Drugs for Intermittent Preventive Treatment of Malaria in Pregnancy: Current Knowledge and Way Forward
Abstract
:1. Introduction
1.1. Global Distribution of Malaria
1.2. Burden, Effects and Clinical Manifestations of Malaria in Pregnancy
1.3. Current Recommendations for Malaria Prevention in Pregnancy
1.4. Review Justification and Search Limits
2. Drugs for Prevention of Malaria in Pregnancy
2.1. Amodiaquine
2.2. Chloroquine
2.3. Mefloquine
2.4. Dihydroartemisinin-Piperaquine
2.5. Azithromycin
2.5.1. Azithromycin + Chloroquine
2.5.2. Azithromycin + Sulfadoxine/Piperaquine
2.5.3. Azithromycin + Piperaquine
2.6. IPTp for HIV-Infected Pregnant Women
2.6.1. Mefloquine
2.6.2. Dihydroartemisinin-Piperaquine
2.6.3. Azithromycin
2.7. Chemoprevention during the First Trimester of Pregnancy
3. Discussion and Way Forward
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- World Health Organization. World Malaria Report. Available online: https://www.who.int/publications/i/item/9789240040496 (accessed on 30 March 2022).
- White, N.J.; Pukrittayakamee, S.; Hien, T.T.; Faiz, M.A.; Mokuolu, O.A.; Dondorp, A.M. Malaria. Lancet 2014, 383, 723–735. [Google Scholar] [CrossRef]
- World Health Organization. Malaria. Available online: https://www.who.int/news-room/fact-sheets/detail/malaria (accessed on 1 May 2022).
- Rogerson, S.J.; Hviid, L.; Duffy, P.E.; Leke, R.F.; Taylor, D.W. Malaria in pregnancy: Pathogenesis and immunity. Lancet Infect. Dis. 2007, 7, 105–117. [Google Scholar] [CrossRef]
- Guyatt, H.L.; Snow, R.W. Impact of malaria during pregnancy on low birth weight in sub-Saharan Africa. Clin. Microbiol. Rev. 2004, 17, 760–769. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Desai, M.; ter Kuile, F.O.; Nosten, F.; McGready, R.; Asamoa, K.; Brabin, B.; Newman, R.D. Epidemiology and burden of malaria in pregnancy. Lancet Infect. Dis. 2007, 7, 93–104. [Google Scholar] [CrossRef]
- Bardaji, A.; Sigauque, B.; Bruni, L.; Romagosa, C.; Sanz, S.; Mabunda, S.; Mandomando, I.; Aponte, J.; Sevene, E.; Alonso, P.L.; et al. Clinical malaria in African pregnant women. Malar. J. 2008, 7, 27. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guyatt, H.L.; Snow, R.W. Malaria in pregnancy as an indirect cause of infant mortality in sub-Saharan Africa. Trans. R Soc. Trop. Med. Hyg. 2001, 95, 569–576. [Google Scholar] [CrossRef]
- World Health Organization. Protecting Malaria High-Risk Groups. Available online: https://www.who.int/activities/protecting-malaria-high-risk-groups (accessed on 1 May 2022).
- Flateau, C.; Le Loup, G.; Pialoux, G. Consequences of HIV infection on malaria and therapeutic implications: A systematic review. Lancet Infect. Dis. 2011, 11, 541–556. [Google Scholar] [CrossRef]
- ter Kuile, F.O.; Parise, M.E.; Verhoeff, F.H.; Udhayakumar, V.; Newman, R.D.; van Eijk, A.M.; Rogerson, S.J.; Steketee, R.W. The burden of co-infection with human immunodeficiency virus type 1 and malaria in pregnant women in sub-saharan Africa. Am. J. Trop. Med. Hyg. 2004, 71, 41–54. [Google Scholar] [CrossRef] [Green Version]
- Gonzalez, R.; Ataide, R.; Naniche, D.; Menendez, C.; Mayor, A. HIV and malaria interactions: Where do we stand? Expert Rev. Anti. Infect. Ther. 2012, 10, 153–165. [Google Scholar] [CrossRef] [PubMed]
- Kwenti, T.E. Malaria and HIV coinfection in sub-Saharan Africa: Prevalence, impact, and treatment strategies. Res. Rep. Trop. Med. 2018, 9, 123–136. [Google Scholar] [CrossRef] [Green Version]
- van Eijk, A.M.; Ayisi, J.G.; ter Kuile, F.O.; Misore, A.O.; Otieno, J.A.; Rosen, D.H.; Kager, P.A.; Steketee, R.W.; Nahlen, B.L. HIV increases the risk of malaria in women of all gravidities in Kisumu, Kenya. AIDS 2003, 17, 595–603. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. Policy Brief for the Implementation of Intermittent Preventive Treatment of Malaria in Pregnancy Using Sulfadoxine-Pyrimethamine (IPTp-SP). Available online: https://www.afro.who.int/sites/default/files/2017-06/iptp-sp-updated-policy-brief-24jan2014.pdf (accessed on 1 May 2022).
- Eisele, T.P.; Larsen, D.A.; Anglewicz, P.A.; Keating, J.; Yukich, J.; Bennett, A.; Hutchinson, P.; Steketee, R.W. Malaria prevention in pregnancy, birthweight, and neonatal mortality: A meta-analysis of 32 national cross-sectional datasets in Africa. Lancet Infect. Dis. 2012, 12, 942–949. [Google Scholar] [CrossRef]
- Radeva-Petrova, D.; Kayentao, K.; ter Kuile, F.O.; Sinclair, D.; Garner, P. Drugs for preventing malaria in pregnant women in endemic areas: Any drug regimen versus placebo or no treatment. Cochrane Database Syst. Rev. 2014, 10, CD000169. [Google Scholar] [CrossRef] [Green Version]
- Menendez, C.; Bardaji, A.; Sigauque, B.; Romagosa, C.; Sanz, S.; Serra-Casas, E.; Macete, E.; Berenguera, A.; David, C.; Dobano, C.; et al. A randomized placebo-controlled trial of intermittent preventive treatment in pregnant women in the context of insecticide treated nets delivered through the antenatal clinic. PLoS ONE 2008, 3, e1934. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Menendez, C.; Bardaji, A.; Sigauque, B.; Sanz, S.; Aponte, J.J.; Mabunda, S.; Alonso, P.L. Malaria prevention with IPTp during pregnancy reduces neonatal mortality. PLoS ONE 2010, 5, e9438. [Google Scholar] [CrossRef] [Green Version]
- Sridaran, S.; McClintock, S.K.; Syphard, L.M.; Herman, K.M.; Barnwell, J.W.; Udhayakumar, V. Anti-folate drug resistance in Africa: Meta-analysis of reported dihydrofolate reductase (dhfr) and dihydropteroate synthase (dhps) mutant genotype frequencies in African Plasmodium falciparum parasite populations. Malar. J. 2010, 9, 247. [Google Scholar] [CrossRef] [Green Version]
- World Health Organization. Global Report on Antimalarial Drug Efficacy and Drug Resistance. Available online: https://www.who.int/publications/i/item/9789240012813 (accessed on 1 May 2022).
- Peters, P.J.; Thigpen, M.C.; Parise, M.E.; Newman, R.D. Safety and toxicity of sulfadoxine/pyrimethamine: Implications for malaria prevention in pregnancy using intermittent preventive treatment. Drug. Saf. 2007, 30, 481–501. [Google Scholar] [CrossRef] [PubMed]
- Gonzalez, R.; Pons-Duran, C.; Bardaji, A.; Leke, R.G.F.; Clark, R.; Menendez, C. Systematic review of artemisinin embryotoxicity in animals: Implications for malaria control in human pregnancy. Toxicol. Appl. Pharmacol. 2020, 402, 115127. [Google Scholar] [CrossRef] [PubMed]
- Menendez, C.; D’Alessandro, U.; ter Kuile, F.O. Reducing the burden of malaria in pregnancy by preventive strategies. Lancet Infect. Dis. 2007, 7, 126–135. [Google Scholar] [CrossRef]
- Blehar, M.C.; Spong, C.; Grady, C.; Goldkind, S.F.; Sahin, L.; Clayton, J.A. Enrolling pregnant women: Issues in clinical research. Womens Health Issues 2013, 23, e39–e45. [Google Scholar] [CrossRef] [Green Version]
- Clerk, C.A.; Bruce, J.; Affipunguh, P.K.; Mensah, N.; Hodgson, A.; Greenwood, B.; Chandramohan, D. A randomized, controlled trial of intermittent preventive treatment with sulfadoxine-pyrimethamine, amodiaquine, or the combination in pregnant women in Ghana. J. Infect. Dis. 2008, 198, 1202–1211. [Google Scholar] [CrossRef]
- Briand, V.; Bottero, J.; Noel, H.; Masse, V.; Cordel, H.; Guerra, J.; Kossou, H.; Fayomi, B.; Ayemonna, P.; Fievet, N.; et al. Intermittent treatment for the prevention of malaria during pregnancy in Benin: A randomized, open-label equivalence trial comparing sulfadoxine-pyrimethamine with mefloquine. J. Infect. Dis. 2009, 200, 991–1001. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gonzalez, R.; Mombo-Ngoma, G.; Ouedraogo, S.; Kakolwa, M.A.; Abdulla, S.; Accrombessi, M.; Aponte, J.J.; Akerey-Diop, D.; Basra, A.; Briand, V.; et al. Intermittent preventive treatment of malaria in pregnancy with mefloquine in HIV-negative women: A multicentre randomized controlled trial. PLoS Med. 2014, 11, e1001733. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gonzalez, R.; Desai, M.; Macete, E.; Ouma, P.; Kakolwa, M.A.; Abdulla, S.; Aponte, J.J.; Bulo, H.; Kabanywanyi, A.M.; Katana, A.; et al. Intermittent preventive treatment of malaria in pregnancy with mefloquine in HIV-infected women receiving cotrimoxazole prophylaxis: A multicenter randomized placebo-controlled trial. PLoS Med. 2014, 11, e1001735. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Denoeud-Ndam, L.; Zannou, D.M.; Fourcade, C.; Taron-Brocard, C.; Porcher, R.; Atadokpede, F.; Komongui, D.G.; Dossou-Gbete, L.; Afangnihoun, A.; Ndam, N.T.; et al. Cotrimoxazole prophylaxis versus mefloquine intermittent preventive treatment to prevent malaria in HIV-infected pregnant women: Two randomized controlled trials. J. Acquir. Immune Defic. Syndr. 2014, 65, 198–206. [Google Scholar] [CrossRef]
- Akinyotu, O.; Bello, F.; Abdus-Salam, R.; Arowojolu, A. Comparative study of mefloquine and sulphadoxine-pyrimethamine for malaria prevention among pregnant women with HIV in southwest Nigeria. Int. J. Gynaecol. Obstet. 2018, 142, 194–200. [Google Scholar] [CrossRef]
- Kakuru, A.; Jagannathan, P.; Muhindo, M.K.; Natureeba, P.; Awori, P.; Nakalembe, M.; Opira, B.; Olwoch, P.; Ategeka, J.; Nayebare, P.; et al. Dihydroartemisinin-Piperaquine for the Prevention of Malaria in Pregnancy. N. Engl. J. Med. 2016, 374, 928–939. [Google Scholar] [CrossRef]
- Desai, M.; Gutman, J.; Taylor, S.M.; Wiegand, R.E.; Khairallah, C.; Kayentao, K.; Ouma, P.; Coulibaly, S.O.; Kalilani, L.; Mace, K.E.; et al. Impact of Sulfadoxine-Pyrimethamine Resistance on Effectiveness of Intermittent Preventive Therapy for Malaria in Pregnancy at Clearing Infections and Preventing Low Birth Weight. Clin. Infect. Dis. 2016, 62, 323–333. [Google Scholar] [CrossRef] [Green Version]
- Natureeba, P.; Kakuru, A.; Muhindo, M.; Ochieng, T.; Ategeka, J.; Koss, C.A.; Plenty, A.; Charlebois, E.D.; Clark, T.D.; Nzarubara, B.; et al. Intermittent Preventive Treatment with Dihydroartemisinin-Piperaquine for the Prevention of Malaria Among HIV-Infected Pregnant Women. J. Infect. Dis. 2017, 216, 29–35. [Google Scholar] [CrossRef] [Green Version]
- Kajubi, R.; Ochieng, T.; Kakuru, A.; Jagannathan, P.; Nakalembe, M.; Ruel, T.; Opira, B.; Ochokoru, H.; Ategeka, J.; Nayebare, P.; et al. Monthly sulfadoxine-pyrimethamine versus dihydroartemisinin-piperaquine for intermittent preventive treatment of malaria in pregnancy: A double-blind, randomised, controlled, superiority trial. Lancet 2019, 393, 1428–1439. [Google Scholar] [CrossRef]
- Mlugu, E.M.; Minzi, O.; Kamuhabwa, A.A.R.; Aklillu, E. Effectiveness of Intermittent Preventive Treatment with Dihydroartemisinin-Piperaqunine Against Malaria in Pregnancy in Tanzania: A Randomized Controlled Trial. Clin. Pharmacol. Ther. 2021, 110, 1478–1489. [Google Scholar] [CrossRef] [PubMed]
- Divala, T.H.; Mungwira, R.G.; Mawindo, P.M.; Nyirenda, O.M.; Kanjala, M.; Ndaferankhande, M.; Tsirizani, L.E.; Masonga, R.; Muwalo, F.; Boudova, S.; et al. Chloroquine as weekly chemoprophylaxis or intermittent treatment to prevent malaria in pregnancy in Malawi: A randomised controlled trial. Lancet Infect. Dis. 2018, 18, 1097–1107. [Google Scholar] [CrossRef]
- Akinyotu, O.; Bello, F.; Abdus-Salam, R.; Arowojolu, A. A randomized controlled trial of azithromycin and sulphadoxine-pyrimethamine as prophylaxis against malaria in pregnancy among human immunodeficiency virus-positive women. Trans. R. Soc. Trop. Med. Hyg. 2019, 113, 463–470. [Google Scholar] [CrossRef] [PubMed]
- Luntamo, M.; Kulmala, T.; Mbewe, B.; Cheung, Y.B.; Maleta, K.; Ashorn, P. Effect of repeated treatment of pregnant women with sulfadoxine-pyrimethamine and azithromycin on preterm delivery in Malawi: A randomized controlled trial. Am. J. Trop. Med. Hyg. 2010, 83, 1212–1220. [Google Scholar] [CrossRef] [Green Version]
- Kimani, J.; Phiri, K.; Kamiza, S.; Duparc, S.; Ayoub, A.; Rojo, R.; Robbins, J.; Orrico, R.; Vandenbroucke, P. Efficacy and Safety of Azithromycin-Chloroquine versus Sulfadoxine-Pyrimethamine for Intermittent Preventive Treatment of Plasmodium falciparum Malaria Infection in Pregnant Women in Africa: An Open-Label, Randomized Trial. PLoS ONE 2016, 11, e0157045. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- PubChem. Amodiaquine. Available online: https://pubchem.ncbi.nlm.nih.gov/compound/Amodiaquine (accessed on 1 June 2022).
- Tagbor, H.; Bruce, J.; Browne, E.; Randal, A.; Greenwood, B.; Chandramohan, D. Efficacy, safety, and tolerability of amodiaquine plus sulphadoxine-pyrimethamine used alone or in combination for malaria treatment in pregnancy: A randomised trial. Lancet 2006, 368, 1349–1356. [Google Scholar] [CrossRef]
- Massaga, J.J.; Kitua, A.Y.; Lemnge, M.M.; Akida, J.A.; Malle, L.N.; Ronn, A.M.; Theander, T.G.; Bygbjerg, I.C. Effect of intermittent treatment with amodiaquine on anaemia and malarial fevers in infants in Tanzania: A randomised placebo-controlled trial. Lancet 2003, 361, 1853–1860. [Google Scholar] [CrossRef]
- Taylor, W.R.; White, N.J. Antimalarial drug toxicity: A review. Drug Saf. 2004, 27, 25–61. [Google Scholar] [CrossRef]
- Assi, S.B.; Aba, Y.T.; Yavo, J.C.; Nguessan, A.F.; Tchiekoi, N.B.; San, K.M.; Bissagnene, E.; Duparc, S.; Lameyre, V.; Tanoh, M.A. Safety of a fixed-dose combination of artesunate and amodiaquine for the treatment of uncomplicated Plasmodium falciparum malaria in real-life conditions of use in Cote d’Ivoire. Malar. J. 2017, 16, 8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Steketee, R.W.; Wirima, J.J.; Slutsker, L.; Heymann, D.L.; Breman, J.G. The problem of malaria and malaria control in pregnancy in sub-Saharan Africa. Am. J. Trop. Med. Hyg. 1996, 55, 2–7. [Google Scholar] [CrossRef] [PubMed]
- Schrezenmeier, E.; Dorner, T. Mechanisms of action of hydroxychloroquine and chloroquine: Implications for rheumatology. Nat. Rev. Rheumatol. 2020, 16, 155–166. [Google Scholar] [CrossRef]
- Cot, M.; Le Hesran, J.Y.; Miailhes, P.; Esveld, M.; Etya’ale, D.; Breart, G. Increase of birth weight following chloroquine chemoprophylaxis during the first pregnancy: Results of a randomized trial in Cameroon. Am. J. Trop. Med. Hyg. 1995, 53, 581–585. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cot, M.; Roisin, A.; Barro, D.; Yada, A.; Verhave, J.P.; Carnevale, P.; Breart, G. Effect of chloroquine chemoprophylaxis during pregnancy on birth weight: Results of a randomized trial. Am. J. Trop. Med. Hyg. 1992, 46, 21–27. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ndyomugyenyi, R.; Magnussen, P. Chloroquine prophylaxis, iron/folic-acid supplementation or case management of malaria attacks in primigravidae in western Uganda: Effects on congenital malaria and infant haemoglobin concentrations. Ann. Trop. Med. Parasitol. 2000, 94, 759–768. [Google Scholar] [CrossRef]
- Laufer, M.K.; Thesing, P.C.; Eddington, N.D.; Masonga, R.; Dzinjalamala, F.K.; Takala, S.L.; Taylor, T.E.; Plowe, C.V. Return of chloroquine antimalarial efficacy in Malawi. N. Engl. J. Med. 2006, 355, 1959–1966. [Google Scholar] [CrossRef]
- Wurtz, N.; Fall, B.; Pascual, A.; Diawara, S.; Sow, K.; Baret, E.; Diatta, B.; Fall, K.B.; Mbaye, P.S.; Fall, F.; et al. Prevalence of molecular markers of Plasmodium falciparum drug resistance in Dakar, Senegal. Malar. J. 2012, 11, 197. [Google Scholar] [CrossRef] [Green Version]
- Mohammed, A.; Ndaro, A.; Kalinga, A.; Manjurano, A.; Mosha, J.F.; Mosha, D.F.; van Zwetselaar, M.; Koenderink, J.B.; Mosha, F.W.; Alifrangis, M.; et al. Trends in chloroquine resistance marker, Pfcrt-K76T mutation ten years after chloroquine withdrawal in Tanzania. Malar. J. 2013, 12, 415. [Google Scholar] [CrossRef] [Green Version]
- Mwanza, S.; Joshi, S.; Nambozi, M.; Chileshe, J.; Malunga, P.; Kabuya, J.B.; Hachizovu, S.; Manyando, C.; Mulenga, M.; Laufer, M. The return of chloroquine-susceptible Plasmodium falciparum malaria in Zambia. Malar. J. 2016, 15, 584. [Google Scholar] [CrossRef] [Green Version]
- Chico, R.M.; Ter Kuile, F.O. Back to chloroquine for malaria prophylaxis in pregnancy? Lancet Infect. Dis. 2018, 18, 1051–1052. [Google Scholar] [CrossRef]
- Bloland, P.B.; Lackritz, E.M.; Kazembe, P.N.; Were, J.B.; Steketee, R.; Campbell, C.C. Beyond chloroquine: Implications of drug resistance for evaluating malaria therapy efficacy and treatment policy in Africa. J. Infect. Dis. 1993, 167, 932–937. [Google Scholar] [CrossRef] [PubMed]
- Gonzalez, R.; Hellgren, U.; Greenwood, B.; Menendez, C. Mefloquine safety and tolerability in pregnancy: A systematic literature review. Malar. J. 2014, 13, 75. [Google Scholar] [CrossRef] [PubMed]
- Center for Disease Control and Prevention. Malaria—Update: New Recommendations for Mefloquine Use in Pregnancy. Available online: https://www.cdc.gov/malaria/new_info/2011/mefloquine_pregnancy.html (accessed on 3 March 2022).
- Gonzalez, R.; Pons-Duran, C.; Piqueras, M.; Aponte, J.J.; Ter Kuile, F.O.; Menendez, C. Mefloquine for preventing malaria in pregnant women. Cochrane Database Syst. Rev. 2018, 11, CD011444. [Google Scholar] [CrossRef] [Green Version]
- Ruperez, M.; Gonzalez, R.; Mombo-Ngoma, G.; Kabanywanyi, A.M.; Sevene, E.; Ouedraogo, S.; Kakolwa, M.A.; Vala, A.; Accrombessi, M.; Briand, V.; et al. Mortality, Morbidity, and Developmental Outcomes in Infants Born to Women Who Received Either Mefloquine or Sulfadoxine-Pyrimethamine as Intermittent Preventive Treatment of Malaria in Pregnancy: A Cohort Study. PLoS Med. 2016, 13, e1001964. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Toovey, S. Mefloquine neurotoxicity: A literature review. Travel. Med. Infect. Dis. 2009, 7, 2–6. [Google Scholar] [CrossRef] [PubMed]
- WHO Malaria Policy Advisory Committee and Secretariat. Malaria Policy Advisory Committee to the WHO: Conclusions and recommendations of September 2012 meeting. Malar. J. 2012, 11, 424. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- WHO Guidelines for Malaria. Available online: https://www.who.int/publications/i/item/guidelines-for-malaria (accessed on 15 April 2022).
- Smithuis, F.; Kyaw, M.K.; Phe, O.; Aye, K.Z.; Htet, L.; Barends, M.; Lindegardh, N.; Singtoroj, T.; Ashley, E.; Lwin, S.; et al. Efficacy and effectiveness of dihydroartemisinin-piperaquine versus artesunate-mefloquine in falciparum malaria: An open-label randomised comparison. Lancet 2006, 367, 2075–2085. [Google Scholar] [CrossRef] [Green Version]
- Zongo, I.; Milligan, P.; Compaore, Y.D.; Some, A.F.; Greenwood, B.; Tarning, J.; Rosenthal, P.J.; Sutherland, C.; Nosten, F.; Ouedraogo, J.B. Randomized Noninferiority Trial of Dihydroartemisinin-Piperaquine Compared with Sulfadoxine-Pyrimethamine plus Amodiaquine for Seasonal Malaria Chemoprevention in Burkina Faso. Antimicrob. Agents Chemother. 2015, 59, 4387–4396. [Google Scholar] [CrossRef] [Green Version]
- White, N.J. Intermittent presumptive treatment for malaria. PLoS Med. 2005, 2, e3. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Four Artemisinin-Based Combinations (4ABC) Study Group. A head-to-head comparison of four artemisinin-based combinations for treating uncomplicated malaria in African children: A randomized trial. PLoS Med. 2011, 8, e1001119. [Google Scholar] [CrossRef] [Green Version]
- Desai, M.; Gutman, J.; L’Lanziva, A.; Otieno, K.; Juma, E.; Kariuki, S.; Ouma, P.; Were, V.; Laserson, K.; Katana, A.; et al. Intermittent screening and treatment or intermittent preventive treatment with dihydroartemisinin-piperaquine versus intermittent preventive treatment with sulfadoxine-pyrimethamine for the control of malaria during pregnancy in western Kenya: An open-label, three-group, randomised controlled superiority trial. Lancet 2015, 386, 2507–2519. [Google Scholar] [CrossRef] [Green Version]
- Kakuru, A.; Jagannathan, P.; Kajubi, R.; Ochieng, T.; Ochokoru, H.; Nakalembe, M.; Clark, T.D.; Ruel, T.; Staedke, S.G.; Chandramohan, D.; et al. Impact of intermittent preventive treatment of malaria in pregnancy with dihydroartemisinin-piperaquine versus sulfadoxine-pyrimethamine on the incidence of malaria in infancy: A randomized controlled trial. BMC Med. 2020, 18, 207. [Google Scholar] [CrossRef] [PubMed]
- Kakuru, A.; Roh, M.E.; Kajubi, R.; Ochieng, T.; Ategeka, J.; Ochokoru, H.; Nakalembe, M.; Clark, T.D.; Ruel, T.; Staedke, S.G.; et al. Infant sex modifies associations between placental malaria and risk of malaria in infancy. Malar. J. 2020, 19, 449. [Google Scholar] [CrossRef]
- Myint, H.Y.; Ashley, E.A.; Day, N.P.; Nosten, F.; White, N.J. Efficacy and safety of dihydroartemisinin-piperaquine. Trans. R Soc. Trop. Med. Hyg. 2007, 101, 858–866. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- European Medicines Agency. Eurartesim. Available online: https://www.ema.europa.eu/en/medicines/human/EPAR/eurartesim (accessed on 1 May 2022).
- Committee for Medicinal Products for Human Use. Assessment Report—Eurartesim. Available online: www.ema.europa.eu (accessed on 1 May 2022).
- Darpo, B.; Ferber, G.; Siegl, P.; Laurijssens, B.; Macintyre, F.; Toovey, S.; Duparc, S. Evaluation of the QT effect of a combination of piperaquine and a novel anti-malarial drug candidate OZ439, for the treatment of uncomplicated malaria. Br. J. Clin. Pharmacol. 2015, 80, 706–715. [Google Scholar] [CrossRef] [PubMed]
- Foulds, G.; Shepard, R.M.; Johnson, R.B. The pharmacokinetics of azithromycin in human serum and tissues. J. Antimicrob. Chemother. 1990, 25 (Suppl. A), 73–82. [Google Scholar] [CrossRef]
- Handsfield, H.H.; Dalu, Z.A.; Martin, D.H.; Douglas, J.M., Jr.; McCarty, J.M.; Schlossberg, D. Multicenter trial of single-dose azithromycin vs. ceftriaxone in the treatment of uncomplicated gonorrhea. Azithromycin Gonorrhea Study Group. Sex. Transm. Dis. 1994, 21, 107–111. [Google Scholar] [CrossRef]
- St Cyr, S.; Barbee, L.; Workowski, K.A.; Bachmann, L.H.; Pham, C.; Schlanger, K.; Torrone, E.; Weinstock, H.; Kersh, E.N.; Thorpe, P. Update to CDC’s Treatment Guidelines for Gonococcal Infection, 2020. MMWR Morb. Mortal. Wkly. Rep. 2020, 69, 1911–1916. [Google Scholar] [CrossRef]
- World Health Organization. Yaws. Available online: https://www.who.int/news-room/fact-sheets/detail/yaws (accessed on 2 May 2022).
- van den Broek, N.R.; White, S.A.; Goodall, M.; Ntonya, C.; Kayira, E.; Kafulafula, G.; Neilson, J.P. The APPLe study: A randomized, community-based, placebo-controlled trial of azithromycin for the prevention of preterm birth, with meta-analysis. PLoS Med. 2009, 6, e1000191. [Google Scholar] [CrossRef] [PubMed]
- Nkhoma, S.; Molyneux, M.; Ward, S. Molecular surveillance for drug-resistant Plasmodiumfalciparum malaria in Malawi. Acta Trop. 2007, 102, 138–142. [Google Scholar] [CrossRef]
- Abera, B.; Kibret, M. Azithromycin, fluoroquinolone and chloramphenicol resistance of non-chlamydia conjunctival bacteria in rural community of Ethiopia. Indian J. Ophthalmol. 2014, 62, 236–239. [Google Scholar] [CrossRef]
- Lin, K.J.; Mitchell, A.A.; Yau, W.P.; Louik, C.; Hernandez-Diaz, S. Safety of macrolides during pregnancy. Am. J. Obstet. Gynecol. 2013, 208, e221–e228. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Food and Drug Administration. Zithromax®. Available online: https://www.accessdata.fda.gov/drugsatfda_docs/label/2013/050710s039,050711s036,050784s023lbl.pdf (accessed on 3 May 2022).
- Luntamo, M.; Kulmala, T.; Cheung, Y.B.; Maleta, K.; Ashorn, P. The effect of antenatal monthly sulphadoxine-pyrimethamine, alone or with azithromycin, on foetal and neonatal growth faltering in Malawi: A randomised controlled trial. Trop. Med. Int. Health 2013, 18, 386–397. [Google Scholar] [CrossRef]
- Luntamo, M.; Rantala, A.M.; Meshnick, S.R.; Cheung, Y.B.; Kulmala, T.; Maleta, K.; Ashorn, P. The effect of monthly sulfadoxine-pyrimethamine, alone or with azithromycin, on PCR-diagnosed malaria at delivery: A randomized controlled trial. PLoS ONE 2012, 7, e41123. [Google Scholar] [CrossRef] [Green Version]
- Unger, H.W.; Ome-Kaius, M.; Wangnapi, R.A.; Umbers, A.J.; Hanieh, S.; Suen, C.S.; Robinson, L.J.; Rosanas-Urgell, A.; Wapling, J.; Lufele, E.; et al. Sulphadoxine-pyrimethamine plus azithromycin for the prevention of low birthweight in Papua New Guinea: A randomised controlled trial. BMC Med. 2015, 13, 9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Unger, H.W.; Hansa, A.P.; Buffet, C.; Hasang, W.; Teo, A.; Randall, L.; Ome-Kaius, M.; Karl, S.; Anuan, A.A.; Beeson, J.G.; et al. Sulphadoxine-pyrimethamine plus azithromycin may improve birth outcomes through impacts on inflammation and placental angiogenesis independent of malarial infection. Sci. Rep. 2019, 9, 2260. [Google Scholar] [CrossRef] [PubMed]
- Moore, B.R.; Benjamin, J.M.; Tobe, R.; Ome-Kaius, M.; Yadi, G.; Kasian, B.; Kong, C.; Robinson, L.J.; Laman, M.; Mueller, I.; et al. A Randomized Open-Label Evaluation of the Antimalarial Prophylactic Efficacy of Azithromycin-Piperaquine versus Sulfadoxine-Pyrimethamine in Pregnant Papua New Guinean Women. Antimicrob. Agents Chemother. 2019, 63, e00302-19. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moore, B.R.; Benjamin, J.M.; Auyeung, S.O.; Salman, S.; Yadi, G.; Griffin, S.; Page-Sharp, M.; Batty, K.T.; Siba, P.M.; Mueller, I.; et al. Safety, tolerability and pharmacokinetic properties of coadministered azithromycin and piperaquine in pregnant Papua New Guinean women. Br. J. Clin. Pharmacol. 2016, 82, 199–212. [Google Scholar] [CrossRef] [PubMed]
- UNAIDS Data 2021; Joint United Nations Programme on HIV/AIDS: Geneva, Switzerland, 2021.
- World Health Organization. Consolidated Guidelines on the Use of Antiretroviral Drugs for Treating and Preventing HIV Infection. Available online: https://www.who.int/publications/i/item/9789241549684 (accessed on 1 May 2022).
- Sandison, T.G.; Homsy, J.; Arinaitwe, E.; Wanzira, H.; Kakuru, A.; Bigira, V.; Kalamya, J.; Vora, N.; Kublin, J.; Kamya, M.R.; et al. Protective efficacy of co-trimoxazole prophylaxis against malaria in HIV exposed children in rural Uganda: A randomised clinical trial. BMJ 2011, 342, d1617. [Google Scholar] [CrossRef] [Green Version]
- Mermin, J.; Ekwaru, J.P.; Liechty, C.A.; Were, W.; Downing, R.; Ransom, R.; Weidle, P.; Lule, J.; Coutinho, A.; Solberg, P. Effect of co-trimoxazole prophylaxis, antiretroviral therapy, and insecticide-treated bednets on the frequency of malaria in HIV-1-infected adults in Uganda: A prospective cohort study. Lancet 2006, 367, 1256–1261. [Google Scholar] [CrossRef]
- Kapito-Tembo, A.; Meshnick, S.R.; van Hensbroek, M.B.; Phiri, K.; Fitzgerald, M.; Mwapasa, V. Marked reduction in prevalence of malaria parasitemia and anemia in HIV-infected pregnant women taking cotrimoxazole with or without sulfadoxine-pyrimethamine intermittent preventive therapy during pregnancy in Malawi. J. Infect. Dis. 2011, 203, 464–472. [Google Scholar] [CrossRef] [Green Version]
- Brentlinger, P.E.; Behrens, C.B.; Micek, M.A. Challenges in the concurrent management of malaria and HIV in pregnancy in sub-Saharan Africa. Lancet Infect. Dis. 2006, 6, 100–111. [Google Scholar] [CrossRef]
- World Health Organization. Malaria in HIV/AIDS Patients. Available online: https://www.who.int/malaria/areas/high_risk_groups/hiv_aids_patients/en/ (accessed on 30 May 2022).
- Gonzalez, R.; Sevene, E.; Jagoe, G.; Slutsker, L.; Menendez, C. A Public Health Paradox: The Women Most Vulnerable to Malaria Are the Least Protected. PLoS Med. 2016, 13, e1002014. [Google Scholar] [CrossRef] [Green Version]
- Klement, E.; Pitche, P.; Kendjo, E.; Singo, A.; D’Almeida, S.; Akouete, F.; Akpaloo, Y.; Tossa, K.; Prince-Agbodjan, S.; Patassi, A.; et al. Effectiveness of co-trimoxazole to prevent Plasmodium falciparum malaria in HIV-positive pregnant women in sub-Saharan Africa: An open-label, randomized controlled trial. Clin. Infect. Dis. 2014, 58, 651–659. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Manyando, C.; Njunju, E.M.; Mwakazanga, D.; Chongwe, G.; Mkandawire, R.; Champo, D.; Mulenga, M.; De Crop, M.; Claeys, Y.; Ravinetto, R.M.; et al. Safety of daily co-trimoxazole in pregnancy in an area of changing malaria epidemiology: A phase 3b randomized controlled clinical trial. PLoS ONE 2014, 9, e96017. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Haaland, R.E.; Otieno, K.; Martin, A.; Katana, A.; Dinh, C.; Slutsker, L.; Menendez, C.; Gonzalez, R.; Williamson, J.; Heneine, W.; et al. Short Communication: Reduced Nevirapine Concentrations Among HIV-Positive Women Receiving Mefloquine for Intermittent Preventive Treatment for Malaria Control During Pregnancy. AIDS Res. Hum. Retrovir. 2018, 34, 912–915. [Google Scholar] [CrossRef] [PubMed]
- Alem, A.Z.; Yeshaw, Y.; Liyew, A.M.; Tesema, G.A.; Alamneh, T.S.; Worku, M.G.; Teshale, A.B.; Tessema, Z.T. Timely initiation of antenatal care and its associated factors among pregnant women in sub-Saharan Africa: A multicountry analysis of Demographic and Health Surveys. PLoS ONE 2022, 17, e0262411. [Google Scholar] [CrossRef]
- Accrombessi, M.; Yovo, E.; Fievet, N.; Cottrell, G.; Agbota, G.; Gartner, A.; Martin-Prevel, Y.; Vianou, B.; Sossou, D.; Fanou-Fogny, N.; et al. Effects of Malaria in the First Trimester of Pregnancy on Poor Maternal and Birth Outcomes in Benin. Clin. Infect. Dis. 2019, 69, 1385–1393. [Google Scholar] [CrossRef] [PubMed]
- Huynh, B.T.; Fievet, N.; Gbaguidi, G.; Dechavanne, S.; Borgella, S.; Guezo-Mevo, B.; Massougbodji, A.; Ndam, N.T.; Deloron, P.; Cot, M. Influence of the timing of malaria infection during pregnancy on birth weight and on maternal anemia in Benin. Am. J. Trop. Med. Hyg. 2011, 85, 214–220. [Google Scholar] [CrossRef] [PubMed]
- Cottrell, G.; Mary, J.Y.; Barro, D.; Cot, M. The importance of the period of malarial infection during pregnancy on birth weight in tropical Africa. Am. J. Trop. Med. Hyg. 2007, 76, 849–854. [Google Scholar] [CrossRef] [Green Version]
- Sicuri, E.; Fernandes, S.; Macete, E.; Gonzalez, R.; Mombo-Ngoma, G.; Massougbodgi, A.; Abdulla, S.; Kuwawenaruwa, A.; Katana, A.; Desai, M.; et al. Economic evaluation of an alternative drug to sulfadoxine-pyrimethamine as intermittent preventive treatment of malaria in pregnancy. PLoS ONE 2015, 10, e0125072. [Google Scholar] [CrossRef] [Green Version]
- Desai, M.; Hill, J.; Fernandes, S.; Walker, P.; Pell, C.; Gutman, J.; Kayentao, K.; Gonzalez, R.; Webster, J.; Greenwood, B.; et al. Prevention of malaria in pregnancy. Lancet Infect. Dis. 2018, 18, e119–e132. [Google Scholar] [CrossRef]
- Gonzalez, R.; Nhampossa, T.; Mombo-Ngoma, G.; Mischlinger, J.; Esen, M.; Tchouatieu, A.M.; Pons-Duran, C.; Dimessa, L.B.; Lell, B.; Lagler, H.; et al. Evaluation of the safety and efficacy of dihydroartemisinin-piperaquine for intermittent preventive treatment of malaria in HIV-infected pregnant women: Protocol of a multicentre, two-arm, randomised, placebo-controlled, superiority clinical trial (MAMAH project). BMJ Open 2021, 11, e053197. [Google Scholar] [CrossRef]
- ClinicalTrials.gov. Improving PRegnancy Outcomes with PReVEntive Therapy in Africa-2 (IMPROVE-2). Available online: https://clinicaltrials.gov/ct2/show/NCT04158713 (accessed on 16 May 2022).
- Balikagala, B.; Fukuda, N.; Ikeda, M.; Katuro, O.T.; Tachibana, S.I.; Yamauchi, M.; Opio, W.; Emoto, S.; Anywar, D.A.; Kimura, E.; et al. Evidence of Artemisinin-Resistant Malaria in Africa. N. Engl. J. Med. 2021, 385, 1163–1171. [Google Scholar] [CrossRef]
- The Global Fund. Pooled Procurement Mechanism Reference Pricing: Antimalarial Medicines. Available online: https://www.theglobalfund.org/media/5812/ppm_actreferencepricing_table_en.pdf (accessed on 20 July 2022).
- Fernandes, S.; Were, V.; Gutman, J.; Dorsey, G.; Kakuru, A.; Desai, M.; Kariuki, S.; Kamya, M.R.; Ter Kuile, F.O.; Hanson, K. Cost-effectiveness of intermittent preventive treatment with dihydroartemisinin-piperaquine for malaria during pregnancy: An analysis using efficacy results from Uganda and Kenya, and pooled data. Lancet Glob. Health. 2020, 8, e1512–e1523. [Google Scholar] [CrossRef]
- ClinicalTrials.gov. Comparison of ISTp- PYRAMAX-US-RDT to IPTp-SP to Prevent Malaria in Pregnant Women in DRC (ULTRAPYRAPREG). Available online: https://clinicaltrials.gov/ct2/show/NCT04783051 (accessed on 17 May 2022).
- ClinicalTrials.gov. The ASPIRE Trial-Aiming for Safe Pregnancies by Reducing Malaria and Infections of the Reproductive Tract. Available online: https://clinicaltrials.gov/ct2/show/NCT04189744 (accessed on 17 May 2022).
- Salman, S.; Davis, T.M.E.; Moore, B. Defining the combined benefit of intermittent preventive malaria treatment in pregnancy. Lancet Glob. Health. 2020, 8, e871–e872. [Google Scholar] [CrossRef]
- Smith, A. Metronidazole resistance: A hidden epidemic? Br. Dent. J. 2018, 224, 403–404. [Google Scholar] [CrossRef] [PubMed]
- Full Evidence Report on the RTS,S/AS01 Malaria Vaccine; World Health Organization: Geneva, Switzerland, 2021.
- Sirima, S.B.; Richert, L.; Chene, A.; Konate, A.T.; Campion, C.; Dechavanne, S.; Semblat, J.P.; Benhamouda, N.; Bahuaud, M.; Loulergue, P.; et al. PRIMVAC vaccine adjuvanted with Alhydrogel or GLA-SE to prevent placental malaria: A first-in-human, randomised, double-blind, placebo-controlled study. Lancet Infect. Dis. 2020, 20, 585–597. [Google Scholar] [CrossRef]
- Mordmuller, B.; Sulyok, M.; Egger-Adam, D.; Resende, M.; de Jongh, W.A.; Jensen, M.H.; Smedegaard, H.H.; Ditlev, S.B.; Soegaard, M.; Poulsen, L.; et al. First-in-human, Randomized, Double-blind Clinical Trial of Differentially Adjuvanted PAMVAC, A Vaccine Candidate to Prevent Pregnancy-associated Malaria. Clin. Infect. Dis. 2019, 69, 1509–1516. [Google Scholar] [CrossRef] [Green Version]
- Gaudinski, M.R.; Berkowitz, N.M.; Idris, A.H.; Coates, E.E.; Holman, L.A.; Mendoza, F.; Gordon, I.J.; Plummer, S.H.; Trofymenko, O.; Hu, Z.; et al. A Monoclonal Antibody for Malaria Prevention. N. Engl. J. Med. 2021, 385, 803–814. [Google Scholar] [CrossRef] [PubMed]
- Dellicour, S.; Tatem, A.J.; Guerra, C.A.; Snow, R.W.; ter Kuile, F.O. Quantifying the number of pregnancies at risk of malaria in 2007: A demographic study. PLoS Med. 2010, 7, e1000221. [Google Scholar] [CrossRef] [Green Version]
- Khoo, S.; Back, D.; Winstanley, P. The potential for interactions between antimalarial and antiretroviral drugs. AIDS 2005, 19, 995–1005. [Google Scholar] [CrossRef] [PubMed]
- El Gaaloul, M.; Tornesi, B.; Lebus, F.; Reddy, D.; Kaszubska, W. Re-orienting anti-malarial drug development to better serve pregnant women. Malar. J. 2022, 21, 121. [Google Scholar] [CrossRef] [PubMed]
Drug | Study | Study Design | Study Year and Location | Malaria Indicators | Safety on Pregnancy Outcomes | Tolerability | Conclusion |
---|---|---|---|---|---|---|---|
AQ | [26] Clerk et al., 2008 | Double-blind, three-arm RCT
| 2004–2007 Ghana |
|
| Women who received AQ or SPAQ were more likely to report adverse events than were those who received SP. Symptoms were usually mild, including bodily pains and weakness, dizziness, vomiting, and nausea. |
|
MQ | [27] Briand et al., 2009 | Open-label equivalence RCT
| 2005–2008 Benin |
|
|
| MQ proved to be highly efficacious for use as IPTp. Its low tolerability might impair its effectiveness. |
[28] González et al., 2014 | Open label, Three-arm, RCT
| 2009–2013 Benin, Gabon, Tanzania, Mozambique |
|
|
| The results of this study do not support a change in the current recommended IPTp policy. | |
[29] González et al., 2014 | Double-blind two arm RCT:
| 2009–2013 Kenya, Tanzania and Mozambique | IPTp-MQ was associated with reduced rates of
|
| Drug tolerability was poorer in the MQ group compared to the control group (dizziness and vomiting after the first IPTp-MQ administration). | Its potential for IPTp is limited given poor drug tolerability and given that MQ was associated with an increased risk of mother-to-child transmission of HIV. | |
[30] Denoueud-Ndam 2014 et al. (I) | Open label, non-inferiority RCT
| 2009–2011 Benin |
| No statistically significant differences were either observed regarding birth weight, or prematurity. | Vomiting, nausea, dizziness, and fatigue were more frequently reported with MQ. | Small sample size MQ-IPTp may be an effective alternative given concern about parasite resistance to CTX | |
[30] Denoueud-Ndam 2014 et al. (II) | Open label, non-RCT
| 2009–2011 Benin | Because of the small sample size obtained, noninferiority could not be conclusively assessed. No statistically significant differences were observed regarding peripheral parasitemia at delivery and maternal hemoglobin | No statistically significant differences were either observed regarding birth weight, or prematurity. | Vomiting, nausea, dizziness, and fatigue were more frequently reported with MQ. | MQ-IPTp may be an effective alternative given concern about parasite resistance to CTX | |
[31] Akinyotu et al., 2018 | Open label RCT
| 2016 Nigeria |
| No statistically significant differences were found in the incidence of preterm birth and LBW. | There was no significant difference in the occurrence of vomiting, gastric pain, headache and dizziness. Nausea was eight times more likely to occur in the MQ group. | Outcomes following use of IPTp-PQ were comparable to IPTp-SP treatment. The authors concluded that MQ is a feasible alternative therapy. | |
DP | [32] Kakuru et al., 2016 | Three-arm, double-blind, RCT
| 2014 Uganda |
|
|
| IPTp-DP during pregnancy resulted in a lower burden of malaria than did treatment with SP. |
[33] Desai et al., 2016 | Three-arm, open-label RCT
| 2012–2014 Kenya |
| Women in the IPTp-DP group had fewer stillbirths, and infant mortality than those in the IPTp-SP group. Prevalence of LBW, small for gestational age, and preterm delivery did not differ significantly between groups. |
| DP is a promising alternative drug to replace SP for IPTp. | |
[34] Natureeba et al., 2017 | Double-blinded, RCT
| 2014–2015 Uganda | No statistically significant difference in
| No statistically significant difference in the incidence of adverse birth outcomes among both arms. | There were no significant differences in the incidence of adverse events of any severity. | Adding monthly DP to daily CTX did not reduce the risk of placental or maternal malaria or improve birth outcomes. | |
[35] Kajubi et al., 2019 | Double-blind, RCT
| 2016–2017 Uganda | IPTp-DP was associated with lower:
|
|
| Monthly IPTp-DP was safe but did not lead to significant improvements in birth outcomes compared with SP. | |
[36] Mlugu et al., 2021 | Open-label RCT
| 2017–2019 Tanzania | IPTp-DP was associated with lower:
| The prevalence of any adverse birth outcomes was not significantly different between groups. The prevalence of LBW was significantly lower in IPTp-DP. | There was no significant difference in the prevalence of adverse drug events between the treatment groups. | There was a significantly higher protective efficacy of IPTp-DP compared to monthly IPTp-SP. | |
CQ | [37] Divala et al., 2018 | Three arm, open-label, RCT
| 2012–2014 Malawi | There was no difference in the risk of
| There were no differences in adverse pregnancy outcomes between arms. | Both CQ treatment regimens were associated with higher rates of treatment-related adverse events than the SP-IPTp regimen. | This study did not have enough superiority evidence of chloroquine either as IPTp or as chemoprophylaxis versus SP-IPTp for prevention of malaria during pregnancy and associated maternal and infant adverse outcomes. |
AZ | [38] Akinyotu et al., 2019 | Open-label RCT
| 2015–2016 Nigeria | No statistically significant difference in the incidence of malaria parasitaemia at delivery and placental parasitization among arms. | No significant difference in preterm birth and LBW between both arms. | Nausea was significantly higher in the AZ group compared with the SP group. There were no statistically significant differences among groups in the presence of dizziness and headache. | The use of AZ for malaria prevention in HIV-positive pregnant women has a comparable outcome to SP. It is tolerable and has few maternal and foetal adverse effects |
AZSP | [39] Luntamo et al., 2010 | RCT
| 2003–2006 Malawi | Compared with the controls, participants in the monthly SP and AZSP groups had a statistically significant lower prevalence of peripheral malaria parasitemia at 32 gestation weeks. | IPTp-SPAZ was associated with lower incidence of preterm delivery and LBWIPTp-SPAZ and monthly IPTp-SP were associated with higher mean duration of pregnancy. | Incidence of serious adverse events was low in all groups. | This intervention could be efficacious, but the impact would heavily depend on the local epidemiology and resistance of malaria. |
AZCQ | [40] Kimani et al., 2016 | Open-label RCT
| 2010–2013 Benin, Kenya, Tanzania, Uganda | Statistically significant reduction in
| There was no significant difference in the incidence of LBW between treatment groups in the IPTp-AZCQ group. | AEs such as vomiting, dizziness, headache, and asthenia were reported more frequently by women receiving IPTp-AZCQ than those receiving IPTp-SP. | IPTp-AZCQ was not superior to IPTp-SP. The study was terminated earlier due to futility. |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Figueroa-Romero, A.; Pons-Duran, C.; Gonzalez, R. Drugs for Intermittent Preventive Treatment of Malaria in Pregnancy: Current Knowledge and Way Forward. Trop. Med. Infect. Dis. 2022, 7, 152. https://doi.org/10.3390/tropicalmed7080152
Figueroa-Romero A, Pons-Duran C, Gonzalez R. Drugs for Intermittent Preventive Treatment of Malaria in Pregnancy: Current Knowledge and Way Forward. Tropical Medicine and Infectious Disease. 2022; 7(8):152. https://doi.org/10.3390/tropicalmed7080152
Chicago/Turabian StyleFigueroa-Romero, Antia, Clara Pons-Duran, and Raquel Gonzalez. 2022. "Drugs for Intermittent Preventive Treatment of Malaria in Pregnancy: Current Knowledge and Way Forward" Tropical Medicine and Infectious Disease 7, no. 8: 152. https://doi.org/10.3390/tropicalmed7080152
APA StyleFigueroa-Romero, A., Pons-Duran, C., & Gonzalez, R. (2022). Drugs for Intermittent Preventive Treatment of Malaria in Pregnancy: Current Knowledge and Way Forward. Tropical Medicine and Infectious Disease, 7(8), 152. https://doi.org/10.3390/tropicalmed7080152