Is Borrelia burgdorferi Sensu Stricto in South America? First Molecular Evidence of Its Presence in Colombia
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Capture and Sampling of Mammals
2.3. Morphological and Molecular Detection of Borrelia
2.4. Phylogenetic Analysis
3. Results
4. Discussion and Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Cutler, S.J. Relapsing fever borreliae: A global review. Clin. Lab. Med. 2015, 35, 847–865. [Google Scholar] [CrossRef] [PubMed]
- Cutler, S.J.; Ruzic-Sabljic, E.; Potkonjak, A. Emerging borreliae—Expanding beyond Lyme borreliosis. Mol. Cell. Probes 2017, 31, 22–27. [Google Scholar] [CrossRef]
- Margos, G.; Fingerle, V.; Cutler, S.; Gofton, A.; Stevenson, B.; Estrada-Peña, A. Controversies in bacterial taxonomy: The example of the genus Borrelia. Ticks Tick Borne Dis. 2020, 11, 101335. [Google Scholar] [CrossRef] [PubMed]
- Faccini-Martínez, A.A.; Silva-Ramos, C.R.; Santodomingo, A.M.; Ramírez-Hernández, A.; Costa, F.B.; Labruna, M.B.; Muñoz-Leal, S. Historical overview and update on relapsing fever group Borrelia in Latin America. Parasites Vectors 2022, 15, 1–20. [Google Scholar] [CrossRef] [PubMed]
- Margos, G.; Gofton, A.; Wibberg, D.; Dangel, A.; Marosevic, D.; Loh, S.M.; Oskam, C.; Fingerle, V. The genus Borrelia reloaded. PLoS ONE 2018, 13, e0208432. [Google Scholar] [CrossRef]
- Rogovskyy, A.; Batool, M.; Gillis, D.C.; Holman, P.J.; Nebogatkin, I.V.; Rogovska, Y.V.; Rogovskyy, M.S. Diversity of Borrelia spirochetes and other zoonotic agents in ticks from Kyiv, Ukraine. Ticks Tick Borne Dis. 2018, 9, 404–409. [Google Scholar] [CrossRef]
- O’Keeffe, K.R.; Oppler, Z.J.; Brisson, D. Evolutionary ecology of Lyme Borrelia. Infect. Genet. Evol. 2020, 85, 104570. [Google Scholar] [CrossRef]
- Weck, B.C.; Serpa, M.C.A.; Labruna, M.B.; Muñoz-Leal, S.A. Novel Genospecies of Borrelia burgdorferi Sensu Lato Associated with Cricetid Rodents in Brazil. Microorganisms 2022, 10, 204. [Google Scholar] [CrossRef]
- Swellengrebel, N.H. Sur la cytologie comparée des spirochètes et des spirilles. Annales de l’Institut Pasteur 1907, 21, 562–586. [Google Scholar]
- Binetruy, F.; Garnier, S.; Boulanger, N.; Talagrand-Reboul, E.; Loire, E.; Faivre, B.; Noel, V.; Buysse, M.; Duron, O. A novel Borrelia species, intermediate between Lyme disease and relapsing fever groups, in neotropical passerine-associated ticks. Sci. Rep. 2020, 10, 10596. [Google Scholar] [CrossRef]
- Lantos, P.M.; Auwaerter, P.G.; Wormser, G.P. A systematic review of Borrelia burgdorferi morphologic variants does not support a role in chronic Lyme disease. Clin. Infect. Dis. 2014, 58, 663–671. [Google Scholar] [CrossRef] [PubMed]
- Marques, A.R.; Strle, F.; Wormser, G.P. Comparison of Lyme disease in the United States and Europe. Emerging Infect. Dis. 2021, 27, 2017–2024. [Google Scholar] [CrossRef] [PubMed]
- Estrada-Peña, A.; Cutler, S.; Potkonjak, A.; Vassier-Tussaut, M.; Van Bortel, W.; Zeller, H.; Fernández-Ruiz, N.; Mihalca, A.D. An updated meta-analysis of the distribution and prevalence of Borrelia burgdorferi s.l. in ticks in Europe. Int. J. Health Geogr. 2018, 17, 41. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Trevisan, G.; Cinco, M.; Trevisini, S.; di Meo, N.; Chersi, K.; Ruscio, M.; Forgione, P.; Bonin, S. Borreliae part 1: Borrelia Lyme group and Echidna-reptile group. Biology 2021, 10, 1036. [Google Scholar] [CrossRef] [PubMed]
- Steinbrink, A.; Brugger, K.; Margos, G.; Kraiczy, P.; Klimpel, S. The evolving story of Borrelia burgdorferi sensu lato transmission in Europe. Parasitol. Res. 2022, 121, 781–803. [Google Scholar] [CrossRef]
- Rudenko, N.; Golovchenko, M.; Grubhoffer, L.; Oliver, J.H., Jr. Updates on Borrelia burgdorferi sensu lato complex with respect to public health. Ticks Tick Borne Dis. 2011, 2, 123–128. [Google Scholar] [CrossRef] [Green Version]
- Strnad, M.; Hönig, V.; Růžek, D.; Grubhoffer, L.; Rego, R.O. Europe-wide meta-analysis of Borrelia burgdorferi sensu lato prevalence in questing Ixodes ricinus ticks. Appl. Environ. Microbiol. 2017, 83, e00609-17. [Google Scholar] [CrossRef] [Green Version]
- Cardenas-de la Garza, J.A.; la Cruz-Valadez, D.; Ocampo-Candiani, J.; Welsh, O. Clinical spectrum of Lyme disease. Eur. J. Clin. Microbiol. Infect. Dis. 2019, 38, 201–208. [Google Scholar] [CrossRef]
- Steere, A.C.; Strle, F.; Wormser, G.P.; Hu, L.T.; Branda, J.A.; Hovius, J.W.; Li, X.; Mead, P.S. Lyme borreliosis. Nat. Rev. Dis. Primers 2016, 2, 16090. [Google Scholar] [CrossRef] [Green Version]
- Dos Santos, C.A.; Suzin, A.; Vogliotti, A.; Nunes, P.H.; Barbieri, A.R.M.; Labruna, M.B.; Szabó, M.P.J.; Yokosawa, J. Molecular detection of a Borrelia sp. in nymphs of Amblyomma brasiliense ticks (Acari: Ixodidae) from Iguaçu National Park, Brazil, genetically related to Borrelia from Ethiopia and Côte d’Ivoire. Ticks Tick Borne Dis. 2020, 11, 101519. [Google Scholar] [CrossRef]
- Knoll, S.; Springer, A.; Hauck, D.; Schunack, B.; Pachnicke, S.; Fingerle, V.; Strube, C. Distribution of Borrelia burgdorferi s.l. and Borrelia miyamotoi in Ixodes tick populations in Northern Germany, co-infections with Rickettsiales and assessment of potential influencing factors. Med. Vet. Entomol. 2021, 35, 595–606. [Google Scholar] [CrossRef]
- Trevisan, G.; Cinco, M. Lyme disease: A general survey. Int. J. Dermatol. 1990, 29, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Radolf, J.D.; Strle, K.; Lemieux, J.E.; Strle, F. Lyme disease in humans. Curr. Issues Mol. Biol. 2021, 42, 333–384. [Google Scholar] [CrossRef]
- Centers for Disease Control and Prevention. Signs and Symptoms of Untreated Lyme Disease. 2021. Available online: https://www.cdc.gov/lyme/signs_symptoms/index.html (accessed on 19 July 2022).
- Lopez, J.E.; Krishnavahjala, A.; Garcia, M.N.; Bermudez, S. Tick-borne relapsing fever spirochetes in the Americas. Vet. Sci. 2016, 3, 16. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jakab, Á.; Kahlig, P.; Kuenzli, E.; Neumayr, A. Tick borne relapsing fever—A systematic review and analysis of the literature. PLoS Negl. Trop. Dis. 2022, 16, e0010212. [Google Scholar] [CrossRef] [PubMed]
- Talagrand-Reboul, E.; Boyer, P.H.; Bergström, S.; Vial, L.; Boulanger, N. Relapsing fevers: Neglected tick-borne diseases. Front. Cell. Infect. Microbiol. 2018, 8, 98. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Warrell, D.A. Louse-borne relapsing fever (Borrelia recurrentis infection). Epidemiol. Infect. 2019, 147, E106. [Google Scholar] [CrossRef] [Green Version]
- Krishnavajhala, A.; Armstrong, B.A.; Kneubehl, A.R.; Gunter, S.M.; Piccione, J.; Kim, H.J.; Ramirez, R.; Castro-Arellano, I.; Roachell, W.; Teel, P.D.; et al. Diversity and distribution of the tick-borne relapsing fever spirochete Borrelia turicatae. PLoS Negl. Trop. Dis. 2021, 15, e0009868. [Google Scholar] [CrossRef]
- Lopez, J.; Hovius, J.W.; Bergstrom, S. Pathogenesis of relapsing fever. Curr. Issues Mol. Biol. 2021, 42, 519–550. [Google Scholar] [CrossRef]
- Zhigailov, A.V.; Neupokoyeva, A.S.; Maltseva, E.R.; Perfilyeva, Y.V.; Bissenbay, A.O.; Turebekov, N.A.; Frey, S.; Essbauer, S.; Abdiyeva, K.S.; Ostapchuk, Y.O.; et al. The prevalence of Borrelia in Ixodes persulcatus in southeastern Kazakhstan. Ticks Tick Borne Dis. 2021, 12, 101716. [Google Scholar] [CrossRef]
- Trevisan, G.; Cinco, M.; Trevisini, S.; di Meo, N.; Ruscio, M.; Forgione, P.; Bonin, S. Borreliae part 2: Borrelia relapsing fever group and unclassified Borrelia. Biology 2021, 10, 1117. [Google Scholar] [CrossRef]
- Li, Z.M.; Xiao, X.; Zhou, C.M.; Liu, J.X.; Gu, X.L.; Fang, L.Z.; Liu, B.Y.; Wang, L.R.; Yu, X.J.; Han, H.J. Human-pathogenic relapsing fever Borrelia found in bats from Central China phylogenetically clustered together with relapsing fever borreliae reported in the New World. PLoS Negl. Trop Dis. 2021, 15, e0009113. [Google Scholar] [CrossRef]
- Socolovschi, C.; Kernif, T.; Raoult, D.; Parola, P. Borrelia, Rickettsia, and Ehrlichia species in bat ticks, France, 2010. Emerg. Infect Dis. 2012, 18, 1966–1975. [Google Scholar] [CrossRef]
- Davoust, B.; Marié, J.L.; Dahmani, M.; Berenger, J.M.; Bompar, J.M.; Blanchet, D.; Cheuret, M.; Raoult, D.; Mediannikov, O. Evidence of Bartonella spp. in blood and ticks (Ornithodoros hasei) of bats, in French Guiana. Vector Borne Zoonotic Dis. 2016, 16, 516–519. [Google Scholar] [CrossRef]
- Ferreira, M.S.; Guterres, A.; Rozental, T.; Novaes, R.L.M.; Vilar, E.M.; de Oliveira, R.C.; Fernandes, J.; Forneas, D.; Junior, A.A.; Brandão, M.L.; et al. Coxiella and Bartonella spp. in bats (Chiroptera) captured in the Brazilian Atlantic Forest biome. BMC Vet. Res. 2018, 14, 279. [Google Scholar] [CrossRef] [Green Version]
- Muñoz-Leal, S.; Faccini-Martínez, Á.A.; Costa, F.B.; Marcili, A.; Mesquita, E.T.; Marques, E.P., Jr.; Labruna, M.B. Isolation and molecular characterization of a relapsing fever Borrelia recovered from Ornithodoros rudis in Brazil. Ticks Tick Borne Dis. 2018, 9, 864–871. [Google Scholar] [CrossRef]
- Muñoz-Leal, S.; Lopes, M.G.; Marcili, A.; Martins, T.F.; González-Acuña, D.; Labruna, M.B. Anaplasmataceae, Borrelia and Hepatozoon agents in ticks (Acari: Argasidae, Ixodidae) from Chile. Acta Trop. 2019, 192, 91–103. [Google Scholar] [CrossRef]
- Muñoz-Leal, S.; Marcili, A.; Fuentes-Castillo, D.; Ayala, M.; Labruna, M.B. A relapsing fever Borrelia and spotted fever Rickettsia in ticks from an Andean valley, central Chile. Exp. Appl. Acarol. 2019, 78, 403–420. [Google Scholar] [CrossRef]
- Muñoz-Leal, S.; Faccini-Martínez, Á.A.; Pérez-Torres, J.; Chala-Quintero, S.M.; Herrera-Sepúlveda, M.T.; Cuervo, C.; Labruna, M.B. Novel Borrelia genotypes in bats from the Macaregua Cave, Colombia. Zoonoses Public Health 2021, 68, 12–18. [Google Scholar] [CrossRef]
- Morel, N.; De Salvo, M.N.; Cicuttin, G.; Rossner, V.; Thompson, C.S.; Mangold, A.J.; Nava, S. The presence of Borrelia theileri in Argentina. Vet. Parasitol. Reg. Stud. Rep. 2019, 17, 100314. [Google Scholar] [CrossRef]
- Sánchez, R.S.T.; Santodomingo, A.M.S.; Muñoz-Leal, S.; Silva-de la Fuente, M.C.; Llanos-Soto, S.; Salas, L.M.; González-Acuña, D. Rodents as potential reservoirs for Borrelia spp. in northern Chile. Rev. Bras. Parasitol. Vet. 2020, 29, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Franco, R.; Toro, G.; Martínez, J. Fiebre amarilla y fiebre espiroquetal. Ses. Científicas Centen. Acad. Nac. Med. Bogota. 1911, 1, 169–227. [Google Scholar]
- Roca-García, M. Contribución al Estudio de la Fiebre Espiroquetal en Colombia; Universidad Nacional, Facultad de Medicina: Bogotá, Colombia, 1934. [Google Scholar]
- Robledo, E. Fiebre recurrente en Manizales. Bol. Med. 1907, 1, 113–118. [Google Scholar]
- Pampana, E.J. Notes on colombian relapsing fever. Trans. R. Soc. Trop. Med. Hyg. 1928, 21, 315–328. [Google Scholar] [CrossRef]
- Palacios, R.; Osorio, L.E.; Giraldo, L.E.; Torres, A.J.; Philipp, M.T.; Ochoa, M.T. Positive IgG western blot for Borrelia burgdorferi in Colombia. Mem. Inst. Oswaldo Cruz 1999, 94, 499–503. [Google Scholar] [CrossRef] [PubMed]
- Zuluaga de Cadena, A.; Botero, F.; Herrera, W.; Robledo, J.; Cortés, A.; Acevedo, M.C.L. Enfermedad de Lyme: Un caso comprobado en Colombia. Rev. CES Med. 2000, 14, 44–50. [Google Scholar]
- Miranda, J.; Mattar, S.; Perdomo, K.; Palencia, L. Seroprevalencia de borreliosis, o enfermedad de Lyme, en una población rural expuesta de Córdoba, Colombia. Rev. Salud Pública 2009, 11, 480–489. [Google Scholar] [CrossRef] [Green Version]
- Cuevas-Peláez, M.; Correa-García, A.; López-Mahecha, J.M. Panuveítis asociada a la enfermedad de Lyme en un paciente colombiano. Reporte de caso. Iatreia 2020, 33, 177–183. [Google Scholar] [CrossRef]
- González-Domínguez, M.S.; Villegas, J.P.; Carmona, S.; Castañeda, H. First report of canine borreliosis seroprevalence in a middle-altitude tropical urban area (Medellín-Colombia). Ces. Med. Vet. 2014, 9, 348–354. [Google Scholar]
- Ramírez-Hernández, A.; Arroyave, E.; Faccini-Martínez, Á.A.; Martínez-Diaz, H.C.; Betancourt-Ruiz, P.; Olaya-M, L.A.; Forero-Becerra, E.G.; Hidalgo, M.; Blanton, L.S.; Walker, D.H. Emerging Tickborne Bacteria in Cattle from Colombia. Emerg. Infect. Dis. 2022, 28, 2109–2111. [Google Scholar] [CrossRef]
- Marinkelle, C.J.; Grose, E.S. Species of Borrelia from a Colombian bat (Natalus tumidirostris). Nature 1968, 218, 487. [Google Scholar] [CrossRef] [PubMed]
- López, Y.; Muñoz-Leal, S.; Martínez, C.; Guzmán, C.; Calderón, A.; Martínez, J.; Galeano, K.; Muñoz, M.; Ramírez, J.D.; Faccini-Martínez, A.A.; et al. Molecular evidence of Borrelia spp. in bats from Córdoba department, northwest Colombia. Prepint paper. Res. Sq. 2022. [Google Scholar] [CrossRef]
- Carvajal-Agudelo, J.D.; Ramírez-Chaves, H.E.; Ossa-López, P.A.; Rivera-Páez, F.A. Bacteria related to tick-borne pathogen assemblages in Ornithodoros cf. hasei (Acari: Argasidae) and blood of the wild mammal hosts in the Orinoquia region, Colombia. Exp. Appl. Acarol. 2022, 87, 253–271. [Google Scholar] [CrossRef] [PubMed]
- Instituto Geográfico Agustín Codazzi. Caldas Aspectos Geográficos; Imprenta IGAC: Bogotá, Colombia, 1990.
- Corpocaldas. Plan de Acción. Corporación Autónoma Regional de Caldas. 2013. Available online: https://historico.corpocaldas.gov.co/publicaciones/331/PlanAccion2013-2015-VerDef-Web.pdf (accessed on 16 August 2022).
- Sikes, R.S.; The Animal Care and Use Committee of the American Society of Mammalogists. 2016 Guidelines of the American Society of Mammalogists for the use of wild mammals in research and education. J. Mammal. 2016, 97, 663–688. [Google Scholar] [CrossRef] [PubMed]
- Institutional Animal Care and Use Committee Guidelines and Policies. 2018. Available online: https://ursa.research.gsu.edu/files/2016/02/IACUC-Policies-and-Procedures.pdf (accessed on 16 August 2022).
- Gardner, A.L. (Ed.) Marsupials, Xenarthrans, Shrews, and Bats. In Mammals of South America; University of Chicago Press: Chicago, IL, USA, 2008; Volume 1, p. 690. [Google Scholar]
- Patton, J.L.; Pardiñas, U.F.J.; D’elía, G. (Eds.) Rodents. In Mammals of South America; The University of Chicago Press: Chicago, IL, USA, 2015; Volume 2, p. 1336. [Google Scholar]
- Farbehi, N.; Janbandhu, V.; Nordon, R.E.; Harvey, R.P. FACS Enrichment of Total Interstitial Cells and Fibroblasts from Adult Mouse Ventricles. Bio-protocol 2021, 11, e4028. [Google Scholar] [CrossRef]
- Stromdahl, E.Y.; Williamson, P.C.; Kollars, T.M., Jr.; Evans, S.R.; Barry, R.K.; Vince, M.A.; Dobbs, N.A. Evidence of Borrelia lonestari DNA in Amblyomma americanum (Acari: Ixodidae) removed from humans. J. Clin. Microbiol. 2003, 41, 5557–5562. [Google Scholar] [CrossRef] [Green Version]
- Drummond, A.J.; Ashton, B.; Cheung, M.; Heled, J.; Kearse, M.; Moir, R.; Stones-Havas, S.; Thierer, T.; Wilson, A. Geneious 8. 2009. Available online: http://www.geneious.com (accessed on 10 July 2022).
- Katoh, K.; Standley, D.M. MAFFT multiple sequence alignment software version 7: Improvements in performance and usability. Mol. Biol. Evol. 2013, 30, 772–780. [Google Scholar] [CrossRef] [Green Version]
- Kalyaanamoorthy, S.; Minh, B.Q.; Wong, T.K.F.; von Haeseler, A.; Jermiin, L.S. ModelFinder: Fast model selection for accurate phylogenetic estimates. Nat. Methods 2017, 14, 587–589. [Google Scholar] [CrossRef] [Green Version]
- Nguyen, L.T.; Schmidt, H.A.; Von Haeseler, A.; Minh, B.Q. IQ-TREE: A fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol. Biol. Evol. 2015, 32, 268–274. [Google Scholar] [CrossRef]
- Minh, B.Q.; Nguyen, M.A.T.; von Haeseler, A. Ultrafast approximation for phylogenetic bootstrap. Mol. Biol. Evol. 2013, 30, 1188–1195. [Google Scholar] [CrossRef] [Green Version]
- Guindon, S.; Dufayard, J.F.; Lefort, V.; Anisimova, M.; Hordijk, W.; Gascuel, O. New algorithms and methods to estimate maximum-likelihood phylogenies: Assessing the performance of PhyML 3.0. Syst. Biol. 2010, 59, 307–321. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, D.; Gao, F.; Jakovlić, I.; Zou, H.; Zhang, J.; Li, W.X.; Wang, G.T. PhyloSuite: An integrated and scalable desktop platform for streamlined molecular sequence data management and evolutionary phylogenetics studies. Mol. Ecol. Resour. 2020, 20, 348–355. [Google Scholar] [CrossRef] [PubMed]
- Rambaut, A. FigTree v1.4.3, A Graphical Viewer of Phylogenetic Trees. 2007. Available online: http://tree.bio.ed.ac.uk/software/figtree (accessed on 12 October 2022).
- Jolley, K.A.; Bray, J.E.; Maiden, M.C.J. Open-access bacterial population genomics: BIGSdb software, the PubMLST.org website and their applications. Wellcome Open Res. 2018, 24, 124. [Google Scholar] [CrossRef] [PubMed]
- Tamura, K.; Stecher, G.; Kumar, S. MEGA11: Molecular Evolutionary Genetics Analysis Version 11. Mol. Biol. Evol. 2021, 38, 3022–3027. [Google Scholar] [CrossRef] [PubMed]
- R Development Core Team. R: A Language and Environment for Statistical Computing, Reference Index Version 4.2.1; Foundation for Statistical Computing: Vienna, Austria, 2022; Available online: https://www.R-project.org/ (accessed on 8 August 2022).
- Robles, A.; Fong, J.; Cervantes, J. Borrelia Infection in Latin America. Rev. Investig. Clin. 2018, 70, 158–163. [Google Scholar] [CrossRef]
- Ivanova, L.B.; Tomova, A.; González-Acuña, D.; Murúa, R.; Moreno, C.X.; Hernández, C.; Cabello, J.; Cabello, C.; Daniels, T.J.; Godfrey, H.P.; et al. Borrelia chilensis, a new member of the Borrelia burgdorferi sensu lato complex that extends the range of this genospecies in the Southern Hemisphere. Environ. Microbiol. 2014, 6, 1069–1080. [Google Scholar] [CrossRef] [Green Version]
- Sebastian, P.S.; Bottero, M.N.S.; Carvalho, L.; Mackenstedt, U.; Lareschi, M.; Venzal, J.M.; Nava, S. Borrelia burgdorferi sensu lato in Ixodes cf. neuquenensis and Ixodes sigelos ticks from the Patagonian region of Argentina. Acta Trop. 2016, 162, 218–221. [Google Scholar] [CrossRef]
- Muñoz-Leal, S.; Ramirez, D.G.; Luz, H.R.; Faccini, J.L.; Labruna, M.B. “Candidatus Borrelia ibitipoquensis,” a Borrelia valaisiana–related genospecies characterized from Ixodes paranaensis in Brazil. Microb. Ecol. 2020, 80, 682–689. [Google Scholar] [CrossRef]
- Colunga-Salas, P.; Sánchez-Montes, S.; León-Paniagua, L.; Becker, I. Borrelia in neotropical bats: Detection of two new phylogenetic lineages. Ticks Tick Borne Dis. 2021, 12, 101642. [Google Scholar] [CrossRef]
- Jorge, F.R.; Muñoz-Leal, S.; de Oliveira, G.M.B.; Serpa, M.C.A.; Magalhães, M.M.L.; de Oliveira, L.M.B.; Moura, F.B.P.; Teixeira, B.M.; Labruna, M.B. Novel Borrelia Genotypes from Brazil Indicate a New Group of Borrelia spp. Associated with South American Bats. J. Med. Entomol. 2022, 68, 12–18. [Google Scholar] [CrossRef]
- Yoshinari, N.H.; Mantovani, E.; Bonoldi, V.L.N.; Marangoni, R.G.; Gauditano, G. Brazilian lyme-like disease or Baggio-Yoshinari syndrome: Exotic and emerging Brazilian tick-borne zoonosis. Rev. Assoc. Med. Bras. 2010, 56, 363–369. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yoshinari, N.H.; Bonoldi, V.L.N.; Bonin, S.; Falkingham, E.; Trevisan, G. The Current State of Knowledge on Baggio–Yoshinari Syndrome (Brazilian Lyme Disease-like Illness): Chronological Presentation of Historical and Scientific Events Observed over the Last 30 Years. Pathogens 2022, 11, 889. [Google Scholar] [CrossRef]
- Kneubehl, A.R.; Krishnavajhala, A.; Leal, S.M.; Replogle, A.J.; Kingry, L.C.; Bermúdez, S.E.; Labruna, M.B.; Lopez, J.E. Comparative genomics of the Western Hemisphere soft tick-borne relapsing fever borreliae highlights extensive plasmid diversity. BMC Genomics 2022, 23, 1–22. [Google Scholar] [CrossRef] [PubMed]
- Schwanz, L.E.; Voordouw, M.J.; Brisson, D.; Ostfeld, R.S. Borrelia burgdorferi has minimal impact on the Lyme disease reservoir host Peromyscus leucopus. Vector Borne Zoonotic Dis. 2011, 11, 117–124. [Google Scholar] [CrossRef] [Green Version]
- Wolcott, K.A.; Margos, G.; Fingerle, V.; Becker, N.S. Host association of Borrelia burgdorferi sensu lato: A review. Ticks Tick Borne Dis. 2021, 12, 101766. [Google Scholar] [CrossRef]
- Levine, J.F.; Wilson, M.L.; Spielman, A. Mice as reservoirs of the Lyme disease spirochete. Am. J. Trop. Med. Hyg. 1985, 34, 355–360. [Google Scholar] [CrossRef] [PubMed]
- Larson, R.T.; Bron, G.M.; Lee, X.; Zembsch, T.E.; Siy, P.N.; Paskewitz, S.M. Peromyscus maniculatus (Rodentia: Cricetidae): An overlooked reservoir of tick-borne pathogens in the Midwest, USA? Ecosphere 2021, 12, e03831. [Google Scholar] [CrossRef]
- Richter, D.; Schlee, D.B.; Matuschka, F.R. Reservoir competence of various rodents for the Lyme disease spirochete Borrelia spielmanii. Appl. Environ. Microbiol. 2011, 77, 3565–3570. [Google Scholar] [CrossRef] [Green Version]
- Solís-Hernández, A.; Rodríguez-Vivas, R.I.; Esteve-Gassent, M.D.; Villegas-Pérez, S.L. Prevalencia de Borrelia burgdorferi sensu lato en roedores sinantrópicos de dos comunidades rurales de Yucatán, México. Biomédica 2016, 36, 109–117. [Google Scholar] [CrossRef] [Green Version]
- Gebbia, J.A.; Monco, J.C.G.; Degen, J.L.; Bugge, T.H.; Benach, J.L. The plasminogen activation system enhances brain and heart invasion in murine relapsing fever borreliosis. J. Clin. Investig. 1999, 103, 81–87. [Google Scholar] [CrossRef] [Green Version]
- Larsson, C.; Andersson, M.; Pelkonen, J.; Guo, B.P.; Nordstrand, A.; Bergström, S. Persistent brain infection and disease reactivation in relapsing fever borreliosis. Microbes Infect. 2006, 8, 2213–2219. [Google Scholar] [CrossRef] [PubMed]
- Larsson, C.; Lundqvist, J.; Bergström, S. Residual brain infection in murine relapsing fever borreliosis can be successfully treated with ceftriaxone. Microb. Pathog. 2008, 44, 262–264. [Google Scholar] [CrossRef] [PubMed]
- Sethi, N.; Sondey, M.; Bai, Y.; Kim, K.S.; Cadavid, D. Interaction of a neurotropic strain of Borrelia turicatae with the cerebral microcirculation system. Infect. Immun. 2006, 74, 6408–6418. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zinck, C.B.; Lloyd, V.K. Borrelia burgdorferi and Borrelia miyamotoi in Atlantic Canadian wildlife. PLoS ONE 2022, 17, e0262229. [Google Scholar] [CrossRef] [PubMed]
- Ghasemi, A.; Naddaf, S.R.; Mahmoudi, A.; Rohani, M.; Naeimi, S.; Mordadi, A.; Cutler, S.J.; Mostafavi, E. Borrelia duttonii-like spirochetes parasitize Meriones persicus in East Azerbaijan Province of Iran. Ticks Tick Borne Dis. 2021, 12, 101825. [Google Scholar] [CrossRef] [PubMed]
- Hovius, K.E.; Stark, L.A.M.; Bleumink-Pluym, N.M.C.; Van De Pol, I.; Verbeek-de Kruif, N.; Rijpkema, S.G.T.; Schouls, L.M.; Houwers, D.J. Presence and distribution of Borrelia burgdorferi sensu lato species in internal organs and skin of naturally infected symptomatic and asymptomatic dogs, as detected by polymerase chain reaction. Vet. Q 1999, 21, 54–58. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Summers, B.A.; Straubinger, A.F.; Jacobson, R.H.; Chang, Y.F.; Appel, M.J.G.; Straubinger, R.K. Histopathological studies of experimental Lyme disease in the dog. J. Comp. Pathol. 2005, 133, 1–13. [Google Scholar] [CrossRef]
- Lee, W.Y.; Moriarty, T.J.; Wong, C.H.; Zhou, H.; Strieter, R.M.; Van Rooijen, N.; Chaconas, G.; Kubes, P. An intravascular immune response to Borrelia burgdorferi involves Kupffer cells and iNKT cells. Nat. Immunol. 2010, 11, 295–302. [Google Scholar] [CrossRef]
Municipality | Locality | Host Order | Host Family | Voucher Number MHN-UCa | Host’s Scientific Name | Infected Tissue | Accession Number | Closest Gen Bank Identity (Gene: Accession Number) | Borrelia Typing Database (Locus/Allele) |
---|---|---|---|---|---|---|---|---|---|
Manizales | Jardín Botánico, Universidad de Caldas | Chiroptera | Phyllostomidae | M 3826 | Artibeus lituratus | Blood | OP480442 | 99.64% Borrelia venezuelensis [flaB: MG651650] | BORR00725 (flaB)/53 |
M 3821 | Artibeus lituratus | Blood | OP480441 | 95.17%–96.24% Borrelia sp. Macaregua cave [flaB: MT154618] | /37 | ||||
Heart | OP480445 | /37 | |||||||
Kidney | OP480446 | /37 | |||||||
Lung | OP480447 | /37 | |||||||
Liver | OP480448 | /37 | |||||||
M 3820 | Artibeus lituratus | Heart | OP480454 | 95.75%–96.61% Borrelia sp. Macaregua cave [flaB: MT154618] | /37 | ||||
Kidney | OP480452 | /37 | |||||||
Lung | OP480453 | /37 | |||||||
M 3822 | Artibeus lituratus | Heart | OP480457 | 94.52%–95.21% Borrelia sp. Macaregua cave [flaB: MT154618] | /37 | ||||
Kidney | OP480455 | /37 | |||||||
Liver | OP480456 | /37 | |||||||
M 3825 | Artibeus lituratus | Kidney | OP480458 | 96.18% Borrelia sp. Macaregua cave [flaB: MT154618] | /37 | ||||
Norcasia | Vereda Las Delicias, Sector La Punta, Río Manso | M 3987 | Artibeus jamaicensis | Liver | OP480462 | 99.63% Borrelia venezuelensis [flaB: MG651650] | /53 | ||
Manizales | Jardín Botánico, Universidad de Caldas | M 3812 | Carollia brevicauda | Lung | OP480451 | 98.56% Borrelia sp. Macaregua cave [flaB: MT154618] | /37 | ||
Villamaría | Bosques de la CHEC | M 3529 | Sturnira erythromos | Lung | OP480450 | 96.32% Borrelia sp. Macaregua cave [flaB: MT154618] | /37 | ||
Norcasia | Vereda Las Delicias, Sector La Punta, Río Manso | M 3984 | Platyrrhinus helleri | Kidney | OP480459 | 99.62% Borrelia venezuelensis [flaB: MG651650] | /53 | ||
M 3981 | Mesophylla macconnelli | Liver | OP480460 | 99.28% Borrelia venezuelensis [flaB: MG651650] | /53 | ||||
Marsella * | Rio Cauca, túnel La Mica | M 3635 | Glossophaga soricina | Blood | OP480443 | 95.19% Borrelia sp. Macaregua cave [flaB: MT154618] | /29 | ||
Norcasia | Vereda Las Delicias, Sector La Punta, Río Manso | Emballonuridae | M 3970 | Rhynchonycteris naso | Liver | OP480461 | 99.65% Borrelia venezuelensis [flaB: MG651650] | /53 | |
Manizales | Vía Viveros, Ecoparque Los Yarumos | Rodentia | Erethizontidae | M 3423 | Coendou rufescens | Liver | OP480444 | 99.19% Borrelia turicatae [flaB: MH632129] | /53 |
Villamaría | Sector Santa Bárbara, Finca El Edén | Cricetidae | M 3613 | Microryzomys altissimus | Brain | OP480449 | 99.61% Borrelia venezuelensis [flaB: MG651650] | /53 | |
M 3616 | Thomasomys aureus | Lung | OP491408 | 99.64% Borrelia burgdorferi [complete genome: CP002228; flaB: AY374137] | /62 | ||||
Muridae | M 3605 | Mus musculus | Blood | OP491407 | 100% Borrelia burgdorferi [complete genome: CP002228; flaB: AY374137] | /62 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mancilla-Agrono, L.Y.; Banguero-Micolta, L.F.; Ossa-López, P.A.; Ramírez-Chaves, H.E.; Castaño-Villa, G.J.; Rivera-Páez, F.A. Is Borrelia burgdorferi Sensu Stricto in South America? First Molecular Evidence of Its Presence in Colombia. Trop. Med. Infect. Dis. 2022, 7, 428. https://doi.org/10.3390/tropicalmed7120428
Mancilla-Agrono LY, Banguero-Micolta LF, Ossa-López PA, Ramírez-Chaves HE, Castaño-Villa GJ, Rivera-Páez FA. Is Borrelia burgdorferi Sensu Stricto in South America? First Molecular Evidence of Its Presence in Colombia. Tropical Medicine and Infectious Disease. 2022; 7(12):428. https://doi.org/10.3390/tropicalmed7120428
Chicago/Turabian StyleMancilla-Agrono, Lorys Y., Lizeth F. Banguero-Micolta, Paula A. Ossa-López, Héctor E. Ramírez-Chaves, Gabriel J. Castaño-Villa, and Fredy A. Rivera-Páez. 2022. "Is Borrelia burgdorferi Sensu Stricto in South America? First Molecular Evidence of Its Presence in Colombia" Tropical Medicine and Infectious Disease 7, no. 12: 428. https://doi.org/10.3390/tropicalmed7120428
APA StyleMancilla-Agrono, L. Y., Banguero-Micolta, L. F., Ossa-López, P. A., Ramírez-Chaves, H. E., Castaño-Villa, G. J., & Rivera-Páez, F. A. (2022). Is Borrelia burgdorferi Sensu Stricto in South America? First Molecular Evidence of Its Presence in Colombia. Tropical Medicine and Infectious Disease, 7(12), 428. https://doi.org/10.3390/tropicalmed7120428