Assessment of the Function of Respiratory Muscles in Patients after COVID-19 Infection and Respiratory Rehabilitation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Measurement of Muscular Strength
2.2. The Course of an Examination
2.3. Statistical Description
3. Results
4. Discussion
5. Limitations
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Walterspacher, S.; Schlager, D.; Walker, D.J.; Müller-Quernheim, J.; Windisch, W.; Kabitz, H.-J. Respiratory muscle function in interstitial lung disease. Eur. Respir. J. 2013, 42, 211–219. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Holland, A.E. Exercise limitation in interstitial lung disease-mechanisms, significance and therapeutic options. Chron. Respir. Dis. 2010, 7, 101–111. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dekhuijzen, P.; Decramer, M. Steroid-induced myopathy and its significance to respiratory disease: A known disease rediscovered. Eur. Respir. J. 1992, 5, 997–1003. [Google Scholar] [CrossRef] [PubMed]
- Surmachevska, N.; Tiwari, V. Corticosteroid Induced Myopathy. In StatPearls [Internet]; StatPearls Publishing: Treasure Island, FL, USA, 2022. [Google Scholar]
- Connolly, B.; Salisbury, L.; O’Neill, B.; Geneen, L.; Douiri, A.; Grocott, M.P.; Hart, N.; Walsh, T.S.; Blackwood, B.; Group, E. Exercise rehabilitation following intensive care unit discharge for recovery from critical illness. Cochrane Database Syst. Rev. 2015, 2015, CD008632. [Google Scholar] [CrossRef] [Green Version]
- Schoser, B.; Fong, E.; Geberhiwot, T.; Hughes, D.; Kissel, J.T.; Madathil, S.C.; Orlikowski, D.; Polkey, M.I.; Roberts, M.; Tiddens, H.A. Maximum inspiratory pressure as a clinically meaningful trial endpoint for neuromuscular diseases: A comprehensive review of the literature. Orphanet J. Rare Dis. 2017, 12, 52. [Google Scholar] [CrossRef] [Green Version]
- Lutfi, M.F. The physiological basis and clinical significance of lung volume measurements. Multidiscip. Respir. Med. 2017, 12, 3. [Google Scholar] [CrossRef] [Green Version]
- Janssens, L.; Brumagne, S.; McConnell, A.K.; Raymaekers, J.; Goossens, N.; Gayan-Ramirez, G.; Hermans, G.; Troosters, T. The assessment of inspiratory muscle fatigue in healthy individuals: A systematic review. Respir. Med. 2013, 107, 331–346. [Google Scholar] [CrossRef] [Green Version]
- Lin, S.-J.; McElfresh, J.; Hall, B.; Bloom, R.; Farrell, K. Inspiratory muscle training in patients with heart failure: A systematic review. Cardiopulm. Phys. Ther. J. 2012, 23, 29. [Google Scholar] [CrossRef]
- Kaneko, H.; Shiranita, S.; Horie, J.; Hayashi, S. Reduced chest and abdominal wall mobility and their relationship to lung function, respiratory muscle strength, and exercise tolerance in subjects with COPD. Respir. Care 2016, 61, 1472–1480. [Google Scholar] [CrossRef] [Green Version]
- Boswell-Ruys, C.L.; Lewis, C.R.H.; Wijeysuriya, N.S.; McBain, R.A.; Lee, B.B.; McKenzie, D.K.; Gandevia, S.C.; Butler, J.E. Impact of respiratory muscle training on respiratory muscle strength, respiratory function and quality of life in individuals with tetraplegia: A randomised clinical trial. Thorax 2020, 75, 279–288. [Google Scholar] [CrossRef]
- Rodriguez-Nunez, I.; Torres, G.; Luarte-Martinez, S.; Manterola, C.; Zenteno, D. Respiratory Muscle Impairment Evaluated with Mep/Mip Ratio in Children and Adolescents with Chronic Respiratory Disease. Rev. Paul. Pediatr. 2020, 39, e2019414. [Google Scholar] [CrossRef] [PubMed]
- Motoc, N.S.; Ruta, V.-M.; Man, M.A.; Ungur, R.A.; Ciortea, V.M.; Irsay, L.; Nicola, A.; Valean, D.; Usatiuc, L.O.; Matei, I.R. Factors Associated with Prolonged RT-PCR SARS-CoV-2 Positive Testing in Patients with Mild and Moderate Forms of COVID-19: A Retrospective Study. Medicina 2022, 58, 707. [Google Scholar] [CrossRef] [PubMed]
- Troosters, T.; Gosselink, R.; Decramer, M. Respiratory muscle assessment. Eur. Respir. Monogr. 2005, 31, 57. [Google Scholar]
- Society, A.T. ATS/ERS Statement on respiratory muscle testing. Am. J. Respir. Crit. Care Med. 2002, 166, 518–624. [Google Scholar]
- TI, D.S.; FIT TING, J.-W. Sniff nasal inspiratory pressure: Reference values in Caucasian children. Am. J. Respir. Crit. Care Med. 1999, 159, 107–111. [Google Scholar] [CrossRef] [PubMed]
- Uldry, C.; Fitting, J.-W. Maximal values of sniff nasal inspiratory pressure in healthy subjects. Thorax 1995, 50, 371–375. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wilson, S.; Cooke, N.; Edwards, R.; Spiro, S. Predicted normal values for maximal respiratory pressures in caucasian adults and children. Thorax 1984, 39, 535–538. [Google Scholar] [CrossRef] [Green Version]
- Frohlich, L.F.; Vieira, P.J.; Teixeira, P.J.; Silva, F.A.; Ribeiro, J.P.; Berton, D.C. Exercise capacity in adolescent and adult patients with post infectious bronchiolitis obliterans. Pediatr. Pulmonol. 2014, 49, 911–918. [Google Scholar] [CrossRef] [PubMed]
- Mattiello, R.; Sarria, E.E.; Stein, R.; Fischer, G.B.; Mocelin, H.T.; Barreto, S.S.; Lima, J.A.; Brandenburg, D. Functional capacity assessment in children and adolescents with post-infectious bronchiolitis obliterans. J. Pediatr. (Rio J.) 2008, 84, 337–343. [Google Scholar] [CrossRef] [Green Version]
- Meyer, F.J.; Borst, M.M.; Zugck, C.; Kirschke, A.; Schellberg, D.; Kubler, W.; Haass, M. Respiratory muscle dysfunction in congestive heart failure: Clinical correlation and prognostic significance. Circulation 2001, 103, 2153–2158. [Google Scholar] [CrossRef] [Green Version]
- Huang, C.; Huang, L.; Wang, Y.; Li, X.; Ren, L.; Gu, X.; Kang, L.; Guo, L.; Liu, M.; Zhou, X.; et al. 6-month consequences of COVID-19 in patients discharged from hospital: A cohort study. Lancet 2021, 397, 220–232. [Google Scholar] [CrossRef]
- Carfi, A.; Bernabei, R.; Landi, F.; Gemelli Against, C.-P.-A.C.S.G. Persistent Symptoms in Patients After Acute COVID-19. JAMA 2020, 324, 603–605. [Google Scholar] [CrossRef]
- Stam, H.J.; Stucki, G.; Bickenbach, J. COVID-19 and post intensive care syndrome: A call for action. J. Rehabil. Med. 2020, 52, 1–4. [Google Scholar] [CrossRef]
- Kiekens, C.; Boldrini, P.; Andreoli, A.; Avesani, R.; Gamna, F.; Grandi, M.; Lombardi, F.; Lusuardi, M.; Molteni, F.; Perboni, A.; et al. Rehabilitation and respiratory management in the acute and early post-acute phase. “Instant paper from the field” on rehabilitation answers to the COVID-19 emergency. Eur. J. Phys. Rehabil. Med. 2020, 56, 323–326. [Google Scholar] [CrossRef]
- McNeary, L.; Maltser, S.; Verduzco-Gutierrez, M. Navigating Coronavirus Disease 2019 (COVID-19) in Physiatry: A CAN Report for Inpatient Rehabilitation Facilities. PM R 2020, 12, 512–515. [Google Scholar] [CrossRef]
- de Cordoba Lanza, F.; de Camargo, A.A.; Archija, L.R.F.; Selman, J.P.R.; Malaguti, C.; Dal Corso, S. Chest wall mobility is related to respiratory muscle strength and lung volumes in healthy subjects. Respir. Care 2013, 58, 2107–2112. [Google Scholar] [CrossRef] [Green Version]
- Padkao, T.; Boonla, O.; Padkao, T.; Boonla, O. Relationships between respiratory muscle strength, chest wall expansion, and functional capacity in healthy nonsmokers. J. Exerc. Rehabil. 2020, 16, 189–196. [Google Scholar] [CrossRef]
- Spiro, S.G.; Silvestri, G.A.; Agustí, A. Clinical Respiratory Medicine: Expert Consult-Online and Print; Elsevier Health Sciences: Amsterdam, The Netherlands, 2012. [Google Scholar]
- Ruppel, G.L.; Enright, P.L. Pulmonary function testing. Respir. Care 2012, 57, 165–175. [Google Scholar] [CrossRef] [Green Version]
- Souza, H.; Rocha, T.; Pessoa, M.; Rattes, C.; Brandão, D.; Fregonezi, G.; Campos, S.; Aliverti, A.; Dornelas, A. Effects of inspiratory muscle training in elderly women on respiratory muscle strength, diaphragm thickness and mobility. J. Gerontol. Ser. A Biomed. Sci. Med. Sci. 2014, 69, 1545–1553. [Google Scholar] [CrossRef] [Green Version]
- Pazzianotto-Forti, E.M.; Mori, T.; Zerbetto, R.; Baruki, S.; Montebello, M.I.; Pacheco, E.; Mendes, N.; Tanaka, T.; Reid, D. Effects of inspiratory muscle training on respiratory muscle strength, physical fitness and dyspnea in obese women. Eur. Respir. Soc. 2019, 54, PA2204. [Google Scholar]
- Langer, D.; Charususin, N.; Jacome, C.; Hoffman, M.; McConnell, A.; Decramer, M.; Gosselink, R. Efficacy of a Novel Method for Inspiratory Muscle Training in People With Chronic Obstructive Pulmonary Disease. Phys. Ther. 2015, 95, 1264–1273. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nepomuceno, B.R.V., Jr.; Barreto, M.S.; Almeida, N.C.; Guerreiro, C.F.; Xavier-Souza, E.; Neto, M.G. Safety and efficacy of inspiratory muscle training for preventing adverse outcomes in patients at risk of prolonged hospitalisation. Trials 2017, 18, 626. [Google Scholar] [CrossRef] [PubMed]
- Nikoletou, D.; Man, W.D.; Mustfa, N.; Moore, J.; Rafferty, G.; Grant, R.L.; Johnson, L.; Moxham, J. Evaluation of the effectiveness of a home-based inspiratory muscle training programme in patients with chronic obstructive pulmonary disease using multiple inspiratory muscle tests. Disabil. Rehabil. 2016, 38, 250–259. [Google Scholar] [CrossRef] [PubMed]
- Pereira, F.D.; Batista, W.O.; Fuly, P.d.S.C.; Alves Junior, E.d.D.; Silva, E.B.d. Physical activity and respiratory muscle strength in elderly: A systematic review. Fisioter. Em Mov. 2014, 27, 129–139. [Google Scholar] [CrossRef] [Green Version]
- Qaseem, A.; Wilt, T.J.; Weinberger, S.E.; Hanania, N.A.; Criner, G.; van der Molen, T.; Marciniuk, D.D.; Denberg, T.; Schunemann, H.; Wedzicha, W.; et al. Diagnosis and management of stable chronic obstructive pulmonary disease: A clinical practice guideline update from the American College of Physicians, American College of Chest Physicians, American Thoracic Society, and European Respiratory Society. Ann. Intern. Med. 2011, 155, 179–191. [Google Scholar] [CrossRef]
- Chen, X.; Zhang, G.; Tang, Y.; Peng, Z.; Pan, H. The coronavirus diseases 2019 (COVID-19) pneumonia with spontaneous pneumothorax: A case report. BMC Infect. Dis. 2020, 20, 662. [Google Scholar] [CrossRef]
- Wong, K.; Kim, D.H.; Iakovou, A.; Khanijo, S.; Tsegaye, A.; Hahn, S.; Narasimhan, M.; Zaidi, G. Pneumothorax in COVID-19 Acute Respiratory Distress Syndrome: Case Series. Cureus 2020, 12, e11749. [Google Scholar] [CrossRef]
Value | All (n = 19) | Men (n = 13) | Women (n = 6) |
---|---|---|---|
Age (years) | 53.32 (SD: 8.49) | 52.67 (SD: 8.25) | 54.56 (SD: 7.75) |
BMI (kg/m2) | 30.70 (SD: 4.39) | 30.24 (SD: 4.04) | 31.18 (SD: 4.62) |
Duration of rehabilitation (days) | 13.47 (SD: 4.10) | 13.56 (SD: 4.09) | 13.31 (SD: 3.87) |
Disease | All (n = 19) | Men (n = 13) | Women (n = 6) |
---|---|---|---|
Hypertension | 13 (68.42%) | 10 (76.92%) | 3 (50.00%) |
Diabetes mellitus | 3 (15.79%) | 2 (15.38%) | 1 (16.67%) |
Embolism | 2 (10.53%) | 2 (15.38%) | 0 |
Cardiovascular diseases | 1 (5.26%) | 1 (7.69%) | 0 |
Pulmonary diseases | 1 (5.26%) | 0 | 1 (16.67%) |
Neoplastic diseases | 1 (5.26%) | 1 (7.69%) | 0 |
Expiratory: | MEP I (cmH2O) | MEP II (cmH2O) | p (<0.05) |
All | 97.16 (SD: 46.19) | 123.32 (SD: 44.80) | 0.002 |
Women | 67.17 (SD: 42.34) | 87.33 (SD: 37.48) | 0.004 |
Men | 111.00 (SD: 41.05) | 139.92 (SD: 37.57) | 0.005 |
Inspiratory: | MIP I (cmH2O) | MIP II (cmH2O) | p (<0.05) |
All | 81.21 (SD: 30.45) | 93.16 (SD: 30.33) | 0.047 |
Women | 78.88 (SD: 32.54) | 87.63 (SD: 30.29) | 0.086 |
Men | 81.44 (SD: 31.26) | 94.06 (SD: 34.02) | 0.047 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Romaszko-Wojtowicz, A.; Szalecki, M.; Olech, K.; Doboszyńska, A. Assessment of the Function of Respiratory Muscles in Patients after COVID-19 Infection and Respiratory Rehabilitation. Trop. Med. Infect. Dis. 2023, 8, 57. https://doi.org/10.3390/tropicalmed8010057
Romaszko-Wojtowicz A, Szalecki M, Olech K, Doboszyńska A. Assessment of the Function of Respiratory Muscles in Patients after COVID-19 Infection and Respiratory Rehabilitation. Tropical Medicine and Infectious Disease. 2023; 8(1):57. https://doi.org/10.3390/tropicalmed8010057
Chicago/Turabian StyleRomaszko-Wojtowicz, Anna, Michał Szalecki, Karolina Olech, and Anna Doboszyńska. 2023. "Assessment of the Function of Respiratory Muscles in Patients after COVID-19 Infection and Respiratory Rehabilitation" Tropical Medicine and Infectious Disease 8, no. 1: 57. https://doi.org/10.3390/tropicalmed8010057
APA StyleRomaszko-Wojtowicz, A., Szalecki, M., Olech, K., & Doboszyńska, A. (2023). Assessment of the Function of Respiratory Muscles in Patients after COVID-19 Infection and Respiratory Rehabilitation. Tropical Medicine and Infectious Disease, 8(1), 57. https://doi.org/10.3390/tropicalmed8010057