The Biological and Clinical Aspects of a Latent Tuberculosis Infection
Abstract
:1. Introduction
2. Persisters and Acquired Phenotypic Insusceptibility
3. Forms of Inactive Mtb
4. Regulation of Mtb Dormancy
5. Latent TB Infection
6. Risk Factors for LTBI
- (1)
- If they have both a positive (IGRA) test and a positive tuberculin skin test (TST) and are in contact with TB patients;
- (2)
- If they have a negative IGRA, but their TST size is larger than 5 mm, and they are in close contact with TB patients (when the source of infection excretes Mtb, and a contact was vaccinated with bacille Calmette-Guerin (BCG)) or when the TST size is larger than 15 mm (when the source of infection does not excrete Mtb, and a contact was vaccinated with BCG);
- (3)
- If they have a negative IGRA and their TST size is smaller than 10 mm, but their TST size increases and becomes larger than 10 mm (the difference is not less than 6 mm);
- (4)
- If they have a negative IGRA and positive TST (when the TST size is greater than or equal to 10 mm without BCG vaccination, or TST is greater than or equal to 15 mm in case of BCG vaccination).
7. LTBI Diagnosis
8. Chemoprophylaxis
9. The Controversy of LTBI Diagnosis, Adaptive Immunity, and Chemoprophylaxis Prescription
10. Transcriptomic Analyses as a Promising Tool for LTBI and TB Reactivation Diagnoses
11. Concluding Remarks
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Behr, M.A.; Edelstein, P.H.; Ramakrishnan, L. Revisiting the Timetable of Tuberculosis. BMJ 2018, 362, k2738. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- World Health Organization. Latent Tuberculosis Infection—Executive Summary; World Health Organization: Geneva, Switzerland, 2018; Available online: https://www.who.int/tb/publications/2018/executivesummary_consolidated_guidelines_ltbi.pdf?ua=1 (accessed on 15 December 2021).
- Alzahabi, K.H.; Usmani, O.; Georgiou, T.K.; Ryan, M.P.; Robertson, B.D.; Tetley, T.D.; Porter, A.E. Approaches to Treating Tuberculosis by Encapsulating Metal Ions and Anti-Mycobacterial Drugs Utilizing Nano- and Microparticle Technologies. Emerg. Top. Life Sci. 2020, 4, 581–600. [Google Scholar] [CrossRef]
- Hasnain, S.E.; Ehtesham, N.Z.; Grover, S. Mycobacterium tuberculosis: Molecular Infection Biology, Pathogenesis, Diagnostics and New Interventions; Springer: Berlin, Germany, 2019; ISBN 9789813294134. [Google Scholar]
- Rittershaus, E.S.C.C.; Baek, S.H.; Sassetti, C.M. The Normalcy of Dormancy: Common Themes in Microbial Quiescence. Cell Host Microbe 2013, 13, 643–651. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Golchin, S.A.; Stratford, J.; Curry, R.J.; McFadden, J. A Microfluidic System for Long-Term Time-Lapse Microscopy Studies of Mycobacteria. Tuberculosis 2012, 92, 489–496. [Google Scholar] [CrossRef] [PubMed]
- Eitson, J.L.; Medeiros, J.J.; Hoover, A.R.; Srivastava, S.; Roybal, K.T.; Aínsa, J.A.; Hansen, E.J.; Gumbo, T.; Van Oersa, N.S.C. Mycobacterial Shuttle Vectors Designed for High-Level Protein Expression in Infected Macrophages. Appl. Environ. Microbiol. 2012, 78, 6829–6837. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fisher, R.A.; Gollan, B.; Helaine, S. Persistent Bacterial Infections and Persister Cells. Nat. Rev. Microbiol. 2017, 15, 453–464. [Google Scholar] [CrossRef]
- Peddireddy, V.; Doddam, S.N.; Ahmed, N. Mycobacterial Dormancy Systems and Host Responses in Tuberculosis. Front. Immunol. 2017, 8, 00084. [Google Scholar] [CrossRef] [Green Version]
- Bigger, J.W. Treatment of Staphylococcal Infections with Penicillin by Intermittent Sterilisation. Lancet 1944, 244, 497–500. [Google Scholar] [CrossRef]
- Allison, K.R.; Brynildsen, M.P.; Collins, J.J. Heterogeneous Bacterial Persisters and Engineering Approaches to Eliminate Them. Curr. Opin. Microbiol. 2011, 14, 593–598. [Google Scholar] [CrossRef] [Green Version]
- Jung, S.H.; Ryu, C.M.; Kim, J.S. Bacterial Persistence: Fundamentals and Clinical Importance. J. Microbiol. 2019, 57, 829–835. [Google Scholar] [CrossRef]
- Ghosh, A.; Saran, N.; Saha, S. Survey of Drug Resistance Associated Gene Mutations in Mycobacterium tuberculosis, ESKAPE and Other Bacterial Species. Sci. Rep. 2020, 10, 8957. [Google Scholar] [CrossRef] [PubMed]
- Schön, T.; Miotto, P.; Köser, C.U.; Viveiros, M.; Böttger, E.; Cambau, E. Mycobacterium tuberculosis Drug-Resistance Testing: Challenges, Recent Developments and Perspectives. Clin. Microbiol. Infect. 2017, 23, 154–160. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Khlebodarova, T.M.; Likhoshvai, V.A. Persister Cells—A Plausible Outcome of Neutral Coevolutionary Drift. Sci. Rep. 2018, 8, 14309. [Google Scholar] [CrossRef]
- Urbaniec, J.; Xu, Y.; Hu, Y.; Hingley-Wilson, S.; McFadden, J. Phenotypic Heterogeneity in Persisters: A Novel ‘Hunker’ Theory of Persistence. FEMS Microbiol. Rev. 2022, 46, fuab042. [Google Scholar] [CrossRef] [PubMed]
- Sebastian, J.; Nair, R.R.; Swaminath, S.; Ajitkumar, P. Mycobacterium tuberculosis Cells Surviving in the Continued Presence of Bactericidal Concentrations of Rifampicin in Vitro Develop Negatively Charged Thickened Capsular Outer Layer That Restricts Permeability to the Antibiotic. Front. Microbiol. 2020, 11, 554795. [Google Scholar] [CrossRef] [PubMed]
- Dupuy, P.; Howlader, M.; Glickman, M.S. A Multilayered Repair System Protects the Mycobacterial Chromosome from Endogenous and Antibiotic-Induced Oxidative Damage. Proc. Natl. Acad. Sci. USA 2020, 117, 19517–19527. [Google Scholar] [CrossRef] [PubMed]
- Mandal, S.; Njikan, S.; Kumar, A.; Early, J.V.; Parish, T. The Relevance of Persisters in Tuberculosis Drug Discovery. Microbiology 2019, 165, 492–499. [Google Scholar] [CrossRef] [PubMed]
- Sebastian, J.; Swaminath, S.; Nair, R.R.; Jakkala, K.; Pradhan, A. De Novo Emergence of Genetically Resistant Mutants of Mycobacterium tuberculosis from the Persistence Phase Cells Formed against Antituberculosis Drugs In Vitro. Antimicrob. Agents Chemother. 2017, 61, e01343-16. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Levin, B.R.; Rozen, D.E. Non-Inherited Antibiotic Resistance. Nat. Rev. Microbiol. 2006, 4, 556–562. [Google Scholar] [CrossRef]
- Aldridge, B.B.; Fernandez-Suarez, M.; Heller, D.; Ambravaneswaran, V.; Irimia, D.; Toner, M.; Fortune, S.M. Asymmetry and Aging of Mycobacterial Cells Lead to Variable Growth and Antibiotic Susceptibility. Science 2012, 335, 100–104. [Google Scholar] [CrossRef] [Green Version]
- Rego, E.H.; Audette, R.E.; Rubin, E.J. Deletion of a mycobacterial divisome factor collapses single-cell phenotypic heterogeneity. Nature 2017, 546, 153–157. [Google Scholar] [CrossRef] [PubMed]
- Sakatos, A.; Babunovic, G.H.; Chase, M.R.; Dills, A.; Leszyk, J.; Rosebrock, T.; Bryson, B.; Fortune, S.M. Posttranslational Modification of a Histone-like Protein Regulates Phenotypic Resistance to Isoniazid in Mycobacteria. Sci. Adv. 2018, 4. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Javid, B.; Sorrentino, F.; Toosky, M.; Zheng, W.; Pinkham, J.T.; Jain, N.; Pan, M.; Deighan, P.; Rubin, E.J. Mycobacterial Mistranslation Is Necessary and Sufficient for Rifampicin Phenotypic Resistance. Proc. Natl. Acad. Sci. USA 2014, 111, 1132–1137. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chionh, Y.H.; McBee, M.; Babu, I.R.; Hia, F.; Lin, W.; Zhao, W.; Cao, J.; Dziergowska, A.; Malkiewicz, A.; Begley, T.J.; et al. TRNA-Mediated Codon-Biased Translation in Mycobacterial Hypoxic Persistence. Nat. Commun. 2016, 7, 13302. [Google Scholar] [CrossRef] [Green Version]
- Su, H.; Zhu, J.; Li, H.; Cai, R.; Ealand, C.; Wang, X.; Chen, Y.; Kayani, R.; Zhu, T.F.; Moradigaravand, D.; et al. The Essential Mycobacterial Amidotransferase GatCAB Is a Modulator of Specific Translational Fidelity. Nat. Microbiol. 2016, 1. [Google Scholar] [CrossRef]
- Ou, X.; Cao, J.; Cheng, A.; Peppelenbosch, M.P.; Pan, Q. Errors in Translational Decoding: TRNA Wobbling or Misincorporation? PLoS Genet. 2019, 15, e1008017. [Google Scholar] [CrossRef] [Green Version]
- Pai, M.; Sotgiu, G. Diagnostics for Latent TB Infection: Incremental, Not Transformative Progress. Eur. Respir. J. 2016, 47, 704–706. [Google Scholar] [CrossRef] [Green Version]
- Barry, C.E.; Boshoff, H.I.; Dartois, V.; Dick, T.; Ehrt, S.; Flynn, J.; Schnappinger, D.; Wilkinson, R.J.; Young, D. The Spectrum of Latent Tuberculosis: Rethinking the Goals of Prophylaxis. Nat. Rev. Microbiol. 2009, 7, 845–855. [Google Scholar] [CrossRef]
- Schwander, S.; Dheda, K. Human Lung Immunity against Mycobacterium tuberculosis: Insights into Pathogenesis and Protection. Am. J. Respir. Crit. Care Med. 2011, 183, 696–707. [Google Scholar] [CrossRef] [Green Version]
- Mayito, J.; Andia, I.; Belay, M.; Jolliffe, D.A.; Kateete, D.P.; Reece, S.T.; Martineau, A.R. Anatomic and Cellular Niches for Mycobacterium Tuberculosis in Latent Tuberculosis Infection. J. Inf. Dis. 2019, 219, 685–694. [Google Scholar] [CrossRef] [Green Version]
- Chao, M.C.; Rubin, E.J. Letting Sleeping Dos Lie: Does Dormancy Play a Role in Tuberculosis? Annu. Rev. Microbiol. 2010, 64, 293–311. [Google Scholar] [CrossRef] [PubMed]
- Markova, N.; Michailova, L.; Jourdanova, M.; Kussovski, V.; Valcheva, V.; Mokrousov, I.; Radoucheva, T. Exhibition of Persistent and Drug-Tolerant L-Form Habit of Mycobacterium tuberculosis during Infection in Rats. Cent. Eur. J. Biol. 2008, 3, 407–416. [Google Scholar] [CrossRef]
- Markova, N.; Michailova, L.; Kussovski, V.; Jourdanova, M. Formation of Persisting Cell Wall Deficient Forms of Mycobacterium Bovis BCG during Interaction with Peritoneal Macrophages in Guinea Pigs. Electron. J. Biol. 2008, 4, 1–10. [Google Scholar]
- Markova, N.; Slavchev, G.; Michailova, L. Unique Biological Properties of Mycobacterium tuberculosis L-Form Variants: Impact for Survival under Stress. Int. Microbiol. 2012, 15, 61–68. [Google Scholar] [CrossRef]
- Markova, N.; Slavchev, G.; Michailova, L. Filterable Forms and L-Forms of Mycobacterium Bovis BCG: Impact for Live Vaccine Features. Hum. Vaccines Immunother. 2012, 8, 759–764. [Google Scholar] [CrossRef] [Green Version]
- Markova, N. Cell Wall Deficiency in Mycobacteria: Latency and Persistence. Underst. Tuberc.—Deciphering Secret Life Bacilli 2012, 193–216. [Google Scholar] [CrossRef] [Green Version]
- Mattman, L.H. Cell Wall Deficient Forms, 3rd ed.; CRC Press: Boca Raton, FL, USA, 2001; ISBN 9781482275216. [Google Scholar] [CrossRef]
- Piccaro, G.; Poce, G.; Biava, M.; Giannoni, F.; Fattorini, L. Activity of Lipophilic and Hydrophilic Drugs against Dormant and Replicating Mycobacterium tuberculosis. J. Antibiot. 2015, 68, 711–714. [Google Scholar] [CrossRef] [Green Version]
- Slavchev, G.; Michailova, L.; Markova, N. L-Form Transformation Phenomenon in Mycobacterium tuberculosis Associated with Drug Tolerance to Ethambutol. Int. J. Mycobacteriol. 2016, 5, 454–459. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y. Persistent and Dormant Tubercle Bacilli and Latent Tuberculosis. Front. Biosci. 2004, 9, 1136–1156. [Google Scholar] [CrossRef] [Green Version]
- Velayati, A.A.; Farnia, P.; Masjedi, M.R.; Zhavnerko, G.K.; Merza, M.A.; Ghanavi, J.; Tabarsi, P.; Farnia, P.; Poleschuyk, N.N.; Ignatyev, G. Sequential Adaptation in Latent Tuberculosis Bacilli: Observation by Atomic Force Microscopy (AFM). Int. J. Clin. Exp. Med. 2011, 4, 193–199. [Google Scholar]
- Gengenbacher, M.; Kaufmann, S.H.E.E. Mycobacterium tuberculosis: Success through Dormancy. FEMS Microbiol. Rev. 2012, 36, 514–532. [Google Scholar] [CrossRef] [Green Version]
- Gopinath, V.; Raghunandanan, S.; Gomez, R.L.; Jose, L.; Surendran, A.; Ramachandran, R.; Pushparajan, A.R.; Mundayoor, S.; Jaleel, A.; Kumar, R.A. Profiling the Proteome of Mycobacterium tuberculosis during Dormancy and Reactivation. Mol. Cell. Proteom. 2015, 14, 2160–2176. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Karakousis, P.C.; Williams, E.P.; Bishai, W.R. Altered Expression of Isoniazid-Regulated Genes in Drug-Treated Dormant Mycobacterium tuberculosis. J. Antimicr. Chemother. 2008, 61, 323–331. [Google Scholar] [CrossRef] [Green Version]
- Raghunandanan, S.; Jose, L.; Kumar, R.A. Dormant Mycobacterium tuberculosis Converts Isoniazid to the Active Drug in a Wayne’s Model of Dormancy. J. Antibiot. 2018, 71, 939–949. [Google Scholar] [CrossRef]
- Colangeli, R.; Arcus, V.L.; Cursons, R.T.; Ruthe, A.; Karalus, N.; Coley, K.; Manning, S.D.; Kim, S.; Marchiano, E.; Alland, D. Whole Genome Sequencing of Mycobacterium tuberculosis Reveals Slow Growth and Low Mutation Rates during Latent Infections in Humans. PLoS ONE 2014, 9, e0091024. [Google Scholar] [CrossRef] [PubMed]
- Colangeli, R.; Gupta, A.; Vinhas, S.A.; Chippada Venkata, U.D.; Kim, S.; Grady, C.; Jones-López, E.C.; Soteropoulos, P.; Palaci, M.; Marques-Rodrigues, P.; et al. Mycobacterium tuberculosis Progresses through Two Phases of Latent Infection in Humans. Nat. Commun. 2020, 11, 4870. [Google Scholar] [CrossRef] [PubMed]
- Campaniço, A.; Harjivan, S.G.; Warner, D.F.; Moreira, R.; Lopes, F. Addressing Latent Tuberculosis: New Advances in Mimicking the Disease, Discovering Key Targets, and Designing Hit Compounds. Int. J. Mol. Sci. 2020, 21, 8854. [Google Scholar] [CrossRef] [PubMed]
- Ford, C.B.; Lin, P.L.; Chase, M.R.; Shah, R.R.; Iartchouk, O.; Galagan, J.; Mohaideen, N.; Ioerger, T.R.; Sacchettini, J.C.; Lipsitch, M.; et al. Use of Whole Genome Sequencing to Estimate the Mutation Rate of Mycobacterium tuberculosis during Latent Infection. Nat. Genet. 2011, 43, 482–488. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cambier, C.J.; Takaki, K.K.; Larson, R.P.; Hernandez, R.E.; Tobin, D.M.; Urdahl, K.B.; Cosma, C.L.; Ramakrishnan, L. Mycobacteria Manipulate Macrophage Recruitment through Coordinated Use of Membrane Lipids. Nature 2014, 505, 218–222. [Google Scholar] [CrossRef] [Green Version]
- Huaman, M.A.; Henson, D.; Rondan, P.L.; Ticona, E.; Miranda, G.; Kryscio, R.J.; Mugruza, R.; Aranda, E.; Ticona, C.; Abarca, S.; et al. Latent Tuberculosis Infection Is Associated with Increased Unstimulated Levels of Interferon-Gamma in Lima, Peru. PLoS ONE 2018, 13, e0202191. [Google Scholar] [CrossRef]
- Park, H.D.; Guinn, K.M.; Harrell, M.I.; Liao, R.; Voskuil, M.I.; Tompa, M.; Schoolnik, G.K.; Sherman, D.R. Rv3133c/DosR Is a Transcription Factor That Mediates the Hypoxic Response of Mycobacterium tuberculosis. Mol. Microbiol. 2003, 48, 833–843. [Google Scholar] [CrossRef] [Green Version]
- Rustad, T.R.; Harrell, M.I.; Liao, R.; Sherman, D.R. The Enduring Hypoxic Response of Mycobacterium tuberculosis. PLoS ONE 2008, 3, e0001502. [Google Scholar] [CrossRef] [PubMed]
- Schnappinger, D.; Ehrt, S.; Voskuil, M.I.; Liu, Y.; Mangan, J.A.; Monahan, I.M.; Dolganov, G.; Efron, B.; Butcher, P.D.; Nathan, C.; et al. Transcriptional Adaptation of Mycobacterium tuberculosis within Macrophages: Insights into the Phagosomal Environment. J. Exp. Med. 2003, 198, 693–704. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Karakousis, P.C.; Yoshimatsu, T.; Lamichhane, G.; Woolwine, S.C.; Nuermberger, E.L.; Grosset, J.; Bishai, W.R. Dormancy Phenotype Displayed by Extracellular Mycobacterium tuberculosis within Artificial Granulomas in Mice. J. Exp. Med. 2004, 200, 647–657. [Google Scholar] [CrossRef] [PubMed]
- Sharma, D.; Bose, A.; Shakila, H.; Das, T.K.; Tyagi, J.S.; Ramanathan, V.D. Expression of Mycobacterial Cell Division Protein, FtsZ, and Dormancy Proteins, DevR and Acr, within Lung Granulomas throughout Guinea Pig Infection. FEMS Immunol. Med. Microbiol. 2006, 48, 329–336. [Google Scholar] [CrossRef] [Green Version]
- Malhotra, V.; Tyagi, J.S.; Clark-Curtiss, J.E. DevR-Mediated Adaptive Response in Mycobacterium tuberculosis H37Ra: Links to Asparagine Metabolism. Tuberculosis 2009, 89, 169–174. [Google Scholar] [CrossRef] [Green Version]
- Minch, K.; Rustad, T.; Sherman, D.R. Mycobacterium tuberculosis Growth Following Aerobic Expression of the DosR Regulon. PLoS ONE 2012, 7, e0035935. [Google Scholar] [CrossRef] [Green Version]
- Peterson, E.J.R.; Abidi, A.A.; Arrieta-Ortiz, M.L.; Aguilar, B.; Yurkovich, J.T.; Kaur, A.; Pan, M.; Srinivas, V.; Shmulevich, I.; Baliga, N.S. Intricate Genetic Programs Controlling Dormancy in Mycobacterium tuberculosis. Cell Rep. 2020, 31, 107577. [Google Scholar] [CrossRef]
- Ignatov, D.V.; Salina, E.G.; Fursov, M.V.; Skvortsov, T.A.; Azhikina, T.L.; Kaprelyants, A.S. Dormant Non-Culturable Mycobacterium tuberculosis Retains Stable Low-Abundant MRNA. BMC Genomics 2015, 16, 954. [Google Scholar] [CrossRef] [Green Version]
- Ostrik, A.A.; Salina, E.G.; Skvortsova, Y.V.; Grigorov, A.S.; Bychenko, O.S.; Kaprelyants, A.S.; Azhikina, T.L. Small RNAs of Mycobacterium tuberculosis in Adaptation to Host-Like Stress Conditions in Vitro. Appl. Biochem. Microbiol. 2020, 56, 381–386. [Google Scholar] [CrossRef]
- Girardin, R.C.; Bai, G.; He, J.; Sui, H.; McDonough, K.A. AbmR (Rv1265) Is a Novel Transcription Factor of Mycobacterium tuberculosis That Regulates Host Cell Association and Expression of the Non-Coding Small RNA Mcr11. Mol. Microbiol. 2018, 110, 811–830. [Google Scholar] [CrossRef] [Green Version]
- Girardin, R.C.; McDonough, K.A. Small RNA Mcr11 Requires the Transcription Factor AbmR for Stable Expression and Regulates Genes Involved in the Central Metabolism of Mycobacterium tuberculosis. Mol. Microbiol. 2020, 113, 504–520. [Google Scholar] [CrossRef]
- Drain, P.K.; Bajema, K.L.; Dowdy, D.; Dheda, K.; Naidoo, K.; Schumacher, S.G.; Ma, S.; Meermeier, E.; Lewinsohn, D.M.; Sherman, D.R. Incipient and Subclinical Tuberculosis: A Clinical Review of Early Stages and Progression of Infection. Clin. Microbiol. Rev. 2018, 31, e00021-18. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Harriff, M.J.; Purdy, G.E.; Lewinsohn, D.M. Escape from the Phagosome: The Explanation for MHC-I Processing of Mycobacterial Antigens? Front. Immunol. 2012, 3, 00040. [Google Scholar] [CrossRef] [Green Version]
- Hunter, R.L. Pathology of Post Primary Tuberculosis of the Lung: An Illustrated Critical Review. Tuberculosis 2011, 91, 497–509. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hunter, R.L. Tuberculosis as a Three-Act Play: A New Paradigm for the Pathogenesis of Pulmonary Tuberculosis. Tuberculosis 2016, 97, 8–17. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gupta, A.; Kaul, A.; Tsolaki, A.G.; Kishore, U.; Bhakta, S. Mycobacterium tuberculosis: Immune Evasion, Latency and Reactivation. Immunobiology 2012, 217, 363–374. [Google Scholar] [CrossRef]
- Cadena, A.M.; Fortune, S.M.; Flynn, J.L. Heterogeneity in Tuberculosis. Nat. Rev. Immunol. 2017, 17, 691–702. [Google Scholar] [CrossRef]
- Esmail, H.; Lai, R.P.; Lesosky, M.; Wilkinson, K.A.; Graham, C.M.; Coussens, A.K.; Oni, T.; Warwick, J.M.; Said-hartley, Q.; Koegelenberg, C.F.; et al. Brief communications Characterization of Progressive. Nat. Med. 2016, 22, 8–13. [Google Scholar] [CrossRef] [Green Version]
- Serra-Vidal, M.M.; Latorre, I.; Franken, K.L.C.M.; Díaz, J.; de Souza-Galvão, M.L.; Casas, I.; Maldonado, J.; Milà, C.; Solsona, J.; Jimenez-Fuentes, M.Á.; et al. Immunogenicity of 60 Novel Latency-Related Antigens of Mycobacterium tuberculosis. Front. Microbiol. 2014, 5, 00517. [Google Scholar] [CrossRef]
- Auguste, P.; Tsertsvadze, A.; Pink, J.; Court, R.; Mccarthy, N.; Sutcliffe, P.; Clarke, A. Comparing Interferon-Gamma Release Assays with Tuberculin Skin Test for Identifying Latent Tuberculosis Infection That Progresses to Active Tuberculosis: Systematic Review and Meta-Analysis. BMC Infec. Dis. 2017, 17, 200. [Google Scholar] [CrossRef] [Green Version]
- Lalvani, A.; Pareek, M. A 100 Year Update on Diagnosis of Tuberculosis Infection. Br. Med. Bull. 2010, 93, 69–84. [Google Scholar] [CrossRef] [PubMed]
- Mack, U.; Migliori, G.B.; Sester, M.; Rieder, H.L.; Ehlers, S.; Goletti, D.; Bossink, A.; Magdorf, K.; Holscher, C.; Kampmann, B.; et al. LTBI: Latent Tuberculosis Infection or Lasting Immune Responses to M. Tuberculosis? A TBNET Consensus Statement. Eur. Respir. J. 2009, 33, 956–973. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mazurek, G.H.; Jereb, J.; Vernon, A.; LoBue, P.; Goldberg, S.; Castro, K. Updated Guidelines for Using Interferon Gamma Release Assays to Detect Mycobacterium tuberculosis Infection—United States; Department of Health and Human Services, Centers for Disease Control and Prevention: Atlanta, GA, USA, 2010.
- Ai, J.W.; Ruan, Q.L.; Liu, Q.H.; Zhang, W.H. Updates on the Risk Factors for Latent Tuberculosis Reactivation and Their Managements. Emerg. Microbes Infect. 2016, 5, e10. [Google Scholar] [CrossRef] [PubMed]
- Kuroda, M.J.; Sugimoto, C.; Cai, Y.; Merino, K.M.; Mehra, S.; Araínga, M.; Roy, C.J.; Midkiff, C.C.; Alvarez, X.; Didier, E.S.; et al. High Turnover of Tissue Macrophages Contributes to Tuberculosis Reactivation in Simian Immunodeficiency Virus-Infected Rhesus Macaques. J. Inf. Dis. 2018, 70433, 1865–1874. [Google Scholar] [CrossRef] [PubMed]
- Sterling, T.R.; Lin, P.L.; Sterling, T.R.; Lin, P.L. Treatment of Latent M. Tuberculosis Infection and Use of Antiretroviral Therapy to Prevent Tuberculosis Treatment of Latent M. Tuberculosis Infection and Use of Antiretroviral Therapy to Prevent Tuberculosis. J. Clin. Investig. 2020, 130, 5102–5104. [Google Scholar] [CrossRef]
- Tobin, D.M.; Roca, F.J.; Oh, S.F.; Mcfarland, R.; Vickery, T.W.; Ray, J.P.; Ko, D.C.; Zou, Y.; Bang, N.D.; Chau, T.T.H.H.; et al. Host Genotype-Specific Therapies Can Optimize the Inflammatory Response to Mycobacterial Infections. Cell 2012, 148, 434–446. [Google Scholar] [CrossRef] [Green Version]
- Mamishi, S.; Pourakbari, B.; Marjani, M.; Mahmoudi, S. Diagnosis of Latent Tuberculosis Infection among Immunodeficient Individuals: Review of Concordance between Interferon-γ Release Assays and the Tuberculin Skin Test. Br. J. Biomed. Sci. 2014, 71, 115–124. [Google Scholar] [CrossRef]
- Carranza, C.; Pedraza-Sanchez, S.; de Oyarzabal-Mendez, E.; Torres, M. Diagnosis for Latent Tuberculosis Infection: New Alternatives. Front. Immunol. 2020, 11, 02006. [Google Scholar] [CrossRef]
- Doan, T.N.; Eisen, D.P.; Rose, M.T.; Slack, A.; Stearnes, G.; Mcbryde, E.S. Interferon-Gamma Release Assay for the Diagnosis of Latent Tuberculosis Infection: A Latent-Class Analysis. PLoS ONE 2017, 12, e0188631. [Google Scholar] [CrossRef] [Green Version]
- Lin, W.C.; Lin, H.H.; Lee, S.S.J.; Sy, C.L.; Wu, K.S.; Chen, J.K.; Tsai, H.C.; Chen, Y.S. Prevalence of Latent Tuberculosis Infection in Persons with and without Human Immunodeficiency Virus Infection Using Two Interferon-Gamma Release Assays and Tuberculin Skin Test in a Low Human Immunodeficiency Virus Prevalence, Intermediate Tuberculosis-B. J. Microbiol. Immunol. Infect. 2016, 49, 729–736. [Google Scholar] [CrossRef] [Green Version]
- Anton, C.; Machado, F.D.; Ramirez, J.M.A.; Bernardi, R.M.; Palominos, P.E.; Brenol, C.V.; Mello, F.C.d.; Silva, D.R. Latent tuberculosis infection in patients with rheumatic diseases. J Bras. Pneumol. 2019, 45, e20190023. [Google Scholar] [CrossRef] [PubMed]
- Petrelli, A.; Van Wijk, F. CD8+ T Cells in Human Autoimmune Arthritis: The Unusual Suspects. Nat. Rev. Rheumatol. 2016, 12, 421–428. [Google Scholar] [CrossRef] [PubMed]
- Campbell, J.R.; Krot, J.; Elwood, K.; Cook, V.; Marra, F. A Systematic Review on TST and IGRA Tests Used for Diagnosis of LTBI in Immigrants. Mol. Diagnosis Ther. 2015, 19, 9–24. [Google Scholar] [CrossRef] [PubMed]
- Sollai, S.; Galli, L.; de Martino, M.; Chiappini, E. Systematic Review and Meta-Analysis on the Utility of Interferon-Gamma Release Assays for the Diagnosis of Mycobacterium tuberculosis Infection in Children: A 2013 Update. BMC Infect. Dis. 2014, 14, S6. [Google Scholar] [CrossRef] [Green Version]
- Takasaki, J.; Manabe, T.; Morino, E.; Muto, Y.; Hashimoto, M.; Iikura, M.; Izumi, S.; Sugiyama, H.; Kudo, K. Sensitivity and Specificity of QuantiFERON-TB Gold Plus Compared with QuantiFERON-TB Gold In-Tube and T-SPOT.TB on Active Tuberculosis in Japan. J. Infect. Chemother. 2018, 24, 188–192. [Google Scholar] [CrossRef]
- Behr, M.A.; Edelstein, P.H.; Ramakrishnan, L. Is Mycobacterium tuberculosis Infection Life Long? BMJ 2019, 367, l5770. [Google Scholar] [CrossRef] [Green Version]
- Shen, Y.; Ma, H.; Luo, D.; Cai, J.; Zou, J.; Bao, Z.; Guan, J. Behçet’s Disease with Latent Mycobacterium tuberculosis Infection. Open Med. 2020, 16, 14–22. [Google Scholar] [CrossRef]
- Aebersold, R.; Young, D.B. Resource Genome-Wide Mapping of Transcriptional Start Sites Defines an Extensive Leaderless Transcriptome in Mycobacterium tuberculosis. Cell Rep. 2013, 5, 1121–1131. [Google Scholar] [CrossRef] [Green Version]
- Cortes, T.; Schubert, O.T.; Banaei-esfahani, A.; Collins, B.C.; Aebersold, R.; Young, D.B. Delayed Effects of Transcriptional Responses in Mycobacterium tuberculosis Exposed to Nitric Oxide Suggest Other Mechanisms Involved in Survival. Sci. Rep. 2017, 7, 8208. [Google Scholar] [CrossRef] [Green Version]
- Coppola, M.; Van Meijgaarden, K.E.; Franken, K.L.M.C.; Comas, I.; Lund, O.; Prins, C.; Van Den Eeden, S.J.F.; Korsvold, G.E. New Genome-Wide Algorithm Identifies Novel In-Vivo Expressed Mycobacterium tuberculosis Antigens Inducing Human T-Cell Responses with Classical and Unconventional Cytokine Profiles. Sci. Rep. 2016, 6, 37793. [Google Scholar] [CrossRef] [Green Version]
- Schuck, S.D.; Mueller, H.; Kunitz, F.; Neher, A.; Hoffmann, H.; Kees, L.C.M.; Repsilber, D.; Ottenhoff, T.H.M.; Kaufmann, S.H.E.; Jacobsen, M. Identification of T-Cell Antigens Specific for Latent Mycobacterium tuberculosis Infection. PLoS ONE 2009, 4, e0005590. [Google Scholar] [CrossRef] [PubMed]
- Commandeur, S.; Van Meijgaarden, K.E.; Lin, M.Y.; Franken, K.L.M.C.; Friggen, A.H.; Drijfhout, J.W.; Oftung, F.; Korsvold, G.E.; Geluk, A.; Ottenhoff, T.H.M. Identification of Human T-Cell Responses to Mycobacterium tuberculosis Resuscitation-Promoting Factors in Long-Term Latently Infected Individuals. Clin. Vaccine Immunol. 2011, 18, 676–683. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chegou, N.N.; Black, G.F.; Loxton, A.G.; Stanley, K.; Essone, P.N.; Klein, M.R.; Parida, S.K.; Kaufmann, S.H.E.; Doherty, T.M.; Friggen, A.H.; et al. Potential of Novel Mycobacterium tuberculosis Infection Phase-Dependent Antigens in the Diagnosis of TB Disease in a High Burden Setting. BMC Infect. Dis. 2012, 12, 10. [Google Scholar] [CrossRef] [PubMed]
- Coppola, M.; Arroyo, L.; Van Meijgaarden, K.E.; Lmc, K.; Geluk, A.; Barrera, L.F.; Ottenhoff, T.H.M. Differences in IgG Responses against Infection Phase Related Mycobacterium tuberculosis (Mtb) Speci Fi c Antigens in Individuals Exposed or Not to Mtb Correlate with Control of TB Infection and Progression. Tuberculosis 2017, 106, 25–32. [Google Scholar] [CrossRef] [PubMed]
- Dosanjh, D.P.S.; Bakir, M.; Millington, K.A.; Soysal, A.; Aslan, Y.; Deeks, J.J.; Lalvani, A. Novel M Tuberculosis Antigen-Specific T-Cells Are Early Markers of Infection and Disease Progression. PLoS ONE 2011, 6, e0028754. [Google Scholar] [CrossRef]
- Rizvi, N.; Singh, A.; Yadav, M. ScienceDirect Role of Alpha-Crystallin, Early-Secreted Antigenic Target 6-KDa Protein and Culture Filtrate Protein 10 as Novel Diagnostic Markers in Osteoarticular Tuberculosis. J. Orthop. Transl. 2016, 6, 18–26. [Google Scholar] [CrossRef] [Green Version]
- Coppola, M.; Ottenhoff, T.H.M. Seminars in Immunology Genome Wide Approaches Discover Novel Mycobacterium tuberculosis Antigens as Correlates of Infection, Disease, Immunity and Targets for Vaccination. Semin. Immunol. 2018, 39, 88–101. [Google Scholar] [CrossRef]
- Goletti, D.; Butera, O.; Vanini, V.; Lauria, F.N.; Lange, C.; Franken, K.L.M.C.; Angeletti, C.; Ottenhoff, T.H.M.; Girardi, E. Response to Rv2628 Latency Antigen Associates with Cured Tuberculosis and Remote Infection. Eur. Respir. J. 2010, 36, 135–142. [Google Scholar] [CrossRef]
- Adankwah, E.; Lundtoft, C.; Güler, A.; Franken, K.L.M.C. Two-Hit in Vitro T-Cell Stimulation Detects Mycobacterium tuberculosis Infection in QuantiFERON Negative Tuberculosis Patients and Healthy Contacts from Ghana. Front. Immunol. 2019, 10, 01518. [Google Scholar] [CrossRef] [Green Version]
- Sakthi, S.; Narayanan, S. The LpqS Knockout Mutant of Mycobacterium tuberculosis Is Attenuated in Macrophages. Microbiol. Res. 2013, 168, 407–414. [Google Scholar] [CrossRef]
- Salman, A.M.; Rosenkrands, I.; Andersen, P.; Abdel-Ghaffar, A.B. Assessment of T Cell Response to Novel Mycobacterium tuberculosis Synthetic Overlapping Peptides Mixtures (Rv2659 and Rv2660) and ESAT-6 in Egyptian Patients. Egipt J. Immunol. 2014, 21, 75–83. [Google Scholar]
- Chen, J.; Wang, S.; Zhang, Y.; Su, X.; Wu, J.; Shao, L.; Wang, F.; Zhang, S.; Weng, X.; Wang, H.; et al. Rv1985c, A Promising Novel Antigen for Diagnosis of Tuberculosis Infection from BCG-Vaccinated Controls. BMC Inf. Dis. 2010, 10, 273. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Banerjee, U.; Sankar, S.; Singh, A.; Chandra, N. A Multi-Pronged Computational Pipeline for Prioritizing Drug Target Strategies for Latent Tuberculosis. Front. Chem. 2020, 8, 593497. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.W.; Min, J.; Choi, J.Y.; Shin, A.Y.; Myong, J.P.; Lee, Y.; Yim, H.W.; Jeong, H.; Bae, S.; Shim, E.; et al. Latent Tuberculosis Infection Screening and Treatment in Congregate Settings (TB FREE COREA): Demographic Profiles of Interferon-Gamma Release Assay Cohort. J. Korean Med. Sci. 2021, 36, E246. [Google Scholar] [CrossRef]
- Haley, C.A. Treatment of Latent Tuberculosis Infection. Respirology 2017. [Google Scholar] [CrossRef]
- Belknap, R.; Holland, D.; Feng, P.; Millet, J.; Caylà, J.A.; Martinson, N.A.; Wright, A.; Chen, M.P.; Moro, R.N.; Scott, N.A.; et al. HHS Public Access. Ann. Intern. Med. 2017, 167, 689–697. [Google Scholar] [CrossRef]
- Séraphin, M.N.; Hsu, H.; Chapman, H.J.; Bezerra, J.L.D.A.; Johnston, L.; Yang, Y.; Lauzardo, M. Timing of Treatment Interruption among Latently Infected Tuberculosis Cases Treated with a Nine-Month Course of Daily Isoniazid: Findings from a Time to Event Analysis. BMC Public Health 2019, 19, 1214. [Google Scholar] [CrossRef] [Green Version]
- Sun, H.Y.; Huang, Y.W.; Huang, W.C.; Chang, L.Y.; Chan, P.C.; Chuang, Y.C.; Ruan, S.Y.; Wang, J.T.Y.; Wang, J.T.Y. Twelve-Dose Weekly Rifapentine plus Isoniazid for Latent Tuberculosis Infection: A Multicentre Randomised Controlled Trial in Taiwan. Tuberculosis 2018, 111, 121–126. [Google Scholar] [CrossRef]
- Sauereisen, S.; Castelli, G. PURLs: A Better Approach to Preventing Active TB? J. Fam. Pract. 2020, 69, 37–38. [Google Scholar]
- Surey, J.; Stagg, H.R.; Yates, T.A.; Lipman, M.; White, P.J.; Charlett, A.; Muñoz, L.; Gosce, L. An Open Label, Randomised Controlled Trial of Rifapentine versus Rifampicin Based Short Course Regimens for the Treatment of Latent Tuberculosis in England: The HALT LTBI Pilot Study. BCM Infect. Dis. 2021, 21, 90. [Google Scholar] [CrossRef]
- Grosset, J.; Leventis, S. Adverse Effects of Rifampin. Rev. Infect. Dis. 1983, 5, S440–S446. [Google Scholar] [CrossRef] [PubMed]
- Villarino, M.E.; Ridzon, R.; Weismuller, P.C.; Elcock, M.; Maxwell, R.M.; Meador, J.; Smith, P.J.; Carson, M.L.; Geiter, L.J. Rifampicin Preventive Therapy for Tuberculosis Infection—Experience with 157 Adolescents. Pneumologie 1997, 51, 1054. [Google Scholar] [CrossRef]
- WHO. WHO Consolidated Guidelines on Tuberculosis. Module 1: Prevention. Tuberculosis Preventive Treatment; WHO: Geneva, Switzerland, 2021; ISBN 9789240001503. [Google Scholar]
- Tostmann, A.; Boeree, M.J.; Aarnoutse, R.E.; De Lange, W.C.M.; Van Der Ven, A.J.A.M.; Dekhuijzen, R. Antituberculosis Drug-Induced Hepatotoxicity: Concise up-to-Date Review. J. Gastroenterol. Hepatol. 2008, 23, 192–202. [Google Scholar] [CrossRef] [PubMed]
- Poole, G.; Stradling, P.; Worlledge, S. Potentially Serious Side Effects of High-Dose Twice-Weekly Rifampicin. Br. Med. J. 1971, 3, 343–347. [Google Scholar] [CrossRef] [Green Version]
- Denholm, J.T.; Mcbryde, E.S.; Eisen, D.; Street, A.; Matchett, E.; Chen, C.; Shultz, T.; Biggs, B.; Leder, K. SIRCLE: A Randomised Controlled Cost Comparison of Self-Administered Short-Course Isoniazid and Rifapentine for Cost-Effective Latent Tuberculosis Eradication. Int. Med. J. 2017, 47, 1433–1436. [Google Scholar] [CrossRef]
- Zhang, Y.; Shi, W.; Zhang, W.; Mitchison, D. Mechanisms of Pyrazinamide Action and Resistance. Mol. Genet. Mycobact. 2015, 1952, 479–491. [Google Scholar] [CrossRef] [Green Version]
- Jasmer, R.M.; Daley, C.L. Rifampin and Pyrazinamide for Treatment of Latent Tuberculosis Infection: Is It Safe? Am. J. Respir. Crit. Care Med. 2003, 167, 809–810. [Google Scholar] [CrossRef]
- Younossian, A.B.; Rochat, T.; Ketterer, J.P.; Wacker, J.; Janssens, J.P. High Hepatotoxicity of Pyrazinamide and Ethambutol for Treatment of Latent Tubercolosis. Eur. Respir. J. 2005, 26, 462–464. [Google Scholar] [CrossRef]
- Ziakas, P.D.; Mylonakis, E. 4 Months of Rifampin Compared with 9 Months of Isoniazid for the Management of Latent Tuberculosis Infection: A Meta-Analysis and Cost-Effectiveness Study That Focuses on Compliance and Liver Toxicity. Clin. Infect. Dis. 2009, 49, 1883–1889. [Google Scholar] [CrossRef] [Green Version]
- McElroy, P.D.; Ijaz, K.; Lambert, L.A.; Jereb, J.A.; Iademarco, M.F.; Castro, K.G.; Navin, T.R. Erratum: National Survey to Measure Rates of Liver Injury, Hospitalization, and Death Associated with Rifampin and Pyrazinamide for Latent Tuberculosis Infection (Clinical Infectious Diseases (October 15, 2005) 41 (1125-1133)). Clin. Infect. Dis. 2006, 42, 313. [Google Scholar] [CrossRef] [Green Version]
- Lamont, E.A.; Baughn, A.D. Impact of the Host Environment on the Antitubercular Action of Pyrazinamide. EBioMedicine 2019, 49, 374–380. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Biketov, S.; Potapov, V.; Ganina, E.; Downing, K.; Kana, B.D.; Kaprelyants, A. The Role of Resuscitation Promoting Factors in Pathogenesis and Reactivation of Mycobacterium tuberculosis during Intra-Peritoneal Infection in Mice. BMC Infect. Dis. 2007, 7, 146. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Demina, G.R.; Makarov, V.A.; Nikitushkin, V.D.; Ryabova, O.B.; Vostroknutova, G.N.; Salina, E.G.; Shleeva, M.O.; Goncharenko, A.V.; Kaprelyants, A.S. Finding of the Low Molecular Weight Inhibitors of Resuscitation Promoting Factor Enzymatic and Resuscitation Activity. PLoS ONE 2009, 4, e0008174. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Demina, G.R.; Nikitushkin, V.D.; Shleeva, M.O.; Riabova, O.B.; Lepioshkin, A.Y.; Makarov, V.A.; Kaprelyants, A.S. Benzoylphenyl Thiocyanates Are New, Effective Inhibitors of the Mycobacterial Resuscitation Promoting Factor B Protein. Ann. Clin. Microbiol. Antimicrob. 2017, 16, 69. [Google Scholar] [CrossRef]
- Dale, K.D.; Karmakar, M.; Snow, K.J.; Menzies, D.; Trauer, J.M.; Denholm, J.T. Quantifying the Rates of Late Reactivation Tuberculosis: A Systematic Review. Lancet Infect. Dis. 2021, 21, e303–e317. [Google Scholar] [CrossRef]
- Atuk, N.O.; Hunt, E.H. Serial Tuberculin Testing and Isoniazid Therapy in General Hospital Employees. JAMA J. Am. Med. Assoc. 1971, 218, 1795–1798. [Google Scholar] [CrossRef]
- Houk, V.N.; Kent, D.C.; Sorensen, K.; Baker, J.H. The Eradication of Tuberculosis Infection by Isoniazid Chemoprophylaxis. Arch. Environ. Health 1968, 16, 46–50. [Google Scholar] [CrossRef]
- Dyrhol-riise, A.M.; Gran, G.; Wentzel-larsen, T.; Blomberg, B.; Haanshuus, C.G. Diagnosis and Follow-up of Treatment of Latent Tuberculosis; the Utility of the QuantiFERON-TB Gold In-Tube Assay in Outpatients from a Tuberculosis Low-Endemic Country. BCM Infect. Dis. 2010, 10, 57. [Google Scholar] [CrossRef] [Green Version]
- Khinmar, K.W.; Gan, S.H.; Barkham, T.M.; Koh, C.K.; Shen, L.; Wang, Y.T. Tuberculosis Treatment Effect on T-Cell Interferon-γ Responses to Mycobacterium tuberculosis-Specific Antigens. Eur. Res. J. 2010, 36, 355–361. [Google Scholar] [CrossRef]
- Heon, S.; Jin, W.; Jin, H.; Lee, H.; Min, Y.; Hee, C.; Joo, E.; Yeol, D. Serial Interferon-Gamma Release Assays after Rifampicin Prophylaxis in a Tuberculosis Outbreak. Respir. Med. 2010, 104, 448–453. [Google Scholar] [CrossRef] [Green Version]
- Jiang, S.; Hinchliffe, T.E.; Wu, T. Biomarkers of An Autoimmune Skin Disease-Psoriasis. Genom. Proteom. Bioinform. 2015, 13, 224–233. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhou, G.; Stevenson, M.M.; Geary, T.G.; Xia, J. Comprehensive Transcriptome Meta-Analysis to Characterize Host Immune Responses in Helminth Infections. PLoS Negl. Trop. Dis. 2016, 10, e0004624. [Google Scholar] [CrossRef] [PubMed]
- Shen, C.H.; Chou, C.H.; Liu, F.C.; Lin, T.Y.; Huang, W.Y.; Wang, Y.C.; Kao, C.H. Association between Tuberculosis and Parkinson Disease a Nationwide, Population-Based Cohort Study. Medicine 2016, 95, e2883. [Google Scholar] [CrossRef] [PubMed]
- Bloom, C.I.; Graham, C.M.; Berry, M.P.R.; Rozakeas, F.; Redford, P.S.; Wang, Y.; Xu, Z.; Wilkinson, K.A.; Wilkinson, R.J.; Kendrick, Y.; et al. Transcriptional Blood Signatures Distinguish Pulmonary Tuberculosis, Pulmonary Sarcoidosis, Pneumonias and Lung Cancers. PLoS ONE 2013, 8, e0070630. [Google Scholar] [CrossRef]
- Lu, C.; Wu, J.; Wang, H.; Wang, S.; Diao, N.; Wang, F.; Gao, Y.; Chen, J.; Shao, L.; Weng, X.; et al. Novel Biomarkers Distinguishing Active Tuberculosis from Latent Infection Identified by Gene Expression Profile of Peripheral Blood Mononuclear Cells. PLoS ONE 2011, 6, e0024290. [Google Scholar] [CrossRef]
- de Araujo, L.S.; Vaas, L.A.I.; Ribeiro-Alves, M.; Geffers, R.; Mello, F.C.Q.; de Almeida, A.S.; Moreira, A.d.S.R.; Kritski, A.L.; Lapa e Silva, J.R.; Moraes, M.O.; et al. Transcriptomic Biomarkers for Tuberculosis: Evaluation of DOCK9, EPHA4, and NPC2 MRNA Expression in Peripheral Blood. Front. Microbiol. 2016, 7, 01586. [Google Scholar] [CrossRef]
- Singhania, A.; Verma, R.; Graham, C.M.; Lee, J.; Tran, T.; Richardson, M.; Lecine, P.; Leissner, P.; Berry, M.P.R.; Wilkinson, R.J.; et al. A Modular Transcriptional Signature Identifies Phenotypic Heterogeneity of Human Tuberculosis Infection. Nat. Commun. 2018, 9, 2308. [Google Scholar] [CrossRef] [Green Version]
- Penn-Nicholson, A.; Mbandi, S.K.; Thompson, E.; Mendelsohn, S.C.; Suliman, S.; Chegou, N.N.; Malherbe, S.T.; Darboe, F.; Erasmus, M.; Hanekom, W.A.; et al. RISK6, a 6-Gene Transcriptomic Signature of TB Disease Risk, Diagnosis and Treatment Response. Sci. Rep. 2020, 10, 8629. [Google Scholar] [CrossRef]
- Zak, D.E.; Penn-Nicholson, A.; Scriba, T.J.; Thompson, E.; Suliman, S.; Amon, L.M.; Mahomed, H.; Erasmus, M.; Whatney, W.; Hussey, G.D.; et al. A Blood RNA Signature for Tuberculosis Disease Risk: A Prospective Cohort Study. Lancet 2016, 387, 2312–2322. [Google Scholar] [CrossRef] [Green Version]
- Wu, K.; Wong, K.W.; Deng, W.L.; Zhang, H.; Li, J.; Lowrie, D.B.; Fan, X.Y. The Numerical Predominance and Large Transcriptome Differences of Neutrophils in Peripheral Blood Together Inevitably Account for a Reported Pulmonary Tuberculosis Signature. Int. J. Genom. 2017, 2017. [Google Scholar] [CrossRef]
- Burel, J.G.; Lindestam Arlehamn, C.S.; Khan, N.; Seumois, G.; Greenbaum, J.A.; Taplitz, R.; Gilman, R.H.; Saito, M.; Vijayanand, P.; Sette, A.; et al. Transcriptomic Analysis of CD4+ T Cells Reveals Novel Immune Signatures of Latent Tuberculosis. J. Immunol. 2018, 200, 3283–3290. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Coppola, M.; Ottenhoff, T.H.M. Cell-Mediated Immune Responses to In Vivo-Expressed and Stage-Specific Mycobacterium tuberculosis Antigens in Latent and Active Tuberculosis Across Different Age Groups. Front. Immunol. 2020, 11, 00103. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Antigens | Loci Function | In Vitro Assessment |
---|---|---|
PPD (purified tuberculin derivative) | Loci not studied; functions are diverse | IFN-γ production and other tests (especially widely used in TST) |
ESAT-6, early secretory antigen/CFP-10, antigen culture filtrate | RD1 | IFN-γ production and other tests (level of T-lymphocytes producing IFN-γ) |
Rv1733 | DosR | IFN-γ production |
Rv1471, Rv2662, Rv3862 | Loci (antigens) of reactivation | IFN-γ production |
Rv2389 | Rpf locus (antigens), with exit of mycobacteria from dormant state | IFN-γ production |
Rv2660 | Loci (antigens) metabolism in conditions of reduced nutrient intake | IFN-γ production |
Rv0244, Rv1909, Rv2913 | Loci (antigens) with stress induced Mtb functions | IFN-γ production |
Rv0847, Rv0967, Rv1806, Rv2380M, Rv2435n, Rv2642 | Loci (antigens) expressed by Mtb in vivo (IVE) | IFN-γ production |
α-crystallin (16kDa-R2031c, hspX) | “Latency” | IFN-γ production |
Rv3407 | “Latency” | IFN-γ production |
Rv2660, Rv2659 | RD11, locus (antigens) of aging | IFN-γ production |
PPD, CFP-10, ESAT-6, Rv3879c, Rv3878, Rv3873, α-crystallin | Various, including DosR | IFN-γ production |
Anti-TB Drug | Treatment Duration | Benefits of Treatment | Disadvantages of Treatment | Adverse Events | Reference |
---|---|---|---|---|---|
Rifampicin | 4 months, daily rifampicin intake | Greater adherence and fewer side effects | Development of side effects | Hepatotoxicity; immunoallergic reactions: minor (a cutaneous, gastrointestinal, or flu-like syndrome) or major (hemolytic anemia, shock, or acute renal failure); discoloration of body fluids | [114] [116] [117] |
Isoniazid | 6–12 months, daily intake | Isoniazid prophylaxis provides an additional protective effect of ART | Treatment duration, low patient adherence, development of side effects | Hepatotoxicity, estimated at 1 to 4%, occurring within the first few months after starting treatment; peripheral neuropathy, which can be prevented by the addition of vitamin B6 (pyridoxine); dermatitis and lupus syndrome | [83,88,115,117] |
Rifampicin + pyrazinamide | 2 months, daily intake | Greater adherence, given the duration of therapy | Development of undesirable phenomena. Not recommended by WHO | Severe hepatotoxicity; increased uric acid levels, joint pain | [78,118] |
Isoniazid + rifapentine | Once a week for 12 weeks | Short duration of the regimen, low incidence of side effects | Development of side effects | Hepatotoxicity rarely occurs Rifampicin is a potent inducer of the hepatic CYP450 system in the liver and intestine. It also induces increasing hydrazine production via isoniazid hydrolase (especially in slow acetylators) Rarely: pyrexial syndrome, renal failure, precipitous thrombocytopenia, epistaxis, and bleeding of the tongue and lips | [116,117] [119] [120] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Khabibullina, N.F.; Kutuzova, D.M.; Burmistrova, I.A.; Lyadova, I.V. The Biological and Clinical Aspects of a Latent Tuberculosis Infection. Trop. Med. Infect. Dis. 2022, 7, 48. https://doi.org/10.3390/tropicalmed7030048
Khabibullina NF, Kutuzova DM, Burmistrova IA, Lyadova IV. The Biological and Clinical Aspects of a Latent Tuberculosis Infection. Tropical Medicine and Infectious Disease. 2022; 7(3):48. https://doi.org/10.3390/tropicalmed7030048
Chicago/Turabian StyleKhabibullina, Nelli F., Daria M. Kutuzova, Irina A. Burmistrova, and Irina V. Lyadova. 2022. "The Biological and Clinical Aspects of a Latent Tuberculosis Infection" Tropical Medicine and Infectious Disease 7, no. 3: 48. https://doi.org/10.3390/tropicalmed7030048
APA StyleKhabibullina, N. F., Kutuzova, D. M., Burmistrova, I. A., & Lyadova, I. V. (2022). The Biological and Clinical Aspects of a Latent Tuberculosis Infection. Tropical Medicine and Infectious Disease, 7(3), 48. https://doi.org/10.3390/tropicalmed7030048