Factors Associated with Candidiasis in Pemphigus Vulgaris Patients: Results from a Retrospective Study in Two Second-Care Level Hospitals in Mexico
Abstract
:1. Introduction
2. Material and Methods
Statistical Analysis
3. Results
3.1. Demographic, Clinical, and Treatment Characteristics
3.2. Candida Species Distribution
3.3. Comparative Characteristics in Patients with Pemphigus Vulgaris with and without Candidiasis
3.4. Underlying Comorbidities
3.5. Identified Risk Factors
3.6. Source of Candidiasis
3.7. Mortality in Pemphigus Vulgaris with Candidiasis
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Pakshir, K.; Ghasemi, N.; Zomorodian, K.; Jowkar, F.; Nouraei, H.; Dastgheib, L. Identification and Antifungal Activity Profile of Candida Species Isolated from Patients with Pemphigus Vulgaris with Oral Lesions. Acta Dermatovenerol. Croat. 2019, 27, 137–141. [Google Scholar] [PubMed]
- Esmaili, N.; Mortazavi, H.; Noormohammadpour, P.; Boreiri, M.; Soori, T.; Vasheghani Farahani, I.; Mohit, M. Pemphigus vulgaris and infections: A retrospective study on 155 patients. Autoimmune Dis. 2013, 2013, 834295. [Google Scholar] [CrossRef] [PubMed]
- Abulikemu, K.; Hu, F.; Liang, J.; Kang, X. Targeting therapy in pemphigus: Where are we now and where are we going? Heliyon 2023, 9, e16679. [Google Scholar] [CrossRef] [PubMed]
- Paracha, M.M.; Sagheer, F.; Khan, A.Q. A clinic-epidemiological study of 148 patients of pemphigus at Lady Reading Hospital, Peshawar: A case series. J. Pak. Med. Assoc. 2023, 73, 659–662. [Google Scholar] [CrossRef]
- Zhao, C.Y.; Murrell, D.F. Pemphigus vulgaris: An evidence-based treatment update. Drugs 2015, 75, 271–284. [Google Scholar] [CrossRef] [PubMed]
- Murrell, D.F.; Peña, S.; Joly, P.; Marinovic, B.; Hashimoto, T.; Diaz, L.A.; Sinha, A.A.; Payne, A.S.; Daneshpazhooh, M.; Eming, R.; et al. Diagnosis and management of pemphigus: Recommendations of an international panel of experts. J. Am. Acad. Dermatol. 2020, 82, 575–585.e1. [Google Scholar] [CrossRef] [PubMed]
- Kridin, K.; Sagi, S.Z.; Bergman, R. Mortality and Cause of Death in Patients with Pemphigus. Acta Derm. Venereol. 2017, 97, 607–611. [Google Scholar] [CrossRef]
- Ikegaya, S.; Tai, K.; Shigemi, H.; Iwasaki, H.; Okada, T.; Ueda, T. Fulminant candidemia diagnosed by prompt detection of pseudohyphae in a peripheral blood smear. Am. J. Med. Sci. 2012, 343, 419–420. [Google Scholar] [CrossRef]
- Ghazi, S.; Rafei, R.; Osman, M.; El Safadi, D.; Mallat, H.; Papon, N.; Dabboussi, F.; Bouchara, J.P.; Hamze, M. The epidemiology of Candida species in the Middle East and North Africa. J. Mycol. Med. 2019, 29, 245–252. [Google Scholar] [CrossRef]
- McCarty, T.P.; White, C.M.; Pappas, P.G. Candidemia and Invasive Candidiasis. Infect. Dis. Clin. N. Am. 2021, 35, 389–413. [Google Scholar] [CrossRef]
- Antinori, S.; Milazzo, L.; Sollima, S.; Galli, M.; Corbellino, M. Candidemia and invasive candidiasis in adults: A narrative review. Eur. J. Intern. Med. 2016, 34, 21–28. [Google Scholar] [CrossRef] [PubMed]
- Fongsmut, T.; Deerochanawong, C.; Prachyabrued, W. Intraoral candida in Thai diabetes patients. J. Med. Assoc. Thail. 1998, 81, 449–453. [Google Scholar]
- Teanpaisan, R.; Nittayananta, W. Prevalence of Candida species in AIDS patients and HIV-free subjects in Thailand. J. Oral Pathol. Med. 1998, 27, 4–7. [Google Scholar] [CrossRef] [PubMed]
- Naicker, S.D.; Shuping, L.; Zulu, T.G.; Mpembe, R.S.; Mhlanga, M.; Tsotetsi, E.M.; Maphanga, T.G.; Govender, N.P.; MMed, FC Path SA, for GERMS-SA. Epidemiology and susceptibility of Nakaseomyces (formerly Candida) glabrata bloodstream isolates from hospitalised adults in South Africa. Med. Mycol. 2023, 61, myad057. [Google Scholar] [CrossRef] [PubMed]
- Małek, M.; Mrowiec, P.; Klesiewicz, K.; Skiba-Kurek, I.; Szczepański, A.; Białecka, J.; Żak, I.; Bogusz, B.; Kędzierska, J.; Budak, A.; et al. Prevalence of human pathogens of the clade Nakaseomyces in a culture collection-the first report on Candida bracarensis in Poland. Folia Microbiol. 2019, 64, 307–312. [Google Scholar] [CrossRef] [PubMed]
- Lyakhovitsky, A.; Dascalu, J.; Drousiotis, T.; Barzilai, A.; Baum, S. Hematological Inflammatory Markers in Patients with Pemphigus Vulgaris. Dermatology 2021, 237, 912–920. [Google Scholar] [CrossRef] [PubMed]
- Rosi-Schumacher, M.; Baker, J.; Waris, J.; Seiffert-Sinha, K.; Sinha, A.A. Worldwide epidemiologic factors in pemphigus vulgaris and bullous pemphigoid. Front. Immunol. 2023, 14, 1159351. [Google Scholar] [CrossRef] [PubMed]
- Raja, N.S. Epidemiology, risk factors, treatment and outcome of Candida bloodstream infections because of Candida albicans and Candida non-albicans in two district general hospitals in the United Kingdom. Int. J. Clin. Pract. 2021, 75, e13655. [Google Scholar] [CrossRef]
- Kayaaslan, B.; Kaya Kalem, A.; Asilturk, D.; Kaplan, B.; Dönertas, G.; Hasanoglu, I.; Eser, F.; Korkmazer, R.; Oktay, Z.; Ozkocak Turan, I.; et al. Incidence and risk factors for COVID-19 associated candidemia (CAC) in ICU patients. Mycoses 2022, 65, 508–516. [Google Scholar] [CrossRef]
- Kord, M.; Salehi, M.; Hashemi, S.J.; Abdollahi, A.; Alijani, N.; Maleki, A.; Mahmoudi, S.; Ahmadikia, K.; Parsameher, N.; Moradi, M.; et al. Clinical, epidemiological, and mycological features of patients with candidemia: Experience in two tertiary referral centers in Iran. Curr. Med. Mycol. 2022, 8, 9–17. [Google Scholar] [CrossRef]
- Lozada-Nur, F.; Miranda, C.; Maliksi, R. Double-blind clinical trial of 0.05% clobetasol propionate (corrected from proprionate) ointment in orabase and 0.05% fluocinonide ointment in orabase in the treatment of patients with oral vesiculoerosive diseases. Oral Surg. Oral Med. Oral Pathol. 1994, 77, 598–604. [Google Scholar] [CrossRef] [PubMed]
- Hook, B. Candida colonization in diseases of the oral mucosa: Clinical observations. Mycoses 1991, 34 (Suppl. 1), 87–89. [Google Scholar] [PubMed]
- Köhler, G.A.; Gong, X.; Bentink, S.; Theiss, S.; Pagani, G.M.; Agabian, N.; Hedstrom, L. The functional basis of mycophenolic acid resistance in Candida albicans IMP dehydrogenase. J. Biol. Chem. 2005, 280, 11295–11302. [Google Scholar] [CrossRef] [PubMed]
- Beckerman, J.; Chibana, H.; Turner, J.; Magee, P.T. Single-copy IMH3 allele is sufficient to confer resistance to mycophenolic acid in Candida albicans and to mediate transformation of clinical Candida species. Infect. Immun. 2001, 69, 108–114. [Google Scholar] [CrossRef] [PubMed]
- Suehiro, Y.; Ishido, A.; Shigeoka, T.; Tominaga, T.; Korenaga, Y.; Yamamoto, M.; Takahashi, T. Successful treatment with rituximab for type III cryoglobulinemia. Rinsho Ketsueki 2015, 56, 220–224. [Google Scholar] [CrossRef] [PubMed]
- Dar, S.A.; Das, S.; Bhattacharya, S.N.; Ramachandran, V.G.; Ahmed, T.; Banerjee, B.D.; Sonthalia, S.; Sood, V.; Banerjea, A.C. Possible role of superantigens in inducing autoimmunity in pemphigus patients. J. Dermatol. 2011, 38, 980–987. [Google Scholar] [CrossRef]
- Damara, I.; Winston, K.; Maulida, F.; Ariane, A. Factors Associated With Candidiasis in Systemic Lupus Erythematosus Patients in Cipto Mangunkusumo National General Hospital: A Single-Center Case-Control Study. Cureus 2022, 14, e27107. [Google Scholar] [CrossRef]
- Su, C.F.; Lai, C.C.; Li, T.H.; Chang, Y.F.; Lin, Y.T.; Chen, W.S.; Tsao, Y.P.; Wang, W.H.; Chang, Y.S.; Tsai, C.Y. Epidemiology and risk of invasive fungal infections in systemic lupus erythematosus: A nationwide population-based cohort study. Ther. Adv. Musculoskelet. Dis. 2021, 13, 1759720X211058502. [Google Scholar] [CrossRef]
- Rai, P. Role of neutrophil-to-lymphocyte, neutrophil-to-eosinophil and platelet-to-lymphocyte ratios in the diagnosis of bullous pemphigoid and Pemphigus disease. Indian J. Pathol. Microbiol. 2023, 66, 70–74. [Google Scholar] [CrossRef]
- Skórzewska, M.; Pikuła, A.; Gęca, K.; Mlak, R.; Rawicz-Pruszyński, K.; Sędłak, K.; Paśnik, I.; Polkowski, W.P. Systemic inflammatory response markers for prediction of response to neoadjuvant chemotherapy in patients with advanced gastric cancer. Cytokine 2023, 172, 156389. [Google Scholar] [CrossRef]
- Garraud, O.; Damien, P.; Berthet, J.; Arthaud, C.A.; Hamzeh-Cognasse, H.; Cognasse, F. Blood platelets and biological response to ‘danger’ signals and subsequent inflammation: Towards a new paradigm? Transfus. Clin. Biol. 2011, 18, 165–173. [Google Scholar] [CrossRef] [PubMed]
- Schanze, N.; Hamad, M.A.; Nührenberg, T.G.; Bode, C.; Duerschmied, D. Platelets in Myocardial Ischemia/Reperfusion Injury. Hamostaseologie 2023, 43, 110–121. [Google Scholar] [CrossRef] [PubMed]
- Gawaz, M. Role of platelets in coronary thrombosis and reperfusion of ischemic myocardium. Cardiovasc. Res. 2004, 61, 498–511. [Google Scholar] [CrossRef] [PubMed]
- Tunay, B.; Aydin, S. Investigation of inflammation-related parameters in patients with candidemia hospitalized in the intensive care unit: A retrospective cohort study. Sci. Prog. 2022, 105, 368504221124055. [Google Scholar] [CrossRef] [PubMed]
- Nejatifar, F.; Mirbolouk, N.; Masooleh, I.S.; Kazemnejad, E.; Ghavidel-Parsa, B.; Ghanbari, A.M.; Zayeni, H. Association between neutrophil/lymphocyte ratio and disease severity in scleroderma patients. Heliyon 2023, 9, e20576. [Google Scholar] [CrossRef]
- Subramani, M.; Anbarasan, M.; Shanmugam, D.; Muthumani, L.N.; Vasudevan, P. Role of neutrophil-lymphocyte ratio as a prognostic marker for type 2 diabetic nephropathy among Indians. Bioinformation 2023, 19, 375–379. [Google Scholar] [CrossRef]
- Han, Q.; Liang, P.; Li, J.; Liu, B.; Zhang, R.; Xie, X.; Liang, Y.; Yang, Q. The ratio of neutrophil to lymphocyte as a potential marker of clinicopathological activity for lupus nephritis. In International Urology and Nephrology; Springer: Berlin/Heidelberg, Germany, 2023. [Google Scholar] [CrossRef]
- Firizal, A.S.; Sugianli, A.K.; Hamijoyo, L. Cut off point of neutrophil-to-lymphocyte ratio as a marker of active disease in systemic lupus erythematosus. Lupus 2020, 29, 1566–1570. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual authors and contributors and not of MDPI and/or the editors. MDPI and/or the editors disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
Patient Characteristics | Distribution (n = 100) |
---|---|
Age, years, mean ± SD (range) | 47.94 ± 10.42 (28–68) |
Male/female, n (%) | 38 (38)/62 (62) |
Patients who relapsed, n (%) | 20 (20) |
Patients with active disease * | 40 (40) |
Patients in remission, n (%) | 40 (40) |
Characteristic | Distribution, n = 79 (%) |
---|---|
Candida species (85 isolates in 79 patients) | |
C. albicans | 40 (47) |
C. glabrata | 8 (9) |
C. tropicalis | 4 (5) |
C. parapsilosis | 4 (5) |
C. krusei | 2 (2) |
Candida sp. | 27 (32) |
Antifungal agents (n = 79) | |
Topical antifulgal | 20 (25) |
Fluconazole | 27 (34) |
Itraconazole | 25 (32) |
Voriconazole | 7 (9) |
Variables | All Patients (n = 100) | Candidiasis | p-Value | |
---|---|---|---|---|
Absent (n = 21) | Present (n = 79) | |||
Age, mean ± SD | 47.94 ± 10.42 | 50.38 ± 10.75 | 46.17 ± 9.99 | NS |
Gender, female | 62 (62) | 14 (67) | 50 (63) | NS |
Any comorbidity | 46 (46) | 9 (43) | 37 (47) | NS |
Diabetes | 28 (28) | 8 (38) | 20 (25) | NS |
Hypertension | 37 (37) | 8 (38) | 29 (37) | NS |
Coronary artery disease | 12 (12) | 4 (19) | 8 (10) | NS |
Chronic renal disease | 15 (15) | 7 (33) | 8 (10) | NS |
Malignancy | 10 (10) | 3 (14) | 7 (9) | NS |
Cerebrovascular events | 5 (5) | 1 (5) | 4 (5) | NS |
NLR, mean ± SD | 3.6 ± 2.9 | 2.68 ± 0.91 | 4.16 ± 1.14 | 0.001 |
PLR, mean ± SD | 183.23 ± 89.4 | 155.25 ± 49.7 | 237.55 ± 63.16 | 0.002 |
PNR, mean ± SD | 60.25 ± 18.35 | 59.78 ± 12.84 | 57.38 ± 5.17 | NS |
Sepsis | 24 (24) | 5 (24) | 19 (24) | NS |
Candida spp. in oral cavity | 36 (36) | 36 (45) | ||
Candida spp. in genital mucosae | 35 (35) | 35 (44) | ||
Candida spp. in skin | 29 (29) | 29 (37) | ||
Candida spp. in urine sample | 15 (15) | 15 (19) | ||
Candidemia | 14 (14) | 14 (18) | ||
Prior antibiotic use, including extended spectrum antibiotics | 39 (39) | 5 (24) | 34 (43) | 0.015 |
Prior antifungal agent use | 27 (27) | 3 (14) | 24 (30) | 0.019 |
Pulse corticosteroid therapy | 46 (46) | 3 (14) | 43 (54) | 0.001 |
Maximum dose of corticosteroid (mg/day) | 55.32 ± 18.49 | 51.9 ± 5.58 | 67.67 ± 12.09 | 0.012 |
Latest dose of corticosteroid (mg/day) | 15.28 ± 8.33 | 6.07 ± 2.02 | 17.83 ± 7.6 | 0.001 |
3 months’ cumulative dose of corticosteroid (mg) | 3249 ± 1523 | 2602.1 ± 482.72 | 3602.17 ± 886.26 | 0.012 |
Rituximab | 30 (30) | 6 (28) | 24 (30) | NS |
Azathioprine | 88 (88) | 18 (86) | 70 (89) | NS |
Mofetil mycofenolate | 38 (38) | 7 (33) | 31 (39) | NS |
Overall death | 12 (12) | 1 (5) | 11 (14) | 0.025 |
Variable | OR | 95%CI | p-Value |
---|---|---|---|
Age (≥65 years) | 1.5 | 0.92–3.23 | 0.038 |
Gender (female) | 1.45 | 1.23–3.38 | 0.025 |
Comorbidity | 0.58 | 0.26–1.38 | 0.078 |
Diabetes mellitus | 0.78 | 0.4–1.86 | 0.123 |
Hypertension | 0.85 | 0.71–1.89 | 0.14 |
Coronary artery disease | 0.45 | 0.28–1.39 | 0.33 |
Chronic renal disease | 0.38 | 0.27–2.22 | 0.146 |
Malignancy | 1.28 | 0.42–3.84 | 0.066 |
Cerebrovascular event | 1.65 | 0.19–4.58 | 0.079 |
Sepsis | 2.78 | 1.25–7.36 | 0.025 |
PV relapse | 3.25 | 1.89–7.23 | 0.015 |
Active PV | 2.89 | 1.15–4.35 | 0.028 |
PV severity (≥15% BSA) | 3.18 | 1.25–4.2 | 0.01 |
Maximum corticosteroid dose (≥50 mg/day) | 4.85 | 1.87–6.43 | 0.001 |
Pulse corticosteroid therapy | 3.59 | 2.23–4.89 | 0.002 |
Prior antibiotic use | 6.48 | 1.12–7.23 | 0.042 |
Prior antifungal use | 3.45 | 1.22–3.33 | 0.035 |
Mycophenolate mofetil | 0.65 | 0.33–0.98 | 0.04 * |
Rituximab | 1.1 | 0.45–1.23 | 0.13 |
NLR (≥2) | 3.38 | 1.27–4.59 | 0.001 |
PLR (≥150) | 2.85 | 1.84–3.59 | 0.001 |
PNR (≥50) | 1.12 | 0.24–2.23 | 0.057 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tirado-Sánchez, A.; Bonifaz, A.; Frías De León, M.G. Factors Associated with Candidiasis in Pemphigus Vulgaris Patients: Results from a Retrospective Study in Two Second-Care Level Hospitals in Mexico. Trop. Med. Infect. Dis. 2023, 8, 521. https://doi.org/10.3390/tropicalmed8120521
Tirado-Sánchez A, Bonifaz A, Frías De León MG. Factors Associated with Candidiasis in Pemphigus Vulgaris Patients: Results from a Retrospective Study in Two Second-Care Level Hospitals in Mexico. Tropical Medicine and Infectious Disease. 2023; 8(12):521. https://doi.org/10.3390/tropicalmed8120521
Chicago/Turabian StyleTirado-Sánchez, Andrés, Alexandro Bonifaz, and María Guadalupe Frías De León. 2023. "Factors Associated with Candidiasis in Pemphigus Vulgaris Patients: Results from a Retrospective Study in Two Second-Care Level Hospitals in Mexico" Tropical Medicine and Infectious Disease 8, no. 12: 521. https://doi.org/10.3390/tropicalmed8120521
APA StyleTirado-Sánchez, A., Bonifaz, A., & Frías De León, M. G. (2023). Factors Associated with Candidiasis in Pemphigus Vulgaris Patients: Results from a Retrospective Study in Two Second-Care Level Hospitals in Mexico. Tropical Medicine and Infectious Disease, 8(12), 521. https://doi.org/10.3390/tropicalmed8120521