Development and Optimization of an Unbiased, Metagenomics-Based Pathogen Detection Workflow for Infectious Disease and Biosurveillance Applications
Abstract
:1. Introduction
2. Materials and Methods
2.1. Best-of-Breed Approach
2.2. Preparation of Quantified Bacterial and Viral Stocks
2.3. Preparation of Contrived Samples for Analytical Studies
2.3.1. Contrived Human Blood Samples
2.3.2. Simulated Environmental Surface Samples
2.4. Whole Blood Preprocessing
2.5. Pre-Lysis Host Depletion
2.6. Total Nucleic Acid (TNA) Extraction
2.6.1. Whole Blood TNA Extraction and Purification
2.6.2. Environmental TNA Extraction
2.7. TNA Concentration via MinElute
2.8. Real-Time PCR (qPCR)
2.9. Post-Purification Host Depletion
2.10. Whole Transcriptome Amplification
2.11. Quantification and Pooling
2.12. Library Preparation and Next-Generation Sequencing
2.13. Data Analysis
3. Results
3.1. Final Workflow Development Overview
3.2. Dehosting of Clinical Samples Using Cyanase
3.3. Extraction of Total Nucleic Acids
3.4. Concentrating Total Nucleic Acids
3.5. Whole Transcriptome Amplification
3.6. Sequencing Protocol Impact on Pathogen Detection Sensitivity and Specificity
3.7. Inclusivity Testing of Clinical and Environmental Workflows
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Fonkwo, P.N. Pricing infectious disease: The economic and health implications of infectious diseases. EMBO Rep. 2008, 9 (Suppl. S1), S13–S17. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shretta, R.; Liu, J.; Cotter, C.; Cohen, J.; Dolenz, C.; Makomva, K.; Newby, G.; Ménard, D.; Phillips, A.; Tatarsky, A.; et al. Malaria Elimination and Eradication. In Major Infectious Diseases, 3rd ed.; Holmes, K.K., Bertozzi, S., Bloom, B.R., Eds.; TThe International Bank for Reconstruction and Development: Washington, DC, USA; The World Bank: Washington, DC, USA, 2017; Chapter 12. Available online: https://www.ncbi.nlm.nih.gov/books/NBK525190/ (accessed on 23 January 2023). [CrossRef]
- WHO. The Top 10 Causes of Death; WHO: Geneva, Switzerland, 2018. [Google Scholar]
- Fauci, A.S.; Touchette, N.A.; Folkers, G.K. Emerging Infectious Diseases: A 10-Year Perspective from the National Institute of Allergy and Infectious Diseases. Emerg. Infect. Dis. 2005, 11, 519–525. [Google Scholar] [CrossRef] [PubMed]
- Kitaura, T.; Chikumi, H.; Fujiwara, H.; Okada, K.; Hayabuchi, T.; Nakamoto, M.; Takata, M.; Yamasaki, A.; Igishi, T.; Burioka, N.; et al. Positive Predictive Value of True Bacteremia according to the Number of Positive Culture Sets in Adult Patients. Yonago Acta Med. 2014, 57, 159–165. [Google Scholar] [PubMed]
- Niemz, A.; Ferguson, T.M.; Boyle, D.S. Point-of-care nucleic acid testing for infectious diseases. Trends Biotechnol. 2011, 29, 240–250. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pfaller, M. Molecular Approaches to Diagnosing and Managing Infectious Diseases: Practicality and Costs. Emerg. Infect. Dis. 2001, 7, 312–318. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tang, Y.W.; Procop, G.W.; Persing, D.H. Molecular diagnostics of infectious diseases. Clin. Chem. 1997, 43, 2021–2038. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sozhamannan, S.; Holland, M.Y.; Hall, A.T.; Negrón, D.A.; Ivancich, M.; Koehler, J.W.; Minogue, T.D.; Campbell, C.E.; Berger, W.J.; Christopher, G.W.; et al. Evaluation of Signature Erosion in Ebola Virus Due to Genomic Drift and Its Impact on the Performance of Diagnostic Assays. Viruses 2015, 7, 3130–3154. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ellis, J.E.; Missan, D.S.; Shabilla, M.; Martinez, D.; Fry, S.E. Rapid infectious disease identification by next-generation DNA sequencing. J. Microbiol. Methods 2017, 138, 12–19. [Google Scholar] [CrossRef] [PubMed]
- Katoski, S.E.; Meyer, H.; Ibrahim, S. 2015. An approach for identification of unknown viruses using sequencing-by-hybridization. J. Med. Virol. 2015, 87, 1616–1624. [Google Scholar] [CrossRef]
- Hu, Z.; Weng, X.; Xu, C.; Lin, Y.; Cheng, C.; Wei, H.; Chen, W. Metagenomic next-generation sequencing as a diagnostic tool for toxoplasmic encephalitis. Ann. Clin. Microbiol. Antimicrob. 2018, 17, 45. [Google Scholar] [CrossRef] [Green Version]
- Wilson, M.R.; Naccache, S.N.; Samayoa, E.; Biagtan, M.; Bashir, H.; Yu, G.; Salamat, S.M.; Somasekar, S.; Federman, S.; Miller, S.; et al. Actionable Diagnosis of Neuroleptospirosis by Next-Generation Sequencing. N. Engl. J. Med. 2014, 370, 2408–2417. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sardi, S.I.; Somasekar, S.; Naccache, S.N.; Bandeira, A.C.; Tauro, L.B.; Campos, G.S.; Chiu, C.Y. Coinfections of Zika and Chikungunya Viruses in Bahia, Brazil, Identified by Metagenomic Next-Generation Sequencing. J. Clin. Microbiol. 2016, 54, 2348–2353. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lecuit, M.; Eloit, M. The potential of whole genome NGS for infectious disease diagnosis. Expert Rev. Mol. Diagn. 2015, 15, 1517–1519. [Google Scholar] [CrossRef] [PubMed]
- Roy, S.; LaFramboise, W.A.; Nikiforov, Y.E.; Nikiforova, M.N.; Routbort, M.J.; Pfeifer, J.; Nagarajan, R.; Carter, A.B.; Pantanowitz, L. Next-Generation Sequencing Informatics: Challenges and Strategies for Implementation in a Clinical Environment. Arch. Pathol. Lab. Med. 2016, 140, 958–975. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fernald, G.H.; Capriotti, E.; Daneshjou, R.; Karczewski, K.J.; Altman, R.B. Bioinformatics challenges for personalized medicine. Bioinformatics 2011, 27, 1741–1748. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schlaberg, R.; Chiu, C.Y.; Miller, S.; Procop, G.W.; Weinstock, G. Validation of Metagenomic Next-Generation Sequencing Tests for Universal Pathogen Detection. Arch. Pathol. Lab. Med. 2017, 141, 776–786. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Corporation, N.B. Plasma/Serum RNA Purification Kits Product Insert. 2016. Available online: https://norgenbiotek.com/sites/default/files/resources/Plasma-Serum-RNA-Purification-Kit-PI55000-5_0.pdf (accessed on 11 November 2018).
- Qiagen. RNeasy Power Microbiome Kit Handbook. 2018. Available online: https://www.qiagen.com/us/resources/resourcedetail?id=fee7d44a-3636-4c66-91d4-7db01d24a3cc&lang=en (accessed on 11 November 2018).
- Qiagen. RNeasy MinElute Cleanup Handbook; Qiagen: Hilden, Germany, 2010. [Google Scholar]
- Qiagen. REPLI-g WTA Single Cell Handbook. 2014. Available online: https://www.qiagen.com/us/resources/resourcedetail?id=f2430d44-7f49-4544-b2de-5a51b904ea39&lang=en (accessed on 11 November 2018).
- Coulter, B. Agencourt AMPure Xp Instructions for Use. 2016. Available online: https://www.beckmancoulter.com/wsrportal/techdocs?docname=B37419 (accessed on 11 November 2018).
- Wood, D.; Salzberg, S. Kraken: Ultrafast metagenomic sequence classification using exact alignments. Genome Biol. 2014, 15, R46. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, P.; Russell, J.A.; Yarmosh, D.; Shteyman, A.G.; Parker, K.; Wood, H.; Aspinwall, J.R.; Winegar, R.; Davenport, K.; Lo, C.; et al. PanGIA: A Metagenomics Analytical Framework for Routine Biosurveillance and Clinical Pathogen Detection. bioRxiv 2020. [Google Scholar] [CrossRef]
- Thoendel, M.; Jeraldo, P.R.; Greenwood-Quaintance, K.E.; Yao, J.Z.; Chia, N.; Hanssen, A.D.; Abdel, M.P.; Patel, R. Comparison of microbial DNA enrichment tools for metagenomic whole genome sequencing. J. Microbiol. Methods 2016, 127, 141–145. [Google Scholar] [CrossRef] [PubMed]
- Hasan, M.R.; Rawat, A.; Tang, P.; Jithesh, P.V.; Thomas, E.; Tan, R.; Tilley, P. Depletion of Human DNA in Spiked Clinical Specimens for Improvement of Sensitivity of Pathogen Detection by Next-Generation Sequencing. J. Clin. Microbiol. 2016, 54, 919–927. [Google Scholar] [CrossRef] [Green Version]
- Sabat, A.J.; van Zanten, E.; Akkerboom, V.; Wisselink, G.; van Slochteren, K.; de Boer, R.F.; Hendrix, R.; Friedrich, A.W.; Rossen, J.W.A.; Kooistra-Smid, A.M.D. Targeted next-generation sequencing of the 16S-23S rRNA region for culture-independent bacterial identification—Increased discrimination of closely related species. Sci. Rep. 2017, 7, 3434. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, J.; Yang, F.; Ren, L.; Xiong, Z.; Wu, Z.; Dong, J.; Sun, L.; Zhang, T.; Hu, Y.; Du, J.; et al. Unbiased Parallel Detection of Viral Pathogens in Clinical Samples by Use of a Metagenomic Approach. J. Clin. Microbiol. 2011, 49, 3463–3469. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Greninger, A.L.; Naccache, S.N.; Federman, S.; Yu, G.; Mbala, P.; Bres, V.; Stryke, D.; Bouquet, J.; Somasekar, S.; Linnen, J.M.; et al. Rapid metagenomic identification of viral pathogens in clinical samples by real-time nanopore sequencing analysis. Genome Med. 2015, 7, 99. [Google Scholar] [CrossRef] [Green Version]
- Afshinnekoo, E.; Chou, C.; Alexander, N.; Ahsanuddin, S.; Schuetz, A.N.; Mason, C.E. Precision Metagenomics: Rapid Metagenomic Analyses for Infectious Disease Diagnostics and Public Health Surveillance. J. Biomol. Tech. 2017, 28, 40–45. [Google Scholar] [CrossRef] [Green Version]
- Simner, P.J.; Miller, S.; Carroll, K.C. Understanding the Promises and Hurdles of Metagenomic Next-Generation Sequencing as a Diagnostic Tool for Infectious Diseases. Clin. Infect. Dis. 2018, 66, 778–788. [Google Scholar] [CrossRef] [Green Version]
- Leber, A.L.; Everhart, K.; Balada-Llasat, J.-M.; Cullison, J.; Daly, J.; Holt, S.; Lephart, P.; Salimnia, H.; Schreckenberger, P.C.; DesJarlais, S.; et al. Multicenter Evaluation of BioFire FilmArray Meningitis/Encephalitis Panel for Detection of Bacteria, Viruses, and Yeast in Cerebrospinal Fluid Specimens. J. Clin. Microbiol. 2016, 54, 2251–2261. [Google Scholar] [CrossRef] [Green Version]
- Koehler, J.W.; Douglas, C.E.; Minogue, T.D. A highly multiplexed broad pathogen detection assay for infectious disease diagnostics. PLoS Negl. Trop. Dis. 2018, 12, e0006889. [Google Scholar] [CrossRef]
- Gu, W.; Crawford, E.D.; O’Donovan, B.D.; Wilson, M.R.; Chow, E.D.; Retallack, H.; DeRisi, J.L. Depletion of Abundant Sequences by Hybridization (DASH): Using Cas9 to remove unwanted high-abundance species in sequencing libraries and molecular counting applications. Genome Biol. 2016, 17, 41. [Google Scholar] [CrossRef]
Requirement |
---|
Compatible with mobile laboratories; standardized operating procedures (SOPs); utilization of COTS reagents |
Sample-to-answer, including data analysis, within 24 h |
Universal sample preparation workflow to enable detection of all pathogen types, including bacteria and viruses |
Development of a straightforward, “push-button” bioinformatics workflow using commodity hardware |
Analysis Metric | Target Organism | None n = 4 | Cyanase n = 4 | Omnicleave n = 5 |
---|---|---|---|---|
RNR | S. aureus | 185.9 | 1337.7 | - |
VEE virus | 33.0 | 306.0 | 39.5 | |
V. cholerae | 1711.0 | 7219.8 | 1229.8 | |
Confidence Score | S. aureus | 0.47 | 0.84 | - |
VEE virus | 0.44 | 0.99 | 0.51 | |
V. cholerae | 1.00 | 1.00 | 1.00 | |
Linear Coverage | S. aureus | 1% | 1% | - |
VEE virus | 26% | 69% | 29% | |
V. cholerae | 4% | 5% | 3% | |
Depth of Coverage | S. aureus | 0.026 | 0.151 | - |
VEE virus | 0.043 | 3.965 | 0.513 | |
V. cholerae | 1.062 | 2.640 | 0.697 |
Species | Concentration Method | Average RNR | Average Confidence Score | Average Linear Coverage | Average Depth of Coverage |
---|---|---|---|---|---|
PhiX | None | 1391 | 1.00 | 0.90 | 18.91 |
MinElute | 2944 | 0.99 | 1.00 | 40.29 | |
Norgen | 1908 | 0.99 | 0.97 | 26.08 | |
MS2 | None | 327 | 0.99 | 0.65 | 6.76 |
MinElute | 8915 | 0.99 | 0.92 | 184.71 | |
Norgen | 6309 | 0.99 | 0.91 | 130.53 | |
S. aureus | None | 4102 | 0.82 | 0.01 | 0.21 |
MinElute | 19,163 | 0.97 | 0.01 | 1.07 | |
Norgen | 21,715 | 0.97 | 0.02 | 1.34 | |
VEEV | None | 3337 | 1.00 | 0.92 | 21.61 |
MinElute | 243,033 | 1.00 | 0.99 | 1573.63 | |
Norgen | 225,427 | 1.00 | 0.99 | 1459.31 | |
V. cholerae | None | 10,024 | 1.00 | 0.08 | 2.66 |
MinElute | 40,891 | 1.00 | 0.20 | 10.56 | |
Norgen | 33,018 | 1.00 | 0.14 | 8.57 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Parker, K.; Wood, H.; Russell, J.A.; Yarmosh, D.; Shteyman, A.; Bagnoli, J.; Knight, B.; Aspinwall, J.R.; Jacobs, J.; Werking, K.; et al. Development and Optimization of an Unbiased, Metagenomics-Based Pathogen Detection Workflow for Infectious Disease and Biosurveillance Applications. Trop. Med. Infect. Dis. 2023, 8, 121. https://doi.org/10.3390/tropicalmed8020121
Parker K, Wood H, Russell JA, Yarmosh D, Shteyman A, Bagnoli J, Knight B, Aspinwall JR, Jacobs J, Werking K, et al. Development and Optimization of an Unbiased, Metagenomics-Based Pathogen Detection Workflow for Infectious Disease and Biosurveillance Applications. Tropical Medicine and Infectious Disease. 2023; 8(2):121. https://doi.org/10.3390/tropicalmed8020121
Chicago/Turabian StyleParker, Kyle, Hillary Wood, Joseph A. Russell, David Yarmosh, Alan Shteyman, John Bagnoli, Brittany Knight, Jacob R. Aspinwall, Jonathan Jacobs, Kristine Werking, and et al. 2023. "Development and Optimization of an Unbiased, Metagenomics-Based Pathogen Detection Workflow for Infectious Disease and Biosurveillance Applications" Tropical Medicine and Infectious Disease 8, no. 2: 121. https://doi.org/10.3390/tropicalmed8020121
APA StyleParker, K., Wood, H., Russell, J. A., Yarmosh, D., Shteyman, A., Bagnoli, J., Knight, B., Aspinwall, J. R., Jacobs, J., Werking, K., & Winegar, R. (2023). Development and Optimization of an Unbiased, Metagenomics-Based Pathogen Detection Workflow for Infectious Disease and Biosurveillance Applications. Tropical Medicine and Infectious Disease, 8(2), 121. https://doi.org/10.3390/tropicalmed8020121