Zoonotic Flavivirus Exposure in Peri-Urban and Suburban Pig-Keeping in Hanoi, Vietnam, and the Knowledge and Preventive Practices of Pig Farmers
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Questionnaire and Interviews
2.3. Blood Sample Collection and Storage
2.4. Mosquito Collection and Identification
2.5. Laboratory Technique
2.6. Statistical Analysis
3. Results
3.1. Pig Farmer Demographics
3.2. Knowledge of Pig Farmers
3.3. Practices of Pig Farmers
3.4. Associations between Knowledge and Practice and Demographics
3.5. Mosquito Vectors
3.6. Univariable Analysis at Animal Level
3.7. Multivariable Analysis Results at Animal Level
3.8. Univariable Analysis Results at Farm Level
3.9. Multivariable Analysis Results at Farm Level
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Pierson, T.C.; Diamond, M.S. The continued threat of emerging flaviviruses. Nat. Microbiol. 2020, 5, 796–812. [Google Scholar] [CrossRef] [PubMed]
- Gwee, S.X.W.; John, A.L.S.; Gray, G.C.; Pang, J. Animals as potential reservoirs for dengue transmission: A systematic review. One Health 2021, 12, 100216. [Google Scholar] [CrossRef] [PubMed]
- Ladreyt, H.; Durand, B.; Dussart, P.; Chevalier, V. How Central Is the Domestic Pig in the Epidemiological Cycle of Japanese Encephalitis Virus? A Review of Scientific Evidence and Implications for Disease Control. Viruses 2019, 11, 949. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gutiérrez-Guzmán, A.-V.; Vicente, J.; Sobrino, R.; Perez-Ramírez, E.; Llorente, F.; Höfle, U. Antibodies to West Nile virus and related flaviviruses in wild boar, red foxes and other mesomammals from Spain. Vet. Microbiol. 2012, 159, 291–297. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nunez-Avellaneda, D.; Cetina-Trejo, R.C.; Zamudio-Moreno, E.; Baak-Baak, C.; Cigarroa-Toledo, N.; Reyes-Solis, G.; Ortega-Pacheco, A.; Suzán, G.; Tandugu, C.; García-Rejón, J.E.; et al. Evidence of Zika Virus Infection in Pigs and Mosquitoes, Mexico. Emerg. Infect. Dis. 2021, 27, 574–577. [Google Scholar] [CrossRef]
- Park, S.L.; Huang, Y.-J.S.; Lyons, A.C.; Ayers, V.B.; Hettenbach, S.M.; McVey, D.S.; Burton, K.R.; Higgs, S.; VanLandingham, D.L. North American domestic pigs are susceptible to experimental infection with Japanese encephalitis virus. Sci. Rep. 2018, 8, 7951. [Google Scholar] [CrossRef]
- Japanese Encephalitis Virus (JEV). 2022. Available online: https://www.health.gov.au/health-alerts/japanese-encephalitis-virus-jev/about (accessed on 7 April 2022).
- De Wispelaere, M.; Desprès, P.; Choumet, V. European Aedes albopictus and Culex pipiens Are Competent Vectors for Japanese Encephalitis Virus. PLoS Negl. Trop. Dis. 2017, 11, e0005294. [Google Scholar] [CrossRef]
- Ravanini, P.; Huhtamo, E.; Ilaria, V.; Crobu, M.G.; Nicosia, A.M.; Servino, L.; Rivasi, F.; Allegrini, S.; Miglio, U.; Magri, A.; et al. Japanese encephalitis virus RNA detected in Culex pipiens mosquitoes in Italy. Eurosurveillance 2012, 17, 20221. [Google Scholar] [CrossRef]
- Pham-Thanh, L.; Magnusson, U.; Can-Xuan, M.; Nguyen-Viet, H.; Lundkvist, Å.; Lindahl, J. Livestock Development in Hanoi City, Vietnam—Challenges and Policies. Front. Vet. Sci. 2020, 7, 566. [Google Scholar] [CrossRef]
- Hanoi Statistics Office. Hanoi Statistical Yearbook 2018; Hanoi Statistics Office: Hanoi, Vietnam, 2019. [Google Scholar]
- Ohba, S.-Y.; Van Soai, N.; Van Anh, D.T.; Nguyen, Y.T.; Takagi, M. Study of mosquito fauna in rice ecosystems around Hanoi, Northern Vietnam. Acta Trop. 2014, 142, 89–95. [Google Scholar] [CrossRef] [Green Version]
- World Health Organization. Made in Viet Nam Vaccines: Efforts to Develop Sustainable In-Country Manufacturing for Seasonal and Pandemic Influenza Vaccines Consultation Held in Viet Nam. [Online]. No. June, p. 45. 2016. Available online: http://apps.who.int/bookorders (accessed on 19 February 2021).
- Tran, N.H.; Chansinghakul, D.; Chong, C.Y.; Low, C.Y.; Shek, L.; Luong, C.Q.; Frago, C.; Wartel, T.A.; Sun, S.; Skipetrova, A.; et al. Long-term immunogenicity and safety of tetravalent dengue vaccine (CYD-TDV) in healthy populations in Singapore and Vietnam: 4-year follow-up of randomized, controlled, phase II trials. Hum. Vaccines Immunother. 2019, 15, 2315–2327. [Google Scholar] [CrossRef] [Green Version]
- Nguyen-Tien, T.; Probandari, A.; Ahmad, R.A. Barriers to Engaging Communities in a Dengue Vector Control Program: An Implementation Research in an Urban Area in Hanoi City, Vietnam. Am. J. Trop. Med. Hyg. 2019, 100, 964–973. [Google Scholar] [CrossRef] [Green Version]
- Nguyen-Tien, T.; Pham, L.T.; Vu, D.T.; Tran, S.H.; Vu, L.T.; Bui, V.N.; Bui, A.N.; Hoang, T.D.; Vu, T.T.; Nguyen-Viet, H.; et al. Knowledge and practice on prevention of mosquito-borne diseases in livestock-keeping and non-livestock-keeping communities in Hanoi city, Vietnam: A mixed-method study. PLoS ONE 2021, 16, e0246032. [Google Scholar] [CrossRef]
- Sriwichai, P.; Karl, S.; Samung, Y.; Sumruayphol, S.; Kiattibutr, K.; Payakkapol, A.; Mueller, I.; Yan, G.; Cui, L.; Sattabongkot, J. Evaluation of CDC light traps for mosquito surveillance in a malaria endemic area on the Thai-Myanmar border. Parasites Vectors 2015, 8, 636. [Google Scholar] [CrossRef] [Green Version]
- Biogents. Instruction Manual for the Biogents Sentinel; Biogents: Regensburg, Germany, 2011; pp. 1–13. [Google Scholar]
- Wilke, A.B.B.; Vasquez, C.; Carvajal, A.; Moreno, M.; Petrie, W.D.; Beier, J.C. Evaluation of the effectiveness of BG-Sentinel and CDC light traps in assessing the abundance, richness, and community composition of mosquitoes in rural and natural areas. Parasites Vectors 2022, 15, 51. [Google Scholar] [CrossRef]
- Reisen, W.K.; Aslamkhan, M. Biting rhythms of some Pakistan mosquitoes (Diptera: Culicidae). Bull. Entomol. Res. 1978, 68, 313–330. [Google Scholar] [CrossRef]
- Yildirim, Y.; Yilmaz, V.; Yazici, K.; Ozic, C.; Ozkul, A. Molecular and serological investigation of West Nile virus (WNV) infection in donkeys, horses and native geese in Turkey. Rev. Med. Vet. 2018, 169, 87–92. [Google Scholar]
- Azmi, K.; Tirosh-Levy, S.; Manasrah, M.; Mizrahi, R.; Nasereddin, A.; Al-Jawabreh, A.; Ereqat, S.; Abdeen, Z.; Lustig, Y.; Gelman, B.; et al. West Nile Virus: Seroprevalence in Animals in Palestine and Israel. Vector-Borne Zoonotic Dis. 2017, 17, 558–566. [Google Scholar] [CrossRef]
- Zhang, Z. Model building strategy for logistic regression: Purposeful selection. Ann. Transl. Med. 2016, 4, 111. [Google Scholar] [CrossRef] [Green Version]
- Hazra, A.; Gogtay, N. Biostatistics series module 6: Correlation and linear regression. Indian J. Dermatol. 2016, 61, 593–601. [Google Scholar] [CrossRef]
- Diaz-Quijano, F.A.; Martínez-Vega, R.A.; Rodriguez-Morales, A.J.; Rojas-Calero, R.A.; Luna-González, M.L.; Díaz-Quijano, R.G. Association between the level of education and knowledge, attitudes and practices regarding dengue in the Caribbean region of Colombia. BMC Public Health 2018, 18, 143. [Google Scholar] [CrossRef] [Green Version]
- Chapot, L.; Nguyen-Tien, T.; Pham-Thanh, L.; Nguyen-Viet, H.; Craven, L.; Lindahl, J.F. A Mixed-Methods Approach to Understanding Knowledge of Mosquito-Borne Infections and Barriers for Protection in Hanoi, Vietnam. Trop. Med. Infect. Dis. 2020, 5, 66. [Google Scholar] [CrossRef]
- Chapagain, A.; Singh, S.; Thapa, D.B. Knowledge Regarding Japanese Encephalitis among Pig Farmers of Kathmandu and Morang Districts of Nepal. J. Inst. Agric. Anim. Sci. 2018, 35, 225–234. [Google Scholar] [CrossRef]
- Chaturvedi, S.; Sharma, N.; Kakkar, M. Perceptions, practices and health seeking behaviour constrain JE/AES interventions in high endemic district of North India. BMC Public Health 2017, 17, 645. [Google Scholar] [CrossRef] [Green Version]
- Bergero, P.E.; Ruggerio, C.A.; Lombardo, R.; Schweigmann, N.J.; Solari, H.G. Dispersal of Aedes aegypti: Field study in temperate areas using a novel method. J. Vector Borne Dis. 2013, 50, 163–170. [Google Scholar]
- Maciel-de-Freitas, R.; Neto, R.B.; Gonçalves, J.M.; Codeço, C.T.; Lourenço-de-Oliveira, R. Movement of dengue vectors between the human modified environment and an urban forest in Rio de Janeiro. J. Med. Entomol. 2006, 43, 1112–1120. [Google Scholar] [CrossRef]
- Verdonschot, P.F.; Besse-Lototskaya, A. Flight distance of mosquitoes (Culicidae): A metadata analysis to support the management of barrier zones around rewetted and newly constructed wetlands. Limnologica 2014, 45, 69–79. [Google Scholar] [CrossRef]
- Ren, X.; Fu, S.; Dai, P.; Wang, H.; Li, Y.; Li, X.; Lei, W.; Gao, X.; He, Y.; Lv, Z.; et al. Pigsties near dwellings as a potential risk factor for the prevalence of Japanese encephalitis virus in adult in Shanxi, China. Infect. Dis. Poverty 2017, 6, 100. [Google Scholar] [CrossRef]
- Bryant, J.E.; Nam, V.S.; Miller, B.R.; Yen, N.T.; Crabtree, M.B.; Duc, H.M. Isolation of arboviruses from mosquitoes collected in northern vietnam. Am. J. Trop. Med. Hyg. 2005, 73, 470–473. [Google Scholar] [CrossRef]
- Baruah, A.; Hazarika, R.; Barman, N.; Islam, S.; Gulati, B. Mosquito abundance and pig seropositivity as a correlate of Japanese encephalitis in human population in Assam, India. J. Vector Borne Dis. 2018, 55, 291–296. [Google Scholar] [CrossRef]
- Lindahl, J.F.; Ståhl, K.; Chirico, J.; Boqvist, S.; Thu, H.T.V.; Magnusson, U. Circulation of Japanese Encephalitis Virus in Pigs and Mosquito Vectors within Can Tho City, Vietnam. PLoS Negl. Trop. Dis. 2013, 7, e2153. [Google Scholar] [CrossRef]
- Ruget, A.-S.; Beck, C.; Gabassi, A.; Trevennec, K.; Lecollinet, S.; Chevalier, V.; Cappelle, J. Japanese encephalitis circulation pattern in swine of northern Vietnam and consequences for swine’s vaccination recommendations. Transbound. Emerg. Dis. 2018, 65, 1485–1492. [Google Scholar] [CrossRef]
- Cappelle, J.; Duong, V.; Pring, L.; Kong, L.; Yakovleff, M.; Prasetyo, D.B.; Peng, B.; Choeung, R.; Duboz, R.; Ong, S.; et al. Intensive Circulation of Japanese Encephalitis Virus in Peri-urban Sentinel Pigs near Phnom Penh, Cambodia. PLoS Negl. Trop. Dis. 2016, 10, e0005149. [Google Scholar] [CrossRef] [Green Version]
- Yamamoto, S.S.; Louis, V.R.; Sié, A.; Sauerborn, R. The effects of zooprophylaxis and other mosquito control measures against malaria in Nouna, Burkina Faso. Malar. J. 2009, 8, 283. [Google Scholar] [CrossRef] [Green Version]
- Liu, N. Insecticide resistance in mosquitoes: Impact, mechanisms, and research directions. Annu. Rev. Entomol. 2015, 60, 537–559. [Google Scholar] [CrossRef]
- Benelli, G.; Jeffries, C.; Walker, T. Biological control of mosquito vectors: Past, present, and future. Insects 2016, 7, 52. [Google Scholar] [CrossRef]
- Wilson, A.L.; Courtenay, O.; Kelly-Hope, L.A.; Scott, T.W.; Takken, W.; Torr, S.J.; Lindsay, S.W. The importance of vector control for the control and elimination of vector-borne diseases. PLoS Negl. Trop. Dis 2020, 14, e0007831. [Google Scholar] [CrossRef] [Green Version]
Characteristic | n (%) | Mean ± SD |
---|---|---|
Gender | ||
Male | 135 (75.4) | |
Female | 44 (24.6) | |
Age | 50.35 ± 9.50 | |
30–39 | 21 (13.2) | 35.43 ± 2.56 |
40–49 | 49 (30.8) | 44.12 ± 2.60 |
50–59 | 58 (36.5) | 53.79 ± 2.92 |
60+ | 31 (19.5) | 63.87 ± 3.57 |
Education | ||
Primary school | 17 (9.4) | |
Secondary school | 98 (54.4) | |
High school | 53 (29.4) | |
College/university | 12 (6.7) | |
Occupation | ||
Officer | 6 (3.4) | |
Farmer | 144 (80.9) | |
Unemployed | 9 (5.1) | |
Retired | 7 (3.9) | |
Others | 12 (6.7) | |
Marriage status | ||
Single | 2 (1.1) | |
Married | 174 (97.8) | |
Separated/Divorced | 1 (0.6) | |
Widowed | 1 (0.6) | |
Pig herd size: Number of pigs per farm | 44.33 ± 99.92 | |
<10 | 35 (19.5) | 5.57 ± 2.19 |
10–29 | 71 (39.7) | 16.94 ± 5.82 |
30–59 | 47 (26.3) | 39.7 ± 7.42 |
≥60 | 26 (14.5) | 179.6 ± 218.1 |
Questions | ||
---|---|---|
Have you heard about diseases being transmitted from mosquitoes to humans? | N = 179 | % |
No | 7 | 3.9 |
Dengue fever | 168 | 93.9 |
Japanese Encephalitis | 14 | 7.8 |
Zika | 67 | 37.4 |
Malaria | 110 | 61.5 |
Filariasis | 5 | 2.8 |
Can you list breeding sites of mosquitoes? | ||
Don’t know | 3 | 1.7 |
Clean water | 29 | 16.2 |
Drain/polluted water | 143 | 79.9 |
Stagnant water containers | 146 | 81.6 |
Car tires | 55 | 30.7 |
Water tanks | 132 | 73.7 |
Vase | 60 | 33.5 |
Bonsai rockery | 57 | 31.8 |
Can you list the risk factors for getting mosquito-borne diseases? | ||
Don’t know | 11 | 6.1 |
Warm and humid season | 137 | 76.5 |
High population density | 47 | 26.3 |
Stagnant water containers | 123 | 68.7 |
Livestock keeping | 72 | 40.2 |
Can you list any symptoms of mosquito-borne diseases? | ||
Don’t know | 13 | 7.3 |
High fever | 160 | 89.4 |
Muscle pain | 51 | 28.5 |
Nausea/vomiting | 54 | 30.2 |
Severe headache | 71 | 39.7 |
Rash | 32 | 17.9 |
Hemorrhage | 101 | 56.4 |
Question: What Do You Do to Prevent Mosquito Bites? | ||
---|---|---|
N = 179 | % | |
Don’t know | 0 | 0 |
Screening of windows/doors | 13 | 7.3 |
Mosquito repellent | 22 | 12.3 |
Mosquito bed nets | 169 | 94.4 |
Electric rackets | 95 | 53.1 |
Coil burning | 37 | 20.7 |
Long-sleeve clothes | 45 | 25.1 |
Lidded the water tank | 61 | 34.1 |
Chemical treatment in water containers | 6 | 3.4 |
Anti-mosquito products/insecticides | 93 | 52.0 |
Mosquito breeding site elimination | 54 | 30.2 |
Fish keeping in water containers | 59 | 33.0 |
Knowledge and Practice Scores with Respect to Demographics (N = 179) | ||||||
---|---|---|---|---|---|---|
Variable | K-Score (Median ± IQR) | p-Value (Univariable) | p-Value (Multivariable) | p-Score (Median ± IQR) | p-Value (Univariable) | p-Value (Multivariable) |
9 ± 5 | 3 ± 2 | |||||
Gender * | ||||||
Male | 9 ± 5 | 0.715 | - | 3 ± 2 | 0.506 | |
Female | 10 ± 6 | 3 ± 2.5 | ||||
Family member experienced with MBD * | ||||||
Yes | 9 ± 4 | 0.741 | - | 3 ± 0.5 | 0.757 | |
No | 10 ± 5 | 3 ± 2 | ||||
District ** | ||||||
Chuong My | 7 ± 4 | <0.001 | Ref. | 2 ± 1 | <0.001 | Ref. |
Dan Phuong | 13 ± 10 | <0.001 | 6 ± 6 | <0.001 | ||
Bac Tu Liem | 12 ± 4 | <0.001 | 3 ± 1 | <0.001 | ||
Ha Dong | 9 ± 2 | 0.038 | 3 ± 1 | 0.206 | ||
Age ** | ||||||
30–39 | 9 ± 3 | 0.923 | - | 2 ± 1 | 0.224 | - |
40–49 | 9 ± 5 | 3 ± 2 | ||||
49–50 | 9 ± 4.5 | 3 ± 2 | ||||
60+ | 9 ± 5 | 3 ± 2 | ||||
Level of education ** | ||||||
Primary school | 10 ± 8 | 0.014 | Ref. | 3 ± 2.5 | 0.211 | Ref. |
Secondary | 9 ± 5 | 0.670 | 3 ± 2 | 0.280 | ||
High school | 9 ± 4 | 0.453 | 3 ± 2 | 0.098 | ||
College/University | 12.5 ± 7.5 | 0.007 | 3.5 ± 5 | 0.058 | ||
Occupation** | ||||||
Officer | 10.5 ± 3 | 0.037 | Ref. | 3 ± 5 | 0.038 | Ref. |
Farmer | 10 ± 5.5 | 0.394 | 3 ± 2 | 0.913 | ||
Unemployed | 6.5 ± 3.5 | 0.333 | 2 ± 0.5 | 0.163 | ||
Retired | 12 ± 11 | 0.583 | 7 ± 5 | 0.725 | ||
Others | 9 ± 2 | 0.909 | 3 ± 1 | 0.797 |
District | No. Pig Farm Surveyed | No. of Farm with Mosquito Vectors | % |
---|---|---|---|
Chuong My b | 53 | 45 | 85 |
Dan Phuong b | 41 | 35 | 85 |
Bac Tu Liem a | 53 | 45 | 85 |
Ha Dong a | 32 | 32 | 100 |
Total | 179 | 157 | 88 |
Mosquito Species | Bac Tu Liem a | Chuong My b | Dan Phuong b | Ha Dong a | Total | |||||
---|---|---|---|---|---|---|---|---|---|---|
No. | % | No. | % | No. | % | No. | % | No. | % | |
Aedes albopictus | 6 | 0.9 | 5 | 1.9 | 6 | 1.6 | 1 | 0.1 | 18 | 0.6 |
Culex tritaeniorhynchus | 479 | 69.8 | 181 | 68.8 | 224 | 58.8 | 1383 | 80.9 | 2267 | 74.6 |
Cx. vishnui subgroup | 68 | 9.9 | 16 | 6.1 | 86 | 22.6 | 95 | 5.6 | 265 | 8.7 |
Cx. quinquefasciatus | 70 | 10.2 | 18 | 6.8 | 19 | 5.0 | 90 | 5.3 | 197 | 6.5 |
Cx. gelidus | 38 | 5.5 | 17 | 6.5 | 8 | 2.1 | 78 | 4.6 | 141 | 4.6 |
Cx. fuscocephalus | 0 | 0.0 | 2 | 0.8 | 0 | 0.0 | 0 | 0.0 | 2 | 0.1 |
Mansonia spp. | 0 | 0.0 | 1 | 0.4 | 0 | 0.0 | 0 | 0.0 | 1 | 0.0 |
Ma. uniformis | 4 | 0.6 | 0 | 0.0 | 2 | 0.5 | 1 | 0.1 | 7 | 0.2 |
Ma. annulifera | 3 | 0.4 | 1 | 0.4 | 12 | 3.1 | 1 | 0.1 | 17 | 0.6 |
Ma. indiana | 0 | 0.0 | 0 | 0.0 | 0 | 0.0 | 1 | 0.1 | 1 | 0.0 |
Armigeres spp. | 0 | 0.0 | 1 | 0.4 | 4 | 1.0 | 39 | 2.3 | 44 | 1.4 |
Anopheles spp. | 0 | 0.0 | 0 | 0.0 | 0 | 0.0 | 1 | 0.1 | 1 | 0.0 |
Anopheles aconitus | 0 | 0.0 | 0 | 0.0 | 0 | 0.0 | 1 | 0.1 | 1 | 0.0 |
An. hycanus | 18 | 2.6 | 21 | 8.0 | 20 | 5.2 | 18 | 1.1 | 77 | 2.5 |
Total | 686 | 100 | 263 | 100 | 381 | 100 | 1709 | 100 | 3039 | 100 |
Mosquito Species | Bac Tu Liem a | Chuong My b | Dan Phuong b | Ha Dong a | Total | |||||
---|---|---|---|---|---|---|---|---|---|---|
No. | % | No. | % | No. | % | No. | % | No. | % | |
Aedes spp. | 0 | 0.0 | 1 | 0.2 | 1 | 0.1 | 0 | 0.0 | 2 | 0.0 |
Aedes albopictus | 3 | 0.4 | 1 | 0.2 | 1 | 0.1 | 1 | 0.0 | 6 | 0.1 |
Culex tritaeniorhynchus | 477 | 65.9 | 293 | 54.1 | 1057 | 80.7 | 1306 | 62.6 | 3175 | 66.5 |
Cx. vishnui subgroup | 116 | 16.0 | 3 | 0.6 | 93 | 7.1 | 175 | 8.4 | 399 | 8.4 |
Cx. pseudovishnui | 0 | 0.0 | 0 | 0.0 | 1 | 0.1 | 3 | 0.1 | 4 | 0.1 |
Cx. quinquefasciatus | 13 | 1.8 | 30 | 5.5 | 22 | 1.7 | 106 | 5.1 | 176 | 3.7 |
Cx. gelidus | 72 | 9.9 | 61 | 11.3 | 45 | 3.4 | 423 | 20.3 | 648 | 13.6 |
Cx. fuscocephalus | 0 | 0.0 | 16 | 3.0 | 0 | 0.0 | 0 | 0.0 | 16 | 0.3 |
Mansonia spp. | 0 | 0.0 | 19 | 3.5 | 0 | 0.0 | 0 | 0.0 | 19 | 0.4 |
Ma. uniformis | 4 | 0.6 | 2 | 0.4 | 3 | 0.2 | 8 | 0.4 | 17 | 0.4 |
Ma. annulifera | 5 | 0.7 | 3 | 0.6 | 16 | 1.2 | 6 | 0.3 | 33 | 0.7 |
Ma. indiana | 0 | 0.0 | 0 | 0.0 | 0 | 0.0 | 1 | 0.0 | 1 | 0.0 |
Armigeres spp. | 2 | 0.3 | 1 | 0.2 | 1 | 0.1 | 20 | 1.0 | 26 | 0.5 |
Anopheles spp. | 32 | 4.4 | 112 | 20.7 | 69 | 5.3 | 36 | 1.7 | 254 | 5.3 |
Total | 724 | 100 | 542 | 100 | 1309 | 100 | 2085 | 100 | 4660 | 100 |
Total Mosquitoes Collected | Number of Pig Farm | Mosquito Average Per Farm | 95% CI | p-Value | |
---|---|---|---|---|---|
In bedroom (indoor) | 3039 | 179 | 17.0 | 6.70–27.2 | 0.202 |
In pig pen (outdoor) | 4660 | 179 | 26.0 | 15.1–36.9 |
Exposure Variable | Label | Total Test | Positive | Seroprevalence (95% CI) | OR (95% CI) | p-Value |
---|---|---|---|---|---|---|
Herd size | <10 pigs | 98 | 70 | 71.4 (62.4–80.4) | Ref. | - |
10–29 pigs | 256 | 228 | 89.1 (85.2–92.9) | 3.26 (1.81–5.87) | <0.001 | |
30–59 pigs | 189 | 178 | 94.2 (90.8–97.5) | 6.47 (3.06–13.7) | <0.001 | |
≥60 pigs | 93 | 87 | 93.5 (88.5–98.6) | 5.80 (2.27–14.8) | <0.001 | |
Breed | Crossbreed | 387 | 326 | 84.2 (80.6–87.9) | Ref. | - |
Exotic | 84 | 76 | 90.5 (84.1–96.8) | 1.78 (0.82–3.87) | 0.147 | |
Local | 3 | 3 | 100 | - | - | |
Age group | >6 months | 44 | 29 | 65.9 (51.7–80.1) | Ref. | - |
2 months | 56 | 55 | 98.2 (94.7–100) | 28.4 (3.58–226) | 0.002 | |
3 months | 228 | 217 | 95.2 (92.4–98.0) | 10.2 (4.28–24.3) | <0.001 | |
4 months | 192 | 173 | 90.1 (85.9–94.3) | 4.71 (2.15–10.3) | <0.001 | |
5 months | 71 | 53 | 74.6 (64.4–84.9) | 1.52 (0.67–3.46) | 0.315 | |
District | Dan Phuong | 120 | 82 | 68.3 (60.0–76.7) | Ref. | - |
Chuong My | 189 | 181 | 95.8 (92.9–98.6) | 10.5 (4.68–23.5) | <0.001 | |
Bac Tu Liem | 230 | 213 | 92.6 (89.2–96.0) | 5.81 (3.10–10.9) | <0.001 | |
Ha Dong | 97 | 87 | 89.7 (83.6–95.8) | 4.03 (1.89–8.61) | <0.001 |
Exposure Variable | Categories | Coef. | OR | 95% CI | p-Value |
---|---|---|---|---|---|
Herd size | <10 pigs | Ref. | Ref. | ||
10–29 pigs | 1.61 | 5.03 | 0.57–44.31 | 0.146 | |
30–59 pigs | 2.39 | 10.94 | 0.97–122.8 | 0.053 | |
≥60 pigs | 4.01 | 55.01 | 2.03–1491 | 0.017 | |
Age group | >6 months | Ref. | Ref. | ||
2 months | −1.33 | 0.26 | 0.006–10.7 | 0.481 | |
3 months | −2.15 | 0.12 | 0.003–4.75 | 0.256 | |
4 months | −3.42 | 0.03 | 0.0006–1.89 | 0.098 | |
5 months | −3.19 | 0.04 | 0.0004–3.76 | 0.166 | |
District | Dan Phuong | Ref. | Ref. | ||
Chuong My | 2.97 | 19.4 | 1.19–315 | 0.037 | |
Bac Tu Liem | 2.26 | 9.60 | 0.74–125 | 0.084 | |
Ha Dong | 2.97 | 19.4 | 1.08–349 | 0.044 | |
Constant | 2.77 | 15.99 | 0.25–1019 | 0.191 | |
Estimate | 95% CI | ||||
Random effect of farm | 9.80 | 4.63–20.75 |
Exposure Variable | Label | Total HH Tested | HH Positive | OR (95%CI) | p-Value |
---|---|---|---|---|---|
District | Dan Phuong b | 41 | 32 | Ref. | - |
Chuong My b | 53 | 53 | - | - | |
Bac Tu Liem a | 53 | 53 | - | - | |
Ha Dong a | 32 | 29 | 2.72 (0.67–11.0) | 0.161 | |
Herd size | <10 pigs | 35 | 26 | Ref. | - |
10–29 pigs | 71 | 68 | 7.85 (1.97–31.3) | 0.003 | |
30–59 pigs | 47 | 47 | - | ||
≥60 pigs | 26 | 26 | - | - | |
Mosquito vector presence | No | 22 | 21 | Ref. | 0.668 |
Yes | 157 | 146 | 0.63 (0.08–5.15) | ||
Family member not experienced with mosquito disease | No | 167 | 156 | Ref. | 0.816 |
Yes | 12 | 11 | 0.78 (0.09–6.57) | ||
Mosquito prevention practice by using: | |||||
Window/door screen | Yes | 26 | 22 | Ref. | 0.07 |
No | 152 | 144 | 3.27 (0.91–11.8) | ||
Repellent | Yes | 63 | 54 | Ref. | 0.008 |
No | 115 | 112 | 6.22 (1.62–23.9) | ||
Mosquito net | Yes | 173 | 161 | Ref. | - |
No | 5 | 5 | - | ||
Electric racket/portable electric trap | Yes | 102 | 93 | Ref. | 0.211 |
No | 76 | 73 | 2.35 (0.61–9.01) | ||
Mosquito coil/Incense stick | Yes | 59 | 54 | Ref. | 0.518 |
No | 119 | 112 | 1.48 (0.45–4.88) | ||
Long-sleeve clothes | Yes | 64 | 55 | Ref. | 0.009 |
No | 114 | 111 | 6.05 (1.58–23.3) | ||
Lid covered on water tank | Yes | 76 | 66 | Ref. | 0.01 |
No | 102 | 100 | 7.58 (1.16–25.7) | ||
Chemical/larvicide in water container | Yes | 11 | 9 | Ref. | 0.14 |
No | 167 | 157 | 3.49 (0.66–18.3) | ||
Insecticides spraying | Yes | 97 | 89 | Ref. | 0.386 |
No | 81 | 77 | 1.73 (0.50–5.97) | ||
Breeding site elimination | Yes | 63 | 61 | Ref. | 0.178 |
No | 115 | 105 | 0.34 (0.07–1.62) | ||
Fish in water container | Yes | 77 | 69 | Ref. | 0.102 |
No | 101 | 97 | 2.81 (0.81–9.71) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pham-Thanh, L.; Nguyen-Tien, T.; Magnusson, U.; Bui, V.N.; Bui, A.N.; Lundkvist, Å.; Vu, D.T.; Tran, S.H.; Can, M.X.; Nguyen-Viet, H.; et al. Zoonotic Flavivirus Exposure in Peri-Urban and Suburban Pig-Keeping in Hanoi, Vietnam, and the Knowledge and Preventive Practices of Pig Farmers. Trop. Med. Infect. Dis. 2022, 7, 79. https://doi.org/10.3390/tropicalmed7050079
Pham-Thanh L, Nguyen-Tien T, Magnusson U, Bui VN, Bui AN, Lundkvist Å, Vu DT, Tran SH, Can MX, Nguyen-Viet H, et al. Zoonotic Flavivirus Exposure in Peri-Urban and Suburban Pig-Keeping in Hanoi, Vietnam, and the Knowledge and Preventive Practices of Pig Farmers. Tropical Medicine and Infectious Disease. 2022; 7(5):79. https://doi.org/10.3390/tropicalmed7050079
Chicago/Turabian StylePham-Thanh, Long, Thang Nguyen-Tien, Ulf Magnusson, Vuong Nghia Bui, Anh Ngoc Bui, Åke Lundkvist, Duoc Trong Vu, Son Hai Tran, Minh Xuan Can, Hung Nguyen-Viet, and et al. 2022. "Zoonotic Flavivirus Exposure in Peri-Urban and Suburban Pig-Keeping in Hanoi, Vietnam, and the Knowledge and Preventive Practices of Pig Farmers" Tropical Medicine and Infectious Disease 7, no. 5: 79. https://doi.org/10.3390/tropicalmed7050079
APA StylePham-Thanh, L., Nguyen-Tien, T., Magnusson, U., Bui, V. N., Bui, A. N., Lundkvist, Å., Vu, D. T., Tran, S. H., Can, M. X., Nguyen-Viet, H., & Lindahl, J. F. (2022). Zoonotic Flavivirus Exposure in Peri-Urban and Suburban Pig-Keeping in Hanoi, Vietnam, and the Knowledge and Preventive Practices of Pig Farmers. Tropical Medicine and Infectious Disease, 7(5), 79. https://doi.org/10.3390/tropicalmed7050079