (J01DD04) | 5.5 | Metronidazole (J01XD01) | 15.2 |
Benzylpenicillin (J01CE01) | 6.6 | Levofloxacin (J01MA12) | 3.4 | Levofloxacin (J01MA12) | 9.5 |
Gentamicin (J01GB03) | 6.1 | Metronidazole (J01XD01) | 1.6 | Benzylpenicillin (J01CE01) | 9.5 |
Ciprofloxacin (J01MA02) | 5.7 | Ceftazidime (J01DD02) | 1.4 | Ceftazidime (J01DD02) | 4.3 |
Combinations of penicillins (J01CR50) | 3.6 | Amikacin (J01GB06) | 1.3 | Amikacin (J01GB06) | 4.1 |
Cefotaxime (J01DD01) | 3.4 | Benzylpenicillin (J01CE01) | 1.3 | Ceftriaxone and enzyme inhibitor (J01DD63) | 3.2 |
Amoxicillin and enzyme inhibitor (J01CR02) | 2.7 | Ciprofloxacin (J01MA02) | 1.3 | Cefoperazone, combinations (J01DD62) | 2.6 |
Ofloxacin (J01MA01) | 2.3 | Ceftriaxone and enzyme Inhibitor (J01DD63) | 0.8 | Ciprofloxacin (J01MA02) | 1.4 |
Hospital | Fiscal Year 1 | Antibiotic Ubstance | ||||
---|---|---|---|---|---|---|
First-Generation Cephalosporins (J01DB) | Second-Generation Cephalosporins (J01DC) | Third-Generation Cephalosporins (J01DD) | Fourth-Generation Cephalosporins (J01DE) | Carbapenems (J01DH) | ||
<200 beds | 2014–2015 | 240,263 (38) | 23,400 (4) | 374,973 (57) | 1375 (0.2) | 0 |
2015–2016 | 312,984 (36) | 6070 (0.7) | 540,290 (63) | 685 (0.1) | 0 | |
2016–2017 | 253,345 (43) | 13,730 (2) | 328,485 (55) | 75 (0) | 0 | |
2017–2018 | 188,174 (36) | 13,135 (3) | 313,978 (61) | 1750 (0.3) | 0 | |
≥200 beds | 2014–2015 | 34,138 (11) | 42,534 (14) | 221,532 (71) | 7565 (2) | 6600 (2) |
2015–2016 | 32,604 (14) | 38,925 (17) | 152,570 (66) | 6000 (3) | 2500 (1) | |
2016–2017 | 37,850 (20) | 778 (0.4) | 150,479 (79) | 1599 (1) | 78 (0) | |
2017–2018 | 36,313 (15) | 21,400 (9) | 191,146 (77) | 963 (0.4) | 79 (0) | |
Central | 2014–2015 | 80,583 (15) | 91,790 (17) | 370,926 (67) | 6040 (1) | 7794 (1) |
2015–2016 | 73,448 (11) | 117,319 (18) | 446,824 (69) | 3666 (0.6) | 2321 (0.5) | |
2016–2017 | 47,015 (9) | 26,268 (5) | 457,160 (85) | 2545 (0.5) | 4908 (0.9) | |
2017–2018 | 24,365 (6) | 28,877 (7) | 335,071 (85) | 1145 (0.3) | 3541 (0.9) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pwint, K.H.; Min, K.S.; Tao, W.; Shewade, H.D.; Wai, K.T.; Kyi, H.A.; Shakya, S.; Thapa, B.; Zachariah, R.; Htun, Z.T. Decreasing Trends in Antibiotic Consumption in Public Hospitals from 2014 to 2017 Following the Decentralization of Drug Procurement in Myanmar. Trop. Med. Infect. Dis. 2021, 6, 57. https://doi.org/10.3390/tropicalmed6020057
Pwint KH, Min KS, Tao W, Shewade HD, Wai KT, Kyi HA, Shakya S, Thapa B, Zachariah R, Htun ZT. Decreasing Trends in Antibiotic Consumption in Public Hospitals from 2014 to 2017 Following the Decentralization of Drug Procurement in Myanmar. Tropical Medicine and Infectious Disease. 2021; 6(2):57. https://doi.org/10.3390/tropicalmed6020057
Chicago/Turabian StylePwint, Khin Hnin, Kyaw Soe Min, Wenjing Tao, Hemant Deepak Shewade, Khin Thet Wai, Hnin Aye Kyi, Sushma Shakya, Badri Thapa, Rony Zachariah, and Zaw Than Htun. 2021. "Decreasing Trends in Antibiotic Consumption in Public Hospitals from 2014 to 2017 Following the Decentralization of Drug Procurement in Myanmar" Tropical Medicine and Infectious Disease 6, no. 2: 57. https://doi.org/10.3390/tropicalmed6020057
APA StylePwint, K. H., Min, K. S., Tao, W., Shewade, H. D., Wai, K. T., Kyi, H. A., Shakya, S., Thapa, B., Zachariah, R., & Htun, Z. T. (2021). Decreasing Trends in Antibiotic Consumption in Public Hospitals from 2014 to 2017 Following the Decentralization of Drug Procurement in Myanmar. Tropical Medicine and Infectious Disease, 6(2), 57. https://doi.org/10.3390/tropicalmed6020057