The Effects of CoronaVac and ChAdOx1 nCoV-19 in Reducing Severe Illness in Thailand: A Retrospective Cohort Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Population
2.3. Study Protocol and Definitions
2.4. Statistical Analysis
2.5. Ethics Committee Approval
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- World Health Organization. COVID-19 Weekly Epidemiological Update. Available online: https://www.who.int/publications/m/item/weekly-epidemiological-update-on-covid-19---25-january-2022 (accessed on 25 January 2022).
- Suphanchaimat, R.; Teekasap, P.; Nittayasoot, N.; Phaiyarom, M.; Cetthakrikul, N. Forecasted Trends of the New COVID-19 Epidemic Due to the Omicron Variant in Thailand, 2022. Vaccines 2022, 10, 1024. [Google Scholar] [CrossRef]
- Uansri, S.; Tuangratananon, T.; Phaiyarom, M.; Rajatanavin, N.; Suphanchaimat, R.; Jaruwanno, W. Predicted Impact of the Lockdown Measure in Response to Coronavirus Disease 2019 (COVID-19) in Greater Bangkok, Thailand, 2021. Int. J. Environ. Res. Public Health 2021, 18, 12816. [Google Scholar] [CrossRef]
- World Health Organization. WHO Coronavirus (COVID-19) Dashboard, Thailand. Available online: https://covid19.who.int/region/searo/country/th (accessed on 29 September 2022).
- Suphanchaimat, R.; Tuangratananon, T.; Rajatanavin, N.; Phaiyarom, M.; Jaruwanno, W.; Uansri, S. Prioritization of the Target Population for Coronavirus Disease 2019 (COVID-19) Vaccination Program in Thailand. Int. J. Environ. Res. Public Health 2021, 18, 10803. [Google Scholar] [CrossRef]
- Jarumaneeroj, P.; Dusadeerungsikul, P.O.; Chotivanich, T.; Nopsopon, T.; Pongpirul, K. An epidemiology-based model for the operational allocation of COVID-19 vaccines: A case study of Thailand. Comput. Ind. Eng. 2022, 167, 108031. [Google Scholar] [CrossRef]
- Jitanan, M.; Chirasatienpon, T.; Tiamjan, R.; Amnatsatsue, K.; Nguanjairak, R.; Miranda, A.V.; Lin, X.; Gyeltshen, D.; Vicerra, P.M.M.; Kouwenhoven, M.B.N. Can Thailand achieve COVID-19 herd immunity? Public Health Chall. 2022, 1, 5. [Google Scholar] [CrossRef]
- Jantarabenjakul, W.; Chantasrisawad, N.; Puthanakit, T.; Wacharapluesadee, S.; Hirankarn, N.; Ruenjaiman, V.; Paitoonpong, L.; Suwanpimolkul, G.; Torvorapanit, P.; Pradit, R.; et al. Short-term immune response after inactivated SARS-CoV-2 (CoronaVac(R), Sinovac) and ChAdOx1 nCoV-19 (Vaxzevria(R), Oxford-AstraZeneca) vaccinations in health care workers. Asian Pac. J. Allergy Immunol. 2022, 40, 269–277. [Google Scholar] [CrossRef]
- Jara, A.; Undurraga, E.A.; Gonzalez, C.; Paredes, F.; Fontecilla, T.; Jara, G.; Pizarro, A.; Acevedo, J.; Leo, K.; Leon, F.; et al. Effectiveness of an Inactivated SARS-CoV-2 Vaccine in Chile. N. Engl. J. Med. 2021, 385, 875–884. [Google Scholar] [CrossRef]
- Hitchings, M.D.T.; Ranzani, O.T.; Torres, M.S.S.; de Oliveira, S.B.; Almiron, M.; Said, R.; Borg, R.; Schulz, W.L.; de Oliveira, R.D.; da Silva, P.V.; et al. Effectiveness of CoronaVac among healthcare workers in the setting of high SARS-CoV-2 Gamma variant transmission in Manaus, Brazil: A test-negative case-control study. Lancet Reg. Health Am. 2021, 1, 100025. [Google Scholar] [CrossRef]
- Fumagalli, M.J.; Castro-Jorge, L.A.; Fraga-Silva, T.F.C.; de Azevedo, P.O.; Capato, C.F.; Rattis, B.A.C.; Hojo-Souza, N.S.; Floriano, V.G.; de Castro, J.T.; Ramos, S.G.; et al. Protective Immunity against Gamma and Zeta Variants after Inactivated SARS-CoV-2 Virus Immunization. Viruses 2021, 13, 2440. [Google Scholar] [CrossRef]
- World Health Organization (Thailand). COVID-19 Situation, Thailand. Available online: https://cdn.who.int/media/docs/default-source/searo/thailand/2021_12_17_tha-sitrep-214-covid-19.pdf?sfvrsn=dd37e4f6_5 (accessed on 17 December 2022).
- Thompson, M.G.; Burgess, J.L.; Naleway, A.L.; Tyner, H.; Yoon, S.K.; Meece, J.; Olsho, L.E.W.; Caban-Martinez, A.J.; Fowlkes, A.L.; Lutrick, K.; et al. Prevention and Attenuation of Covid-19 with the BNT162b2 and mRNA-1273 Vaccines. N. Engl. J. Med. 2021, 385, 320–329. [Google Scholar] [CrossRef]
- Whittaker, R.; Brathen Kristofferson, A.; Valcarcel Salamanca, B.; Seppala, E.; Golestani, K.; Kvale, R.; Watle, S.V.; Buanes, E.A. Length of hospital stay and risk of intensive care admission and in-hospital death among COVID-19 patients in Norway: A register-based cohort study comparing patients fully vaccinated with an mRNA vaccine to unvaccinated patients. Clin. Microbiol. Infect. 2022, 28, 871–878. [Google Scholar] [CrossRef]
- Centers for Disease Control and Prevention. Underlying Medical Conditions Associated with Higher Risk for Severe COVID-19: Information for Healthcare Professionals. Available online: https://www.cdc.gov/coronavirus/2019-ncov/hcp/clinical-care/underlyingconditions.html (accessed on 15 August 2022).
- Sritipsukho, P.; Khawcharoenporn, T.; Siribumrungwong, B.; Damronglerd, P.; Suwantarat, N.; Satdhabudha, A.; Chaiyakulsil, C.; Sinlapamongkolkul, P.; Tangsathapornpong, A.; Bunjoungmanee, P.; et al. Comparing real-life effectiveness of various COVID-19 vaccine regimens during the delta variant-dominant pandemic: A test-negative case-control study. Emerg. Microbes Infect. 2022, 11, 585–592. [Google Scholar] [CrossRef]
- Levine-Tiefenbrun, M.; Yelin, I.; Alapi, H.; Katz, R.; Herzel, E.; Kuint, J.; Chodick, G.; Gazit, S.; Patalon, T.; Kishony, R. Viral loads of Delta-variant SARS-CoV-2 breakthrough infections after vaccination and booster with BNT162b2. Nat. Med. 2021, 27, 2108–2110. [Google Scholar] [CrossRef]
- Abu-Raddad, L.J.; Chemaitelly, H.; Ayoub, H.H.; Tang, P.; Coyle, P.; Hasan, M.R.; Yassine, H.M.; Benslimane, F.M.; Al-Khatib, H.A.; Al-Kanaani, Z.; et al. Relative infectiousness of SARS-CoV-2 vaccine breakthrough infections, reinfections, and primary infections. Nat. Commun. 2022, 13, 532. [Google Scholar] [CrossRef]
- Acharya, C.B.; Schrom, J.; Mitchell, A.M.; Coil, D.A.; Marquez, C.; Rojas, S.; Wang, C.Y.; Liu, J.; Pilarowski, G.; Solis, L.; et al. Viral Load Among Vaccinated and Unvaccinated, Asymptomatic and Symptomatic Persons Infected with the SARS-CoV-2 Delta Variant. Open Forum. Infect. Dis. 2022, 9, ofac135. [Google Scholar] [CrossRef]
- Brown, C.M.; Vostok, J.; Johnson, H.; Burns, M.; Gharpure, R.; Sami, S.; Sabo, R.T.; Hall, N.; Foreman, A.; Schubert, P.L.; et al. Outbreak of SARS-CoV-2 Infections, Including COVID-19 Vaccine Breakthrough Infections, Associated with Large Public Gatherings—Barnstable County, Massachusetts, July 2021. MMWR Morb. Mortal. Wkly. Rep. 2021, 70, 1059–1062. [Google Scholar] [CrossRef]
- Chia, P.Y.; Ong, S.W.X.; Chiew, C.J.; Ang, L.W.; Chavatte, J.M.; Mak, T.M.; Cui, L.; Kalimuddin, S.; Chia, W.N.; Tan, C.W.; et al. Virological and serological kinetics of SARS-CoV-2 Delta variant vaccine breakthrough infections: A multicentre cohort study. Clin. Microbiol. Infect. 2022, 28, 612-e1. [Google Scholar] [CrossRef]
- Pouwels, K.B.; Pritchard, E.; Matthews, P.C.; Stoesser, N.; Eyre, D.W.; Vihta, K.D.; House, T.; Hay, J.; Bell, J.I.; Newton, J.N.; et al. Effect of Delta variant on viral burden and vaccine effectiveness against new SARS-CoV-2 infections in the UK. Nat. Med. 2021, 27, 2127–2135. [Google Scholar] [CrossRef]
- Plante, J.A.; Machado, R.R.G.; Mitchell, B.M.; Shinde, D.P.; Walker, J.; Scharton, D.; McConnell, A.; Saada, N.; Liu, J.; Khan, B.; et al. Vaccination Decreases the Infectious Viral Load of Delta Variant SARS-CoV-2 in Asymptomatic Patients. Viruses 2022, 14, 2071. [Google Scholar] [CrossRef]
- Puhach, O.; Adea, K.; Hulo, N.; Sattonnet, P.; Genecand, C.; Iten, A.; Jacquerioz, F.; Kaiser, L.; Vetter, P.; Eckerle, I.; et al. Infectious viral load in unvaccinated and vaccinated individuals infected with ancestral, Delta or Omicron SARS-CoV-2. Nat. Med. 2022, 28, 1491–1500. [Google Scholar] [CrossRef]
- Angkasekwinai, N.; Sewatanon, J.; Niyomnaitham, S.; Phumiamorn, S.; Sukapirom, K.; Sapsutthipas, S.; Sirijatuphat, R.; Wittawatmongkol, O.; Senawong, S.; Mahasirimongkol, S.; et al. Comparison of safety and immunogenicity of CoronaVac and ChAdOx1 against the SARS-CoV-2 circulating variants of concern (Alpha, Delta, Beta) in Thai healthcare workers. Vaccine X 2022, 10, 100153. [Google Scholar] [CrossRef]
- Jin, L.; Li, Z.; Zhang, X.; Li, J.; Zhu, F. CoronaVac: A review of efficacy, safety, and immunogenicity of the inactivated vaccine against SARS-CoV-2. Hum. Vaccin. Immunother. 2022, 18, 2096970. [Google Scholar] [CrossRef]
- Kang, M.; Yi, Y.; Li, Y.; Sun, L.; Deng, A.; Hu, T.; Zhang, J.; Liu, J.; Cheng, M.; Xie, S.; et al. Effectiveness of Inactivated COVID-19 Vaccines against Illness Caused by the B.1.617.2 (Delta) Variant During an Outbreak in Guangdong, China: A Cohort Study. Ann. Intern. Med. 2022, 175, 533–540. [Google Scholar] [CrossRef]
- Wilder-Smith, A.; Mulholland, K. Effectiveness of an Inactivated SARS-CoV-2 Vaccine. N. Engl. J. Med. 2021, 385, 946–948. [Google Scholar] [CrossRef]
- Li, X.N.; Huang, Y.; Wang, W.; Jing, Q.L.; Zhang, C.H.; Qin, P.Z.; Guan, W.J.; Gan, L.; Li, Y.L.; Liu, W.H.; et al. Effectiveness of inactivated SARS-CoV-2 vaccines against the Delta variant infection in Guangzhou: A test-negative case-control real-world study. Emerg. Microbes Infect. 2021, 10, 1751–1759. [Google Scholar] [CrossRef]
- Lopez Bernal, J.; Andrews, N.; Gower, C.; Gallagher, E.; Simmons, R.; Thelwall, S.; Stowe, J.; Tessier, E.; Groves, N.; Dabrera, G.; et al. Effectiveness of Covid-19 Vaccines against the B.1.617.2 (Delta) Variant. N. Engl. J. Med. 2021, 385, 585–594. [Google Scholar] [CrossRef]
- Sheikh, A.; Robertson, C.; Taylor, B. BNT162b2 and ChAdOx1 nCoV-19 Vaccine Effectiveness against Death from the Delta Variant. N. Engl. J. Med. 2021, 385, 2195–2197. [Google Scholar] [CrossRef]
- Buchan, S.A.; Chung, H.; Brown, K.A.; Austin, P.C.; Fell, D.B.; Gubbay, J.B.; Nasreen, S.; Schwartz, K.L.; Sundaram, M.E.; Tadrous, M.; et al. Estimated Effectiveness of COVID-19 Vaccines against Omicron or Delta Symptomatic Infection and Severe Outcomes. JAMA Netw. Open 2022, 5, e2232760. [Google Scholar] [CrossRef]
- Gao, Y.D.; Ding, M.; Dong, X.; Zhang, J.J.; Kursat Azkur, A.; Azkur, D.; Gan, H.; Sun, Y.L.; Fu, W.; Li, W.; et al. Risk factors for severe and critically ill COVID-19 patients: A review. Allergy 2021, 76, 428–455. [Google Scholar] [CrossRef]
- Our World in Data. SARS-CoV-2 Variants in Analyzed Sequences, Thailand. Available online: https://ourworldindata.org/grapher/covid-variants-area?country=~THA (accessed on 16 January 2023).
Characteristics | COVID-19 | |||
---|---|---|---|---|
Total (1051) | Unvaccinated (n = 526) | Vaccinated (n = 525) | p-Value | |
Gender N (%) | ||||
Female | 628 (59.8) | 304 (57.8) | 324 (61.7) | 0.195 |
Male | 423 (40.2) | 222 (42.2) | 201 (38.3) | |
Age N (%) | ||||
18–59 years | 778 (74.0) | 419 (79.7) | 359 (68.4) | <0.001 |
≥60 years | 273 (26.0) | 107 (20.3) | 166 (31.6) | |
Comorbidities N (%) | ||||
Non-disease | 856 (81.4) | 438 (83.3) | 418 (79.6) | 0.128 |
≥1 disease | 195 (18.6) | 88 (16.7) | 107 (20.4) | |
Vaccinated status N (%) | ||||
Unvaccinated | 526 (50.0) | 526 (100) | - | - |
One dose | 382 (36.3) | - | 382 (72.8) | |
Two doses | 131 (12.5) | - | 131 (25.0) | |
Three doses | 12 (1.1) | - | 12 (2.2) | |
Vaccine type N (%) | ||||
SV1 | 37 (7.0) | - | 37 (7.0) | - |
AZ1 | 345 (65.7) | - | 345 (65.7) | |
SV2 | 100 (19.0) | - | 100 (19.0) | |
AZ2 | 31 (5.9) | - | 31 (5.9) | |
Boost | 12 (2.3) | - | 12 (2.3) |
Vaccination Status | N-Gene Ct Value | ||||
---|---|---|---|---|---|
N | Mean (95% CI) | SD | Difference in Mean (95% CI) | p-Value | |
Unvaccinated | 526 | 22.18 (21.611–22.74) | 6.61 | ref | |
One dose | 382 | 22.25 (21.56–22.95) | 6.95 | −0.08 (−1.28–1.13) | 1.000 |
Two doses | 131 | 21.46 (20.34–22.59) | 6.51 | 0.72 (−1.13–2.57) | 1.000 |
Three doses | 12 | 5.58 (21.75–22.57) | 9.97 | −3.40 (−8.62–1.82) | 0.513 |
Variables | Non-Severe N = 949 | Severe N = 102 | Crude OR (95%CI) | p-Value | Adjusted OR (95%CI) | p-Value |
---|---|---|---|---|---|---|
Vaccination status | ||||||
Unvaccinated | 460 | 66 | 1 | 1 | ||
One dose | 347 | 35 | 0.70 (0.46–1.08) | 0.111 | 0.47 (0.30–0.76) | 0.002 |
Two doses | 130 | 0.05 (0.01–0.39) | 0.004 | 0.06 (0.01–0.45) | 0.006 | |
Three doses | 12 | No event | - | |||
Vaccination type | ||||||
Unvaccinated | 460 | 66 | 1 | 1 | ||
SV1 | 36 | 1 | 0.19 (0.03–1.44) | 0.108 | 0.28 (0.04–2.16) | 0.223 |
SV2 | 100 | 0 | No event | - | ||
AZ1 | 311 | 34 | 0.76 (0.49–1.18) | 0.224 | 0.49 (0.30–0.79) | 0.003 |
AZ2 | 30 | 1 | 0.23 (0.03–1.73) | 0.154 | 0.15 (0.02–1.18) | 0.072 |
Boost | 12 | 0 | No event | - |
Unvaccinated (Ref.) | 1 Dose Vaccinated | 2 Doses Vaccinated | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
N | N | OR (95%CI) | p-Value | ORadj (95%CI) | p-Value | N | OR (95%CI) | p-Value | ORadj (95%CI) | p-Value | |
Female | |||||||||||
Non-severe | 274 | 213 | 1 | 1 | 86 | 1 | 1 | ||||
Severe | 30 | 21 | 0.91 (0.51–1.63) | 0.750 | 0.60 (0.32–1.13) | 0.112 | 1 | 0.11 (0.01–0.79) | 0.029 | 0.14 (0.02–1.05) | 0.056 |
Male | |||||||||||
Non-severe | 186 | 136 | 1 | 1 | 44 | 1 | 1 | ||||
Severe | 36 | 14 | 0.53 (0.28–1.03) | 0.059 | 0.36 (0.18–0.73) | 0.005 | 0 | 0 | - | 0 | - |
Age 18–59 | |||||||||||
Non-severe | 390 | 223 | 1 | 1 | 111 | 1 | 1 | ||||
Severe | 29 | 14 | 0.84 (0.44–1.63) | 0.615 | 0.80 (0.41–1.56) | 0.802 | 0 | 0 | - | 0 | - |
Age ≥ 60 | |||||||||||
Non-severe | 70 | 124 | 1 | 1 | 19 | 1 | 1 | ||||
Severe | 37 | 21 | 0.32 (0.17–0.59) | <0.001 | 0.31 (0.17–0.58) | <0.001 | 1 | 0.10 (0.01–0.77) | 0.027 | 0.12 (0.02–0.92) | 0.042 |
With underlying medical conditions | |||||||||||
Non-severe | 398 | 267 | 1 | 1 | 120 | 1 | 1 | ||||
Severe | 40 | 18 | 0.67 (0.38–1.20) | 0.175 | 0.50 (0.27–0.92) | 0.025 | 1 | 0.08 (0.1–0.61) | 0.014 | 0.08 (0.01–0.60) | 0.014 |
Without underlying medical conditions | |||||||||||
Non-severe | 62 | 80 | 1 | 1 | 10 | 1 | 1 | ||||
Severe | 26 | 17 | 0.51 (0.25–1.02) | 0.055 | 0.42 (0.20–0.87) | 0.020 | 0 | 0 | - | 0 | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Promlek, T.; Hansirisathit, T.; Kunno, J.; Thanunchai, M. The Effects of CoronaVac and ChAdOx1 nCoV-19 in Reducing Severe Illness in Thailand: A Retrospective Cohort Study. Trop. Med. Infect. Dis. 2023, 8, 95. https://doi.org/10.3390/tropicalmed8020095
Promlek T, Hansirisathit T, Kunno J, Thanunchai M. The Effects of CoronaVac and ChAdOx1 nCoV-19 in Reducing Severe Illness in Thailand: A Retrospective Cohort Study. Tropical Medicine and Infectious Disease. 2023; 8(2):95. https://doi.org/10.3390/tropicalmed8020095
Chicago/Turabian StylePromlek, Thanyarat, Tonsan Hansirisathit, Jadsada Kunno, and Maytawan Thanunchai. 2023. "The Effects of CoronaVac and ChAdOx1 nCoV-19 in Reducing Severe Illness in Thailand: A Retrospective Cohort Study" Tropical Medicine and Infectious Disease 8, no. 2: 95. https://doi.org/10.3390/tropicalmed8020095
APA StylePromlek, T., Hansirisathit, T., Kunno, J., & Thanunchai, M. (2023). The Effects of CoronaVac and ChAdOx1 nCoV-19 in Reducing Severe Illness in Thailand: A Retrospective Cohort Study. Tropical Medicine and Infectious Disease, 8(2), 95. https://doi.org/10.3390/tropicalmed8020095