Molecular Docking and Molecular Dynamics Simulations in Related to Leishmania donovani: An Update and Literature Review
Abstract
:1. Introduction
2. Basic Concepts
2.1. Introduction to Protein Structure and Function
2.2. Description of Molecular Docking
2.2.1. Primary Ideas
- Molecular Representation: Ligands and receptors are frequently depicted as three-dimensional structures with atomic characteristics, such as charge and atom kinds, that are connected to them [29].
- Search Algorithms: To explore the conformational space of the ligand and receptor and find the best binding mode, docking algorithms use a variety of search methodologies. To assess the energy or fitness of each conformation, these algorithms make use of scoring functions [30].
- Scoring Functions: By taking into account variables including van der Waals interactions, electrostatic interactions, hydrogen bonds, and solvation effects, scoring functions calculate the binding affinity between a ligand and receptor [31]. The scoring function assigns a numerical value to binding affinity and rates various ligand postures.
2.2.2. Used Techniques and Algorithms
- Structure-based Docking: This technique makes use of the ligand and receptor’s three-dimensional structures [30]. Using search algorithms like Genetic Algorithms, Monte Carlo techniques, or molecular dynamics simulations, it investigates the conformational space of the ligand and receptor to identify the most advantageous binding mode [22].
- Ligand-based Docking: When the receptor structure is unknown, ligand-based docking techniques are applied. These techniques are dependent on understanding the known ligands that bind to the receptor [32]. To find candidate ligands with related features, similarity-based methods like virtual screening and pharmacophore modeling are applied [33].
2.2.3. Applications in the Field of Leishmaniasis
- Target Identification: In order to discover possible therapeutic targets in Leishmania donovani, docking experiments have been used. Researchers can find important proteins involved in the parasite’s survival and growth by examining the interactions between known ligands and target proteins.
- Virtual Screening: Docking-based virtual screening makes it possible to quickly screen sizable chemical libraries for prospective Leishmania donovani therapeutic candidates. Researchers might give higher priority to substances with strong binding affinity for additional experimental validation by docking small molecules against target proteins.
- Drug Design and Optimization: Docking is essential to the logical development and refinement of medications to combat Leishmania donovani. To increase the potency, selectivity, and pharmacokinetic features of lead drugs, researchers can change and enhance the binding relationships between ligands and target proteins.
3. Molecular Docking Applications in Leishmaniasis
3.1. Selection of Therapeutic Targets
3.2. Identification of Inhibitors and Candidate Molecules
3.3. Evaluation of the Activity of Existing Drugs
- Selection of Target Proteins: Specific proteins that play crucial roles in the Leishmania parasite’s lifecycle or pathogenesis are identified as potential targets. These proteins may include enzymes, transporters, receptors, or other key molecules involved in essential biological processes [47].
- Building Compound Libraries: A library of known drugs is compiled, including approved drugs, experimental compounds, or compounds from existing databases. This diverse collection of molecules serves as a resource for virtual screening and docking simulations [47].
- Virtual Screening: Virtual screening involves the computational docking of the compounds from the library onto the target proteins. The docking algorithms predict the binding orientations and affinities of the drugs within the protein’s active site, allowing for the identification of potential drug–protein interactions [47].
- Binding Affinity Analysis: The docking scores obtained from the simulations provide a measure of the binding affinity between the drugs and the target proteins. Compounds with high docking scores are considered to have strong binding potential and are further investigated for their activity against Leishmania parasites [47].
- Interaction Analysis: The docking results are analyzed to understand the specific interactions between the drugs and the target proteins. This analysis helps to identify key molecular interactions, such as hydrogen bonding, hydrophobic interactions, or electrostatic interactions, that contribute to the binding and potential inhibitory activity [47].
- Experimental Validation: Promising drug candidates identified through molecular docking are subjected to experimental validation to assess their activity against Leishmania parasites. In vitro assays, such as enzyme inhibition assays or parasite growth inhibition assays, help determine the efficacy and selectivity of the drugs. Animal models may also be used to evaluate the in vivo activity and toxicity profiles of the drug candidates [47].
- Optimization and Lead Refinement: Based on the results of molecular docking and experimental validation, lead compounds can be optimized through structure-based drug design approaches. Iterative docking simulations and computational chemistry techniques assist in modifying the chemical structures of the drug candidates to improve their potency, selectivity, and pharmacokinetic properties [47].
4. Applications of Molecular Dynamics Simulations in Leishmaniasis
4.1. Characterization of Protein–Ligand Interactions
4.2. Stability and Conformational Studies
4.3. Analysis of Conformational and Dynamic Changes in Proteins
5. Recent Advances and Case Studies
5.1. Review of Recent Studies Using Molecular Docking and Molecular Dynamics Simulations in Leishmaniasis
5.2. Relevant Results and Conclusions Drawn
6. Limitations and Challenges
6.1. Description of Current Limitations in the Use of Molecular Docking and Molecular Dynamics Simulations in Leishmaniasis
6.2. Future Challenges and Promising Areas of Research
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ebrahimi, S.; Bordbar, A.; Rastaghi, A.R.E.; Parvizi, P. Spatial distribution of sand fly species (Psychodidae: Phlebtominae), ecological niche, and climatic regionalization in zoonotic foci of cutaneous leishmaniasis, southwest of Iran. J. Vector Ecol. 2016, 41, 103–109. [Google Scholar] [CrossRef] [PubMed]
- Sheikh, S.Y.; Ansari, W.A.; Hassan, F.; Faruqui, T.; Khan, M.F.; Akhter, Y.; Khan, A.R.; Siddiqui, M.A.; Al-Khedhairy, A.A.; Nasibullah, M. Drug repositioning to discover novel ornithine decarboxylase inhibitors against visceral leishmaniasis. J. Mol. Recognit. 2023, 36, e3021. [Google Scholar] [CrossRef] [PubMed]
- Burza, S.; Croft, S.L.; Boelaert, M. Leishmaniasis; Lancet: London, UK, 2018; Volume 392, pp. 951–970. [Google Scholar]
- Akhoundi, M.; Downing, T.; Votýpka, J.; Kuhls, K.; Lukeš, J.; Cannet, A.; Ravel, C.; Marty, P.; Delaunay, P.; Kasbari, M.; et al. Leishmania infections: Molecular targets and diagnosis. Mol. Asp. Med. 2017, 57, 1–29. [Google Scholar] [CrossRef]
- Lee, H.; Baek, K.H.; Phan, T.N.; Park, I.S.; Lee, S.; Kim, J.; No, J.H. Discovery of Leishmania donovani topoisomerase IB selective inhibitors by targeting protein-protein interactions between the large and small subunits. Biochem. Biophys. Res. Commun. 2021, 569, 193–198. [Google Scholar] [CrossRef]
- Alvar, J.; Vélez, I.D.; Bern, C.; Herrero, M.; Desjeux, P.; Cano, J.; Jannin, J.; Boer, M.D.; WHO Leishmaniasis Control Team. Leishmaniasis worldwide and global estimates of its incidence. PLoS ONE 2012, 7, e35671. [Google Scholar] [CrossRef]
- Reithinger, R.; Dujardin, J.-C.; Louzir, H.; Pirmez, C.; Alexander, B.; Brooker, S. Cutaneous leishmaniasis. Lancet Infect. Dis. 2007, 7, 581–596. [Google Scholar] [CrossRef]
- de Vries, H.J.C.; Reedijk, S.H.; Schallig, H.D.F.H. Cutaneous leishmaniasis: Recent developments in diagnosis and management. Am. J. Clin. Dermatol. 2015, 16, 99–109. [Google Scholar] [CrossRef] [PubMed]
- Marfurt, J.; Nasereddin, A.; Niederwieser, I.; Jaffe, C.L.; Beck, H.-P.; Felger, I. Identification and differentiation of Leishmania species in clinical samples by PCR amplification of the miniexon sequence and subsequent restriction fragment length polymorphism analysis. J. Clin. Microbiol. 2003, 41, 3147–3153. [Google Scholar] [CrossRef] [PubMed]
- Deborggraeve, S.; Laurent, T.; Espinosa, D.; Van der Auwera, G.; Mbuchi, M.; Wasunna, M.; El-Safi, S.; Al-Basheer, A.A.; Arévalo, J.; Miranda-Verástegui, C.; et al. A simplified and standardized polymerase chain reaction format for the diagnosis of leishmaniasis. J. Infect. Dis. 2008, 198, 1565–1572. [Google Scholar] [CrossRef]
- Vadloori, B.; Sharath, A.K.; Prabhu, N.P.; Maurya, R. Homology modelling, molecular docking, and molecular dynamics simulations reveal the inhibition of Leishmania donovani dihydrofolate reductase-thymidylate synthase enzyme by Withaferin-A. BMC Res. Notes 2018, 11, 246. [Google Scholar] [CrossRef]
- Kashif, M.; Tabrez, S.; Husein, A.; Arish, M.; Kalaiarasan, P.; Manna, P.P.; Subbarao, N.; Akhter, Y.; Rub, A. Identification of novel inhibitors against UDP-galactopyranose mutase to combat leishmaniasis. J. Cell Biochem. 2018, 119, 2653–2665. [Google Scholar] [CrossRef]
- Mandlik, V.; Singh, S. Molecular docking and molecular dynamics simulation study of inositol phosphorylceramide synthase-inhibitor complex in leishmaniasis: Insight into the structure based drug design. F1000Research 2016, 5, 1610. [Google Scholar] [CrossRef]
- Boominathan, V.P.; Ferreira, T. Predicting tbx22 Zebrafish Protein Structure Using Multi-Level Prediction Tools and Demonstration of Conserved Structural Domains in Relation to Orthologous tbx22 Proteins in Humans. J. Biosci. Med. 2016, 4, 79–92. [Google Scholar] [CrossRef]
- Routaray, C.B.; Bhor, R.; Bai, S.; Kadam, N.S.; Jagtap, S.; Doshi, P.J.; Sundar, S.; Sawant, S.; Kulkarni, M.J.; Pai, K. SWATH-MS based quantitative proteomics analysis to evaluate the antileishmanial effect of Commiphora wightii “Guggul” and Amphotericin B on a clinical isolate of Leishmania donovani. J. Proteom. 2020, 223, 103800. [Google Scholar] [CrossRef] [PubMed]
- Zhou, P.; Wang, J.; Wang, M.; Hou, J.; Lu, J.R.; Xu, H. Amino acid conformations control the morphological and chiral features of the self-assembled peptide nanostructures: Young investigators perspective. J. Colloid Interface Sci. 2019, 548, 244–254. [Google Scholar] [CrossRef] [PubMed]
- Banach, M.; Fabian, P.; Stapor, K.; Konieczny, L.; Roterman, A.I. Structure of the Hydrophobic Core Determines the 3D Protein Structure-Verification by Single Mutation Proteins. Biomolecules 2020, 10, 767. [Google Scholar] [CrossRef] [PubMed]
- Kozak, J.J.; Gray, H.B. Stereochemistry of residues in turning regions of helical proteins. JBIC J. Biol. Inorg. Chem. 2019, 24, 879–888. [Google Scholar] [CrossRef] [PubMed]
- Fukuda, H.; Tomii, K. DeepECA: An end-to-end learning framework for protein contact prediction from a multiple sequence alignment. BMC Bioinform. 2020, 21, 10. [Google Scholar] [CrossRef]
- Kaur, H.; Bari, N.K.; Garg, A.; Sinha, S. Protein morphology drives the structure and catalytic activity of bio-inorganic hybrids. Int. J. Biol. Macromol. 2021, 176, 106–116. [Google Scholar] [CrossRef]
- Han, Y.; Lin, Z.; Zhou, J.; Yun, G.; Guo, R.; Richardson, J.J.; Caruso, F. Polyphenol-Mediated Assembly of Proteins for Engineering Functional Materials. Angew. Chem. Int. Ed. 2020, 59, 15618–15625. [Google Scholar] [CrossRef]
- Bekker, G.-J.; Araki, M.; Oshima, K.; Okuno, Y.; Kamiya, N. Exhaustive search of the configurational space of heat-shock protein 90 with its inhibitor by multicanonical molecular dynamics based dynamic docking. J. Comput. Chem. 2020, 41, 1606–1615. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, D.D.; Wei, G.-W. AGL-Score: Algebraic Graph Learning Score for Protein-Ligand Binding Scoring, Ranking, Docking, and Screening. J. Chem. Inf. Model. 2019, 59, 3291–3304. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Ma, W. Data-driven discovery of governing equations for fluid dynamics based on molecular simulation. J. Fluid. Mech. 2020, 892, A5. Available online: https://www.cambridge.org/core/article/datadriven-discovery-of-governing-equations-for-fluid-dynamics-based-on-molecular-simulation/0525E75B0C42BF9B1E8D9B12A8ED58CD (accessed on 31 March 2020). [CrossRef]
- Giri, S.; Shaha, C. Leishmania donovani parasite requires Atg8 protein for infectivity and survival under stress. Cell Death Dis. 2019, 10, 808. [Google Scholar] [CrossRef] [PubMed]
- Suh, D.; Lee, J.W.; Choi, S.; Lee, Y. Recent Applications of Deep Learning Methods on Evolution- and Contact-Based Protein Structure Prediction. Int. J. Mol. Sci. 2021, 22, 6032. [Google Scholar] [CrossRef] [PubMed]
- Yadav, R.; Pandey, A.; Awasthi, N.; Shukla, A. Molecular Docking Studies of Enzyme Binding Drugs on Family of Cytochrome P450. Adv. Sci. Eng. Med. 2020, 12, 83–87. [Google Scholar] [CrossRef]
- Rashidi, S.; Fernández-Rubio, C.; Manzano-Román, R.; Mansouri, R.; Shafiei, R.; Ali-Hassanzadeh, M.; Barazesh, A.; Karimazar, M.; Hatam, G.; Nguewa, P. Potential therapeutic targets shared between leishmaniasis and cancer. Parasitology 2021, 148, 655–671. [Google Scholar] [CrossRef]
- Lee, H.S.; Im, W. Stalis: A Computational Method for Template-Based Ab Initio Ligand Design. J. Comput. Chem. 2019, 40, 1622–1632. [Google Scholar] [CrossRef]
- Wang, A.; Zhang, Y.; Chu, H.; Liao, C.; Zhang, Z.; Li, G. Higher Accuracy Achieved for Protein-Ligand Binding Pose Prediction by Elastic Network Model-Based Ensemble Docking. J. Chem. Inf. Model. 2020, 60, 2939–2950. [Google Scholar] [CrossRef]
- Lopes, S.P.; Castillo, Y.P.; Monteiro, M.L.; Menezes, R.R.D.; Almeida, R.N.; Martins, A.M.; Sousa, D.P.D. Trypanocidal Mechanism of Action and in silico Studies of p-Coumaric Acid Derivatives. Int. J. Mol. Sci. 2019, 20, 5916. [Google Scholar] [CrossRef]
- Santos, K.B.; Guedes, I.A.; Karl, A.L.M.; Dardenne, L.E. Highly Flexible Ligand Docking: Benchmarking of the DockThor Program on the LEADS-PEP Protein–Peptide Data Set. J. Chem. Inf. Model. 2020, 60, 667–683. [Google Scholar] [CrossRef] [PubMed]
- Ballante, F.; Kooistra, A.J.; Kampen, S.; de Graaf, C.; Carlsson, J. Structure-Based Virtual Screening for Ligands of G Protein-Coupled Receptors: What Can Molecular Docking Do for You? Pharmacol. Rev. 2021, 73, 527–565. [Google Scholar] [CrossRef] [PubMed]
- Hendrickx, S.; Boulet, G.; Mondelaers, A.; Dujardin, J.C.; Rijal, S.; Lachaud, L.; Cos, P.; Delputte, P.; Maes, L. Experimental selection of paromomycin and miltefosine resistance in intracellular amastigotes of Leishmania donovani and L. infantum. Parasitol. Res. 2014, 113, 1875–1881. [Google Scholar] [CrossRef] [PubMed]
- Singh, S.; Vijaya Prabhu, S.; Suryanarayanan, V.; Bhardwaj, R.; Singh, S.K.; Dubey, V.K. Molecular docking and structure-based virtual screening studies of potential drug target, CAAX prenyl proteases, of Leishmania donovani. J. Biomol. Struct. Dyn. 2016, 34, 2367–2386. [Google Scholar] [CrossRef]
- Vivarini, Á.C.; Calegari-Silva, T.C.; Saliba, A.M.; Boaventura, V.S.; França-Costa, J.; Khouri, R.; Dierckx, T.; Dias-Teixeira, K.L.; Fasel, N.; Barral, A.M.P.; et al. Systems Approach Reveals Nuclear Factor Erythroid 2-Related Factor 2/Protein Kinase R Crosstalk in Human Cutaneous Leishmaniasis. Front. Immunol. 2017, 8, 1127. [Google Scholar] [CrossRef]
- Keval, R.; Tejas, G. Basics, types and applications of molecular docking: A review. IP Int. J. Compr. Adv. Pharmacol. 2022, 7, 16019. [Google Scholar]
- Prabhu, S.V.; Tiwari, K.; Suryanarayanan, V.; Dubey, V.K.; Singh, S.K. Exploration of New and Potent Lead Molecules Against CAAX Prenyl Protease I of Leishmania donovani Through Pharmacophore Based Virtual Screening Approach. Comb. Chem. High Throughput Screen 2017, 20, 255–271. [Google Scholar] [CrossRef]
- VM, V.; Dubey, V.K.; Ponnuraj, K. Identification of two natural compound inhibitors of Leishmania donovani Spermidine Synthase (SpdS) through molecular docking and dynamic studies. J. Biomol. Struct. Dyn. 2018, 36, 2678–2693. [Google Scholar]
- Pinzi, L.; Rastelli, G. Molecular Docking: Shifting Paradigms in Drug Discovery. Int. J. Mol. Sci. 2019, 20, 4331. [Google Scholar] [CrossRef]
- Orabi, M.A.A.; Alshahrani, M.M.; Sayed, A.M.; Abouelela, M.E.; Shaaban, K.A.; Abdel-Sattar, E.S. Identification of Potential Leishmania N-Myristoyltransferase Inhibitors from Withania somnifera (L.) Dunal: A Molecular Docking and Molecular Dynamics Investigation. Metabolites 2023, 13, 93. [Google Scholar] [CrossRef]
- Batista, F.A.; Ramos, S.L., Jr.; Tassone, G.; Leitão, A.; Montanari, C.A.; Botta, M.; Mori, M.; Borges, J.C. Discovery of small molecule inhibitors of Leishmania braziliensis Hsp90 chaperone. J. Enzyme Inhib. Med. Chem. 2020, 35, 639–649. [Google Scholar] [CrossRef] [PubMed]
- Bhardwaj, R.; Das, M.; Singh, S.; Chiranjivi, A.K.; Prabhu, S.V.; Singh, S.K.; Dubey, V.K. Evaluation of CAAX prenyl protease II of Leishmania donovani as potential drug target: Infectivity and growth of the parasite is significantly lowered after the gene knockout. Eur. J. Pharm. Sci. 2017, 102, 156–160. [Google Scholar] [CrossRef] [PubMed]
- Das, S.; Banerjee, A.; Kamran, M.; Ejazi, S.A.; Asad, M.; Ali, N.; Chakrabarti, S. A chemical inhibitor of heat shock protein 78 (HSP78) from Leishmania donovani represents a potential antileishmanial drug candidate. J. Biol. Chem. 2020, 295, 9934–9947. [Google Scholar] [CrossRef]
- Pandey, R.K.; Sharma, D.; Bhatt, T.K.; Sundar, S.; Prajapati, V.K. Developing imidazole analogues as potential inhibitor for Leishmania donovani trypanothione reductase: Virtual screening, molecular docking, dynamics and ADMET approach. J. Biomol. Struct. Dyn. 2015, 33, 2541–2553. [Google Scholar] [CrossRef] [PubMed]
- Bhowmik, D.; Jagadeesan, R.; Rai, P.; Nandi, R.; Gugan, K.; Kumar, D. Evaluation of potential drugs against leishmaniasis targeting catalytic subunit of Leishmania donovani nuclear DNA primase using ligand based virtual screening, docking and molecular dynamics approaches. J. Biomol. Struct. Dyn. 2021, 39, 1838–1852. [Google Scholar] [CrossRef] [PubMed]
- Sakyi, P.O.; Broni, E.; Amewu, R.K.; Miller WA 3rd Wilson, M.D.; Kwofie, S.K. Homology Modeling, de Novo Design of Ligands, and Molecular Docking Identify Potential Inhibitors of Leishmania donovani 24-Sterol Methyltransferase. Front. Cell Infect. Microbiol. 2022, 12, 859981. [Google Scholar] [CrossRef]
- Pandey, R.K.; Kumbhar, B.V.; Sundar, S.; Kunwar, A.; Prajapati, V.K. Structure-based virtual screening, molecular docking, ADMET and molecular simulations to develop benzoxaborole analogs as potential inhibitor against Leishmania donovani trypanothione reductase. J. Recept. Signal. Transduct. Res. 2017, 37, 60–70. [Google Scholar] [CrossRef]
- Borhani, D.W.; Shaw, D.E. The future of molecular dynamics simulations in drug discovery. J. Comput. Aided Mol. Des. 2012, 26, 15–26. [Google Scholar] [CrossRef]
- Chen, K.; Kurgan, L. Investigation of atomic level patterns in protein-small ligand interactions. PLoS ONE 2009, 4, e4473. [Google Scholar] [CrossRef]
- Psachoulia, E.; Bond, P.J.; Sansom, M.S.P. MD simulations of Mistic: Conformational stability in detergent micelles and water. Biochemistry 2006, 45, 9053–9058. [Google Scholar] [CrossRef]
- Skjaerven, L.; Reuter, N.; Martinez, A. Dynamics, flexibility and ligand-induced conformational changes in biological macromolecules: A computational approach. Future Med. Chem. 2011, 3, 2079–2100. [Google Scholar] [CrossRef] [PubMed]
- Frezza, E.; Lavery, R. Internal Coordinate Normal Mode Analysis: A Strategy To Predict Protein Conformational Transitions. J. Phys. Chem. B 2019, 123, 1294–1301. [Google Scholar] [CrossRef] [PubMed]
- Ilizaliturri-Flores, I.; Correa-Basurto, J.; Benítez-Cardoza, C.G.; Zamorano-Carrillo, A. A study of the structural properties and thermal stability of human Bcl-2 by molecular dynamics simulations. J. Biomol. Struct. Dyn. 2014, 32, 1707–1719. [Google Scholar] [CrossRef] [PubMed]
- Pricer, R.; Gestwicki, J.E.; Mapp, A.K. From Fuzzy to Function: The New Frontier of Protein-Protein Interactions. Acc. Chem. Res. 2017, 50, 584–589. [Google Scholar] [CrossRef] [PubMed]
- Morris, C.J.; Corte, D.D. Using molecular docking and molecular dynamics to investigate protein-ligand interactions. Mod. Phys. Lett. B 2021. Available online: https://www.nstl.gov.cn/paper_detail.html?id=9368c2d81762376c94f06498e4f1631a (accessed on 2 September 2023).
- Nabi, S.A.; Ramzan, F.; Lone, M.S.; Beg, M.A.; Hamid, A.; Nainwal, L.M.; Samim, M.; Shafi, S.; Bano, S.; Javed, K. Synthesis, crystallographic study, molecular docking, ADMET, DFT and biological evaluation of new series of aurone derivatives as anti-leishmanial agents. J. Mol. Struct. 2022, 1256, 132528. [Google Scholar] [CrossRef]
- Ciemny, M.P.; Debinski, A.; Paczkowska, M.; Kolinski, A.; Kurcinski, M.; Kmiecik, S. Protein-peptide molecular docking with large-scale conformational changes: The p53-MDM2 interaction. Sci. Rep. 2016, 6, 37532. [Google Scholar] [CrossRef] [PubMed]
- Vickers, T.J.; Beverley, S.M. Folate metabolic pathways in Leishmania. Essays Biochem. 2011, 51, 63–80. [Google Scholar]
- Boakye, A.; Gasu, E.N.; Mensah, J.O.; Borquaye, L.S. Computational studies on potential small molecule inhibitors of Leishmania pteridine reductase 1. J. Biomol. Struct. Dyn. 2023, 1–14. [Google Scholar] [CrossRef]
- Cheung, L.S.L.; Kanwar, M.; Ostermeier, M.; Konstantopoulos, K. A Hot-Spot Motif Characterizes the Interface between a Designed Ankyrin-Repeat Protein and Its Target Ligand. Biophys. J. 2012, 102, 407–416. [Google Scholar] [CrossRef]
- Tripathi, C.D.P.; Kushawaha, P.K.; Sangwan, R.S.; Mandal, C.; Misra-Bhattacharya, S.; Dube, A. Withania somnifera chemotype NMITLI 101R significantly increases the efficacy of antileishmanial drugs by generating strong IFN-γ and IL-12 mediated immune responses in Leishmania donovani infected hamsters. Phytomedicine Int. J. Phytother. Phytopharm. 2017, 24, 87–95. [Google Scholar] [CrossRef]
- Gupta, O.; Pradhan, T.; Bhatia, R.; Monga, V. Recent advancements in anti-leishmanial research: Synthetic strategies and structural activity relationships. Eur. J. Med. Chem. 2021, 223, 113606. [Google Scholar] [CrossRef] [PubMed]
- Elhady, S.S.; Abdelhameed, R.F.; Malatani, R.T.; Alahdal, A.M.; Bogari, H.A.; Almalki, A.J.; Mohammad, K.A.; Ahmed, S.A.; Khedr, A.I.; Darwish, K.M. Molecular Docking and Dynamics Simulation Study of Hyrtios erectus Isolated Scalarane Sesterterpenes as Potential SARS-CoV-2 Dual Target Inhibitors. Biology 2021, 10, 389. [Google Scholar] [CrossRef] [PubMed]
- Gupta, A.K.; Das, S.; Kamran, M.; Ejazi, S.A.; Ali, N. The pathogenicity and virulence of Leishmania-interplay of virulence factors with host defenses. Virulence 2022, 13, 903–935. [Google Scholar] [CrossRef]
- Bertazzo, M.; Bernetti, M.; Recanatini, M.; Masetti, M.; Cavalli, A. Fully Flexible Docking via Reaction-Coordinate-Independent Molecular Dynamics Simulations. J. Chem. Inf. Model. 2018, 58, 490–500. [Google Scholar] [CrossRef] [PubMed]
- de Almeida Machado, P.; Carneiro, M.P.D.; de Jesus Sousa-Batista, A.; Pereira Lopes, F.J.; de Araujo Lima, A.P.C.; Chaves, S.P.; Sodero, A.C.R.; de Matos Guedes, H.L. Leishmanicidal therapy targeted to parasite proteases. Life Sci. 2019, 219, 163–181. [Google Scholar] [CrossRef]
- Hernandez, A.V.; Phan, M.T.; Rocco, J.; Pasupuleti, V.; Barboza, J.J.; Piscoya, A.; Roman, Y.M.; White, C.M. Efficacy and Safety of Hydroxychloroquine for Hospitalized COVID-19 Patients: A Systematic Review and Meta-Analysis. J. Clin. Med. 2021, 10, 2503. [Google Scholar] [CrossRef]
- Akash, S.; Hossain, A.; Mukerjee, N.; Sarker, M.M.R.; Khan, M.F.; Hossain, M.J.; Rashid, M.A.; Kumer, A.; Ghosh, A.; León-Figueroa, D.A.; et al. Modified coptisine derivatives as an inhibitor against pathogenic Rhizomucor miehei, Mycolicibacterium smegmatis (Black Fungus), Monkeypox, and Marburg virus by molecular docking and molecular dynamics simulation-based drug design approach. Front. Pharmacol. 2023, 14, 1140494. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Challapa-Mamani, M.R.; Tomás-Alvarado, E.; Espinoza-Baigorria, A.; León-Figueroa, D.A.; Sah, R.; Rodriguez-Morales, A.J.; Barboza, J.J. Molecular Docking and Molecular Dynamics Simulations in Related to Leishmania donovani: An Update and Literature Review. Trop. Med. Infect. Dis. 2023, 8, 457. https://doi.org/10.3390/tropicalmed8100457
Challapa-Mamani MR, Tomás-Alvarado E, Espinoza-Baigorria A, León-Figueroa DA, Sah R, Rodriguez-Morales AJ, Barboza JJ. Molecular Docking and Molecular Dynamics Simulations in Related to Leishmania donovani: An Update and Literature Review. Tropical Medicine and Infectious Disease. 2023; 8(10):457. https://doi.org/10.3390/tropicalmed8100457
Chicago/Turabian StyleChallapa-Mamani, Mabel R., Eduardo Tomás-Alvarado, Angela Espinoza-Baigorria, Darwin A. León-Figueroa, Ranjit Sah, Alfonso J. Rodriguez-Morales, and Joshuan J. Barboza. 2023. "Molecular Docking and Molecular Dynamics Simulations in Related to Leishmania donovani: An Update and Literature Review" Tropical Medicine and Infectious Disease 8, no. 10: 457. https://doi.org/10.3390/tropicalmed8100457
APA StyleChallapa-Mamani, M. R., Tomás-Alvarado, E., Espinoza-Baigorria, A., León-Figueroa, D. A., Sah, R., Rodriguez-Morales, A. J., & Barboza, J. J. (2023). Molecular Docking and Molecular Dynamics Simulations in Related to Leishmania donovani: An Update and Literature Review. Tropical Medicine and Infectious Disease, 8(10), 457. https://doi.org/10.3390/tropicalmed8100457