Relation between Increased IL-10 Levels and Malaria Severity: A Systematic Review and Meta-Analysis
Abstract
:1. Background
2. Methods
2.1. Protocols and Definition
2.2. Eligibility Criteria
2.3. Information Sources
2.4. Search Strategy
2.5. Selection Process
2.6. Data Collection Process
2.7. Data Items
2.8. Quality of the Included Studies
2.9. Effect Measures
2.10. Synthesis Methods
2.11. Reporting Bias Assessment
2.12. Certainty Assessment
3. Results
3.1. Search Results
3.2. Characteristics of the Included Studies
3.3. Quality of the Included Studies
3.4. Difference in IL-10 Levels between Patients with Severe and Non-Severe Malaria
3.5. Sensitivity Analysis
3.6. Publication Bias
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
References
- World Health Organization. World Malaria Report 2021. Available online: https://www.who.int/teams/global-malaria-programme/reports/world-malaria-report-2021 (accessed on 15 July 2022).
- Gething, P.W.; Elyazar, I.R.; Moyes, C.L.; Smith, D.L.; Battle, K.E.; Guerra, C.A.; Patil, A.P.; Tatem, A.J.; Howes, R.E.; Myers, M.F.; et al. A long neglected world malaria map: Plasmodium vivax endemicity in 2010. PLoS Negl. Trop. Dis. 2012, 6, e1814. [Google Scholar] [CrossRef] [PubMed]
- Autino, B.; Noris, A.; Russo, R.; Castelli, F. Epidemiology of malaria in endemic areas. Mediterr. J. Hematol. Infect. Dis. 2012, 4, e2012060. [Google Scholar] [CrossRef]
- Kotepui, M.; Kotepui, K.U.; De Jesus Milanez, G.; Masangkay, F.R. Plasmodium spp. mixed infection leading to severe malaria: A systematic review and meta-analysis. Sci. Rep. 2020, 10, 11068. [Google Scholar] [CrossRef] [PubMed]
- Long, C.A.; Zavala, F. Immune Responses in Malaria. Cold Spring Harb. Perspect. Med. 2017, 7, a025577. [Google Scholar] [CrossRef]
- Doolan, D.L.; Dobano, C.; Baird, J.K. Acquired immunity to malaria. Clin. Microbiol. Rev. 2009, 22, 13–36. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Artavanis-Tsakonas, K.; Tongren, J.E.; Riley, E.M. The war between the malaria parasite and the immune system: Immunity, immunoregulation and immunopathology. Clin. Exp. Immunol. 2003, 133, 145–152. [Google Scholar] [CrossRef]
- Popa, G.L.; Popa, M.I. Recent Advances in Understanding the Inflammatory Response in Malaria: A Review of the Dual Role of Cytokines. J. Immunol. Res. 2021, 2021, 7785180. [Google Scholar] [CrossRef]
- John, C.C.; Panoskaltsis-Mortari, A.; Opoka, R.O.; Park, G.S.; Orchard, P.J.; Jurek, A.M.; Idro, R.; Byarugaba, J.; Boivin, M.J. Cerebrospinal fluid cytokine levels and cognitive impairment in cerebral malaria. Am. J. Trop. Med. Hyg. 2008, 78, 198–205. [Google Scholar] [CrossRef]
- Lyke, K.E.; Burges, R.; Cissoko, Y.; Sangare, L.; Dao, M.; Diarra, I.; Kone, A.; Harley, R.; Plowe, C.V.; Doumbo, O.K.; et al. Serum levels of the proinflammatory cytokines interleukin-1 beta (IL-1β), IL-6, IL-8, IL-10, tumor necrosis factor alpha, and IL-12(p70) in Malian children with severe Plasmodium falciparum malaria and matched uncomplicated malaria or healthy controls. Infect. Immun. 2004, 72, 5630–5637. [Google Scholar] [CrossRef] [Green Version]
- Kumar, R.; Ng, S.; Engwerda, C. The Role of IL-10 in Malaria: A Double Edged Sword. Front. Immunol. 2019, 10, 229. [Google Scholar] [CrossRef]
- Oyegue-Liabagui, S.L.; Bouopda-Tuedom, A.G.; Kouna, L.C.; Maghendji-Nzondo, S.; Nzoughe, H.; Tchitoula-Makaya, N.; Pegha-Moukandja, I.; Lekana-Douki, J.B. Pro- and anti-inflammatory cytokines in children with malaria in Franceville, Gabon. Am. J. Clin. Exp. Immunol. 2017, 6, 9–20. [Google Scholar]
- Nasr, A.; Allam, G.; Hamid, O.; Al-Ghamdi, A. IFN-gamma and TNF associated with severe falciparum malaria infection in Saudi pregnant women. Malar. J. 2014, 13, 314. [Google Scholar] [CrossRef] [Green Version]
- Brickley, E.B.; Wood, A.M.; Kabyemela, E.; Morrison, R.; Kurtis, J.D.; Fried, M.; Duffy, P.E. Fetal origins of malarial disease: Cord blood cytokines as risk markers for pediatric severe malarial anemia. J. Infect. Dis. 2015, 211, 436–444. [Google Scholar] [CrossRef] [Green Version]
- Higgins, J.P.T.; Thomas, J.; Chandler, J.; Cumpston, M.; Li, T.; Page, M.J.; Welch, V.A. (Eds.) Cochrane Handbook for Systematic Reviews of Interventions Version 6.2 (Updated February 2021); Cochrane: London, UK, 2021. [Google Scholar]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. BMJ 2021, 372, n71. [Google Scholar] [CrossRef]
- World Health Organization. WHO Guidelines for Malaria 2022. Available online: https://www.who.int/publications/i/item/guidelines-for-malaria (accessed on 27 December 2022).
- Hozo, S.P.; Djulbegovic, B.; Hozo, I. Estimating the mean and variance from the median, range, and the size of a sample. BMC Med. Res. Methodol. 2005, 5, 13. [Google Scholar] [CrossRef] [Green Version]
- Cuschieri, S. The STROBE guidelines. Saudi J. Anaesth. 2019, 13, S31–S34. [Google Scholar] [CrossRef]
- DerSimonian, R.; Laird, N. Meta-analysis in clinical trials. Control. Clin. Trials 1986, 7, 177–188. [Google Scholar] [CrossRef]
- Abdullahi, I.N.; Musa, S.; Emeribe, A.U.; Muhammed, M.; Mustapha, J.O.; Shuwa, H.A.; Haruna, S.; Abubakar, S.D.; Billyrose, O.M.A.; Bakare, M. Immunological and anti-oxidant profiles of malarial children in Abuja, Nigeria. BioMedicine 2021, 11, 41–50. [Google Scholar] [CrossRef]
- Akanmori, B.D.; Kurtzhals, J.A.; Goka, B.Q.; Adabayeri, V.; Ofori, M.F.; Nkrumah, F.K.; Behr, C.; Hviid, L. Distinct patterns of cytokine regulation in discrete clinical forms of Plasmodium falciparum malaria. Eur. Cytokine Netw. 2000, 11, 113–118. [Google Scholar]
- Barber, B.E.; William, T.; Grigg, M.J.; Parameswaran, U.; Piera, K.A.; Price, R.N.; Yeo, T.W.; Anstey, N.M. Parasite Biomass-Related Inflammation, Endothelial Activation, Microvascular Dysfunction and Disease Severity in Vivax Malaria. PLoS Pathog. 2015, 11, e1004558. [Google Scholar] [CrossRef] [Green Version]
- Cox-Singh, J.; Singh, B.; Daneshvar, C.; Planche, T.; Parker-Williams, J.; Krishna, S. Anti-inflammatory cytokines predominate in acute human plasmodium knowlesi infections. PLoS ONE 2011, 6, e20541. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Duarte, J.; Deshpande, P.; Guiyedi, V.; Mécheri, S.; Fesel, C.; Cazenave, P.A.; Mishra, G.C.; Kombila, M.; Pied, S. Total and functional parasite specific IgE responses in Plasmodium falciparum-infected patients exhibiting different clinical status. Malar. J. 2007, 6, 1. [Google Scholar] [CrossRef] [PubMed]
- Lopera-Mesa, T.M.; Mita-Mendoza, N.K.; van de Hoef, D.L.; Doumbia, S.; Konaté, D.; Doumbouya, M.; Gu, W.; Traoré, K.; Diakité, S.A.S.; Remaley, A.T.; et al. Plasma Uric Acid Levels Correlate with Inflammation and Disease Severity in Malian Children with Plasmodium falciparum Malaria. PLoS ONE 2012, 7, e46424. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mandala, W.L.; Msefula, C.L.; Gondwe, E.N.; Drayson, M.T.; Molyneux, M.E.; MacLennan, C.A. Cytokine profiles in Malawian children presenting with uncomplicated malaria, severe malarial anemia, and cerebral malaria. Clin. Vaccine Immunol. 2017, 24, e00533-16. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mendonça, V.R.; Queiroz, A.T.; Lopes, F.M.; Andrade, B.B.; Barral-Netto, M. Networking the host immune response in Plasmodium vivax malaria. Malar. J. 2013, 12, 69. [Google Scholar] [CrossRef] [Green Version]
- Mendonça, V.R.R.; Souza, L.C.L.; Garcia, G.C.; Magalhães, B.M.L.; Gonçalves, M.S.; Lacerda, M.V.G.; Barral-Netto, M. Associations between hepcidin and immune response in individuals with hyperbilirubinaemia and severe malaria due to Plasmodium vivax infection. Malar. J. 2015, 14, 407. [Google Scholar] [CrossRef] [Green Version]
- Olupot-Olupot, P.; Urban, B.C.; Jemutai, J.; Nteziyaremye, J.; Fanjo, H.M.; Karanja, H.; Karisa, J.; Ongodia, P.; Bwonyo, P.; Gitau, E.N.; et al. Endotoxaemia is common in children with Plasmodium falciparum malaria. BMC Infect. Dis. 2013, 13, 117. [Google Scholar] [CrossRef] [Green Version]
- Ong’echa, J.M.; Davenport, G.C.; Vulule, J.M.; Hittner, J.B.; Perkins, D.J. Identification of inflammatory biomarkers for pediatric malarial: Anemia severity using novel statistical methods. Infect. Immun. 2011, 79, 4674–4680. [Google Scholar] [CrossRef] [Green Version]
- Peyron, F.; Burdin, N.; Ringwald, P.; Vuillez, J.P.; Rousset, F.; Banchereau, J. High levels of circulating IL-10 in human malaria. Clin. Exp. Immunol. 1994, 95, 300–303. [Google Scholar] [CrossRef]
- Singotamu, L.; Hemalatha, R.; Madhusudhanachary, P.; Seshacharyulu, M. Cytokines and micronutrients in Plasmodium vivax infection. J. Med. Sci. 2006, 6, 962–967. [Google Scholar] [CrossRef] [Green Version]
- Sinha, S.; Qidwai, T.; Kanchan, K.; Jha, G.N.; Anand, P.; Pati, S.S.; Mohanty, S.; Mishra, S.K.; Tyagi, P.K.; Sharma, S.K.; et al. Distinct cytokine profiles define clinical immune response to falciparum malaria in regions of high or low disease transmission. Eur. Cytokine Netw. 2010, 21, 232–240. [Google Scholar]
- Thuma, P.E.; Van Dijk, J.; Bucala, R.; Debebe, Z.; Nekhai, S.; Kuddo, T.; Nouraie, M.; Weiss, G.; Gordeuk, V.R. Distinct clinical and immunologic profiles in severe malarial anemia and cerebral malaria in Zambia. J. Infect. Dis. 2011, 203, 211–219. [Google Scholar] [CrossRef] [Green Version]
- Barber, B.E.; Grigg, M.J.; William, T.; Piera, K.A.; Boyle, M.J.; Yeo, T.W.; Anstey, N.M. Effects of Aging on Parasite Biomass, Inflammation, Endothelial Activation, Microvascular Dysfunction and Disease Severity in Plasmodium knowlesi and Plasmodium falciparum Malaria. J. Infect. Dis. 2017, 215, 1908–1917. [Google Scholar] [CrossRef]
- Burté, F.; Brown, B.J.; Orimadegun, A.E.; Ajetunmobi, W.A.; Afolabi, N.K.; Akinkunmi, F.; Kowobari, O.; Omokhodion, S.; Osinusi, K.; Akinbami, F.O.; et al. Circulatory hepcidin is associated with the anti-inflammatory response but not with iron or anemic status in childhood malaria. Blood 2013, 121, 3016–3022. [Google Scholar] [CrossRef]
- Herr, J.; Mehrfar, P.; Schmiedel, S.; Wichmann, D.; Brattig, N.W.; Burchard, G.D.; Cramer, J.P. Reduced cardiac output in imported Plasmodium falciparum malaria. Malar. J. 2011, 10, 160. [Google Scholar] [CrossRef] [Green Version]
- Dunst, J.; Kamena, F.; Matuschewski, K. Cytokines and Chemokines in Cerebral Malaria Pathogenesis. Front. Cell. Infect. Microbiol. 2017, 7, 324. [Google Scholar] [CrossRef] [Green Version]
- Othoro, C.; Lal, A.A.; Nahlen, B.; Koech, D.; Orago, A.S.; Udhayakumar, V. A low interleukin-10 tumor necrosis factor-alpha ratio is associated with malaria anemia in children residing in a holoendemic malaria region in western Kenya. J. Infect. Dis. 1999, 179, 279–282. [Google Scholar] [CrossRef]
- Day, N.P.J.; Hien, T.T.; Schollaardt, T.; Loc, P.P.; Van Chuong, L.; Chau, T.T.H.; Mai, N.T.H.; Phu, N.H.; Sinh, D.X.; White, N.J.; et al. The prognostic and pathophysiologic role of pro- and antiinflammatory cytokines in severe malaria. J. Infect. Dis. 1999, 180, 1288–1297. [Google Scholar] [CrossRef] [Green Version]
- Wilairatana, P.; Mala, W.; Milanez, G.J.; Masangkay, F.R.; Kotepui, K.U.; Kotepui, M. Increased interleukin-6 levels associated with malaria infection and disease severity: A systematic review and meta-analysis. Sci. Rep. 2022, 12, 5982. [Google Scholar] [CrossRef]
- Boeuf, P.S.; Loizon, S.; Awandare, G.A.; Tetteh, J.K.; Addae, M.M.; Adjei, G.O.; Goka, B.; Kurtzhals, J.A.; Puijalon, O.; Hviid, L.; et al. Insights into deregulated TNF and IL-10 production in malaria: Implications for understanding severe malarial anaemia. Malar. J. 2012, 11, 253. [Google Scholar] [CrossRef] [Green Version]
- Cai, G.; Kastelein, R.A.; Hunter, C.A. IL-10 enhances NK cell proliferation, cytotoxicity and production of IFN-gamma when combined with IL-18. Eur. J. Immunol. 1999, 29, 2658–2665. [Google Scholar] [CrossRef]
- Pestka, S.; Krause, C.D.; Sarkar, D.; Walter, M.R.; Shi, Y.; Fisher, P.B. Interleukin-10 and related cytokines and receptors. Annu. Rev. Immunol. 2004, 22, 929–979. [Google Scholar] [CrossRef] [PubMed]
- Prakash, D.; Fesel, C.; Jain, R.; Cazenave, P.A.; Mishra, G.C.; Pied, S. Clusters of cytokines determine malaria severity in Plasmodium falciparum-infected patients from endemic areas of Central India. J. Infect. Dis. 2006, 194, 198–207. [Google Scholar] [CrossRef] [PubMed]
- de Waal Malefyt, R.; Abrams, J.; Bennett, B.; Figdor, C.G.; de Vries, J.E. Interleukin 10(IL-10) inhibits cytokine synthesis by human monocytes: An autoregulatory role of IL-10 produced by monocytes. J. Exp. Med. 1991, 174, 1209–1220. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dembele, B.P.; Chagan-Yasutan, H.; Niki, T.; Ashino, Y.; Tangpukdee, N.; Shinichi, E.; Krudsood, S.; Kano, S.; Hattori, T. Plasma levels of Galectin-9 reflect disease severity in malaria infection. Malar. J. 2016, 15, 403. [Google Scholar] [CrossRef] [Green Version]
- Oomizu, S.; Arikawa, T.; Niki, T.; Kadowaki, T.; Ueno, M.; Nishi, N.; Yamauchi, A.; Hattori, T.; Masaki, T.; Hirashima, M. Cell surface galectin-9 expressing Th cells regulate Th17 and Foxp3+ Treg development by galectin-9 secretion. PLoS ONE 2012, 7, e48574. [Google Scholar] [CrossRef] [Green Version]
- Andrade, B.B.; Reis-Filho, A.; Souza-Neto, S.M.; Clarencio, J.; Camargo, L.M.; Barral, A.; Barral-Netto, M. Severe Plasmodium vivax malaria exhibits marked inflammatory imbalance. Malar. J. 2010, 9, 13. [Google Scholar] [CrossRef] [Green Version]
- Nmorsi, O.P.G.; Isaac, C.; Ukwandu, N.C.D.; Ohaneme, B.A. Pro-and anti-inflammatory cytokines profiles among Nigerian children infected with Plasmodium falciparum malaria. Asian Pac. J. Trop. Med. 2010, 3, 41–44. [Google Scholar] [CrossRef] [Green Version]
- White, M.; Watson, J. Age, exposure and immunity. Elife 2018, 7, e40150. [Google Scholar] [CrossRef]
- de Jager, W.; Rijkers, G.T. Solid-phase and bead-based cytokine immunoassay: A comparison. Methods 2006, 38, 294–303. [Google Scholar] [CrossRef]
Characteristics | n. | % |
---|---|---|
Study designs | ||
Prospective study | 11 | 57.9 |
Retrospective study | 6 | 31.6 |
Cross-sectional studies | 2 | 10.5 |
Study areas | ||
Africa | 10 | 52.6 |
Asia | 5 | 26.3 |
America | 3 | 15.8 |
Europe | 1 | 5.26 |
Plasmodium spp. | ||
P. falciparum | 13 | 68.4 |
P. vivax | 4 | 21.1 |
P. falciparum and P. knowlesi | 2 | 10.5 |
Participants | ||
Children | 10 | 52.6 |
Adults | 6 | 31.6 |
All age groups | 3 | 15.8 |
Methods for malaria detection | ||
Microscopy | 12 | 63.2 |
Microscopy and PCR | 4 | 21.1 |
Microscopy and RDT | 2 | 10.5 |
Microscopy/RDT/PCR | 1 | 5.26 |
Methods for IL-10 quantification | ||
ELISA | 12 | 63.2 |
Bead-based assay | 7 | 36.8 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sornsenee, P.; Wilairatana, P.; Kotepui, K.U.; Masangkay, F.R.; Romyasamit, C.; Kotepui, M. Relation between Increased IL-10 Levels and Malaria Severity: A Systematic Review and Meta-Analysis. Trop. Med. Infect. Dis. 2023, 8, 35. https://doi.org/10.3390/tropicalmed8010035
Sornsenee P, Wilairatana P, Kotepui KU, Masangkay FR, Romyasamit C, Kotepui M. Relation between Increased IL-10 Levels and Malaria Severity: A Systematic Review and Meta-Analysis. Tropical Medicine and Infectious Disease. 2023; 8(1):35. https://doi.org/10.3390/tropicalmed8010035
Chicago/Turabian StyleSornsenee, Phoomjai, Polrat Wilairatana, Kwuntida Uthaisar Kotepui, Frederick Ramirez Masangkay, Chonticha Romyasamit, and Manas Kotepui. 2023. "Relation between Increased IL-10 Levels and Malaria Severity: A Systematic Review and Meta-Analysis" Tropical Medicine and Infectious Disease 8, no. 1: 35. https://doi.org/10.3390/tropicalmed8010035
APA StyleSornsenee, P., Wilairatana, P., Kotepui, K. U., Masangkay, F. R., Romyasamit, C., & Kotepui, M. (2023). Relation between Increased IL-10 Levels and Malaria Severity: A Systematic Review and Meta-Analysis. Tropical Medicine and Infectious Disease, 8(1), 35. https://doi.org/10.3390/tropicalmed8010035