LIC12254 Is a Leptospiral Protein That Interacts with Integrins via the RGD Motif
Abstract
:1. Introduction
2. Materials and Methods
2.1. Bioinformatics Analysis of LIC12254
2.2. Protein Sequence Alignment
2.3. Predicted Three-Dimensional (3D) Structure
2.4. Bacterial Strain
2.5. RNA Extraction and Real-Time Reverse-Transcription PCR (RT-qPCR)
2.6. Amplification of the Gene lic12254
2.7. Construction of a lic12254 Gene Having a Mutated RGD Motif
2.8. Expression of Recombinant LIC12254 and LIC12254 ΔRAA Proteins
2.9. Antiserum Production in Mice against the Recombinant Proteins
2.10. Integrin Binding Test
2.11. Dose–Response Analysis of the Binding of the Recombinant Proteins to Human Integrin
2.12. Statistical Analysis
2.13. Ethics Statement
3. Results
3.1. LIC12254 Characterization by Bioinformatics Analysis
3.2. RGD Motif Conservation among Leptospiral Pathogenic and Non-Pathogenic Species
3.3. Expression of the Lic12254 Gene by RT-qPCR
3.4. Cloning and Construction of the lic12254 Gene and the RGD Motif-Mutated lic12254 Sequence
3.5. Production of the Recombinant Proteins in E. coli
3.6. Interaction of rLIC12254 with Human Integrins
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Costa, F.; Hagan, J.E.; Calcagno, J.; Kane, M.; Torgerson, P.; Martinez-Silveira, M.S.; Stein, C.; Abela-Ridder, B.; Ko, A.I. Global Morbidity and Mortality of Leptospirosis: A Systematic Review. PLoS Negl. Trop. Dis. 2015, 9, e0003898. [Google Scholar] [CrossRef] [PubMed]
- Levett, P.N. Leptospirosis. Clin. Microbiol. Rev. 2001, 14, 296–326. [Google Scholar] [CrossRef]
- Daroz, B.B.; Fernandes, L.G.V.; Cavenague, M.F.; Kochi, L.T.; Passalia, F.J.; Takahashi, M.B.; Filho, E.G.N.; Teixeira, A.F.; Nascimento, A.L.T.O. A Review on Host-Leptospira Interactions: What We Know and Future Expectations. Front. Cell. Infect. Microbiol. 2021, 11, 777709. [Google Scholar] [CrossRef] [PubMed]
- Hoke, D.E.; Egan, S.; Cullen, P.A.; Adler, B. LipL32 Is an Extracellular Matrix-Interacting Protein of Leptospira spp. and Pseudoalteromonas tunicata. Infect. Immun. 2008, 76, 2063–2069. [Google Scholar] [CrossRef] [PubMed]
- Barbosa, A.; Abreu, P.A.E.; Neves, F.O.; Atzingen, M.V.; Watanabe, M.M.; Vieira, M.L.; Morais, Z.M.; Vasconcellos, S.A.; Nascimento, A.L. A Newly Identified Leptospiral Adhesin Mediates Attachment to Laminin. Infect. Immun. 2006, 74, 6356–6364. [Google Scholar] [CrossRef]
- Pinne, M.; Choy, H.A.; Haake, D.A. The OmpL37 Surface-Exposed Protein Is Expressed by Pathogenic Leptospira during Infection and Binds Skin and Vascular Elastin. PLoS Negl. Trop. Dis. 2010, 4, e815. [Google Scholar] [CrossRef]
- Fernandes, L.G.V.; Vieira, M.L.; Kirchgatter, K.; Alves, I.J.; de Morais, Z.M.; Vasconcellos, S.A.; Romero, E.C.; Nascimento, A.L.T.O. OmpL1 Is an Extracellular Matrix- and Plasminogen-Interacting Protein of Leptospira spp. Infect. Immun. 2012, 80, 3679–3692. [Google Scholar] [CrossRef]
- MB, T.; AF, T.; ALTO, N. The leptospiral LipL21 and LipL41 proteins exhibit a broad spectrum of interactions with host cell components. Virulence 2021, 12, 2798–2813. [Google Scholar] [CrossRef]
- Choy, H.A.; Kelley, M.M.; Chen, T.L.; Møller, A.K.; Matsunaga, J.; Haake, D.A. Physiological Osmotic Induction of Leptospira interrogans Adhesion: LigA and LigB Bind Extracellular Matrix Proteins and Fibrinogen. Infect. Immun. 2007, 75, 2441–2450. [Google Scholar] [CrossRef]
- Takahashi, M.B.; Teixeira, A.F.; Nascimento, A.L.T.O. Host Cell Binding Mediated by Leptospira interrogans Adhesins. Int. J. Mol. Sci. 2022, 23, 15550. [Google Scholar] [CrossRef]
- Evangelista, K.; Franco, R.; Schwab, A.; Coburn, J. Leptospira interrogans Binds to Cadherins. PLoS Negl. Trop. Dis. 2014, 8, e2672. [Google Scholar] [CrossRef] [PubMed]
- Cinco, M.; Cini, B.; Perticarari, S.; Presani, G. Leptospira interrogans binds to the CR3 receptor on mammalian cells. Microb. Pathog. 2002, 33, 299–305. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Zhang, C.; Ojcius, D.M.; Sun, D.; Zhao, J.; Lin, X.; Li, L.; Li, L.; Yan, J. The mammalian cell entry (Mce) protein of pathogenic Leptospira species is responsible for RGD motif-dependent infection of cells and animals. Mol. Microbiol. 2012, 83, 1006–1023. [Google Scholar] [CrossRef] [PubMed]
- Rahman, O.; Cummings, S.P.; Harrington, D.J.; Sutcliffe, I.C. Methods for the bioinformatic identification of bacterial lipoproteins encoded in the genomes of Gram-positive bacteria. World J. Microbiol. Biotechnol. 2008, 24, 2377–2382. [Google Scholar] [CrossRef]
- Bagos, P.G.; Liakopoulos, T.D.; Spyropoulos, I.C.; Hamodrakas, S.J. PRED-TMBB: A web server for predicting the topology of β-barrel outer membrane proteins. Nucleic Acids Res. 2004, 32, W400–W404. [Google Scholar] [CrossRef]
- Blum, M.; Chang, H.-Y.; Chuguransky, S.; Grego, T.; Kandasaamy, S.; Mitchell, A.; Nuka, G.; Paysan-Lafosse, T.; Qureshi, M.; Raj, S.; et al. The InterPro protein families and domains database: 20 years on. Nucleic Acids Res. 2021, 49, D344–D354. [Google Scholar] [CrossRef]
- Yu, C.-S.; Lin, C.-J.; Hwang, J.-K. Predicting subcellular localization of proteins for Gram-negative bacteria by support vector machines based on n-peptide compositions. Protein Sci. 2004, 13, 1402–1406. [Google Scholar] [CrossRef]
- Altschul, S.F.; Gish, W.; Miller, W.; Myers, E.W.; Lipman, D.J. Basic local alignment search tool. J. Mol. Biol. 1990, 215, 403–410. [Google Scholar] [CrossRef]
- Tamura, K.; Stecher, G.; Kumar, S. MEGA11: Molecular Evolutionary Genetics Analysis Version 11. Mol. Biol. Evol. 2021, 38, 3022–3027. [Google Scholar] [CrossRef]
- Felsenstein, J. Confidence Limits on Phylogenies: An Approach Using the Bootstrap. Evolution 1985, 39, 783–791. [Google Scholar] [CrossRef]
- Pei, J.; Kim, B.-H.; Grishin, N.V. PROMALS3D: A tool for multiple protein sequence and structure alignments. Nucleic Acids Res. 2008, 36, 2295–2300. [Google Scholar] [CrossRef]
- Yang, J.; Zhang, Y. I-TASSER server: New development for protein structure and function predictions. Nucleic Acids Res. 2015, 43, W174–W181. [Google Scholar] [CrossRef]
- Zheng, W.; Zhang, C.; Li, Y.; Pearce, R.; Bell, E.W.; Zhang, Y. Folding non-homologous proteins by coupling deep-learning contact maps with I-TASSER assembly simulations. Cell Rep. Methods 2021, 1, 100014. [Google Scholar] [CrossRef]
- Du, Z.; Su, H.; Wang, W.; Ye, L.; Wei, H.; Peng, Z.; Anishchenko, I.; Baker, D.; Yang, J. The trRosetta server for fast and accurate protein structure prediction. Nat. Protoc. 2021, 16, 5634–5651. [Google Scholar] [CrossRef]
- Jumper, J.; Evans, R.; Pritzel, A.; Green, T.; Figurnov, M.; Ronneberger, O.; Tunyasuvunakool, K.; Bates, R.; Žídek, A.; Potapenko, A.; et al. Highly accurate protein structure prediction with AlphaFold. Nature 2021, 596, 583–589. [Google Scholar] [CrossRef]
- Livak, K.J.; Schmittgen, T.D. Analysis of Relative Gene Expression Data Using Real-Time Quantitative PCR and the 2−ΔΔCT Method. Methods 2001, 25, 402–408. [Google Scholar] [CrossRef]
- Ramos, C.R.R.; Abreu, P.A.E.; Nascimento, A.L.T.O.; Ho, P.L. A high-copy T7 Escherichia coli expression vector for the production of recombinant proteins with a minimal N-terminal His-tagged fusion peptide. Braz. J. Med. Biol. Res. 2004, 37, 1103–1109. [Google Scholar] [CrossRef]
- Gruber, A.; Zingales, B. Alternative method to remove antibacterial antibodies from antisera used for screening of expression libraries. Biotechniques 1995, 19, 28–30. [Google Scholar]
- Lee, T.H.; Seng, S.; Li, H.; Kennel, S.J.; Avraham, H.K.; Avraham, S. Integrin Regulation by Vascular Endothelial Growth Factor in Human Brain Microvascular Endothelial Cells. J. Biol. Chem. 2006, 281, 40450–40460. [Google Scholar] [CrossRef]
- Fouts, D.E.; Matthias, M.A.; Adhikarla, H.; Adler, B.; Amorim-Santos, L.; Berg, D.E.; Bulach, D.; Buschiazzo, A.; Chang, Y.-F.; Galloway, R.L.; et al. What Makes a Bacterial Species Pathogenic?: Comparative Genomic Analysis of the Genus Leptospira. PLoS Negl. Trop. Dis. 2016, 10, e0004403. [Google Scholar] [CrossRef]
- Barczyk, M.; Carracedo, S.; Gullberg, D. Integrins. Cell Tissue Res. 2010, 339, 269–280. [Google Scholar] [CrossRef] [PubMed]
- Blom, A.M.; Hallström, T.; Riesbeck, K. Complement evasion strategies of pathogens—Acquisition of inhibitors and beyond. Mol. Immunol. 2009, 46, 2808–2817. [Google Scholar] [CrossRef] [PubMed]
- Boyle, E.C.; Finlay, B.B. Bacterial pathogenesis: Exploiting cellular adherence. Curr. Opin. Cell Biol. 2003, 15, 633–639. [Google Scholar] [CrossRef] [PubMed]
- Lambotin, M.; Hoffmann, I.; Laran-Chich, M.-P.; Nassif, X.; Couraud, P.O.; Bourdoulous, S. Invasion of endothelial cells by Neisseria meningitidis requires cortactin recruitment by a phosphoinositide-3-kinase/Rac1 signalling pathway triggered by the lipo-oligosaccharide. J. Cell Sci. 2005, 118, 3805–3816. [Google Scholar] [CrossRef]
- Kwok, T.; Zabler, D.; Urman, S.; Rohde, M.; Hartig, R.; Wessler, S.; Misselwitz, R.; Berger, J.; Sewald, N.; König, W.; et al. Helicobacter exploits integrin for type IV secretion and kinase activation. Nature 2007, 449, 862–866. [Google Scholar] [CrossRef]
- Leininger, E.; Roberts, M.; Kenimer, J.G.; Charles, I.G.; Fairweather, N.; Novotny, P.; Brennan, M.J. Pertactin, an Arg-Gly-Asp-containing Bordetella pertussis surface protein that promotes adherence of mammalian cells. Proc. Natl. Acad. Sci. USA 1991, 88, 345–349. [Google Scholar] [CrossRef]
- Stockbauer, K.E.; Magoun, L.; Liu, M.; Burns, E.H., Jr.; Gubba, S.; Renish, S.; Pan, X.; Bodary, S.C.; Baker, E.; Coburn, J.; et al. A natural variant of the cysteine protease virulence factor of group A Streptococcus with an arginine-glycine-aspartic acid (RGD) motif preferentially binds human integrins αvβ3 and αIIbβ3. Proc. Natl. Acad. Sci. USA 1999, 96, 242–247. [Google Scholar] [CrossRef]
- Ruoslahti, E. RGD and Other Recognition Sequences for Integrins. Annu. Rev. Cell Dev. Biol. 1996, 12, 697–715. [Google Scholar] [CrossRef]
- Takagi, J. Structural basis for ligand recognition by RGD (Arg-Gly-Asp)-dependent integrins. Biochem. Soc. Trans. 2004, 32, 403–406. [Google Scholar] [CrossRef]
- Villard, V.; Kalyuzhniy, O.; Riccio, O.; Potekhin, S.; Melnik, T.N.; Kajava, A.V.; Rüegg, C.; Corradin, G. Synthetic RGD-containing α-helical coiled coil peptides promote integrin-dependent cell adhesion. J. Pept. Sci. 2006, 12, 206–212. [Google Scholar] [CrossRef]
- Sato, Y.; Uemura, T.; Morimitsu, K.; Sato-Nishiuchi, R.; Manabe, R.-I.; Takagi, J.; Yamada, M.; Sekiguchi, K. Molecular Basis of the Recognition of Nephronectin by Integrin α8β1. J. Biol. Chem. 2009, 284, 14524–14536. [Google Scholar] [CrossRef]
- Wood, E.; Tamborero, S.; Mingarro, I.; Esteve-Gassent, M.D. BB0172, a Borrelia burgdorferi Outer Membrane Protein That Binds Integrin α3β1. J. Bacteriol. 2013, 195, 3320–3330. [Google Scholar] [CrossRef]
- Ristow, L.C.; Miller, H.E.; Padmore, L.J.; Chettri, R.; Salzman, N.; Caimano, M.J.; Rosa, P.A.; Coburn, J. The β3-integrin ligand of Borrelia burgdorferi is critical for infection of mice but not ticks. Mol. Microbiol. 2012, 85, 1105–1118. [Google Scholar] [CrossRef]
- Schulz, G.E. The structure of bacterial outer membrane proteins. Biochim. Biophys. Acta (BBA)-Biomembr. 2002, 1565, 308–317. [Google Scholar] [CrossRef]
- Grassmann, A.A.; Kremer, F.S.; dos Santos, J.C.; Souza, J.D.; Pinto, L.D.S.; McBride, A.J.A. Discovery of Novel Leptospirosis Vaccine Candidates Using Reverse and Structural Vaccinology. Front. Immunol. 2017, 8, 463. [Google Scholar] [CrossRef]
- Bonsor, D.A.; Pham, K.T.; Beadenkopf, R.; Diederichs, K.; Haas, R.; Beckett, D.; Fischer, W.; Sundberg, E.J. Integrin engagement by the helical RGD motif of the Helicobacter pylori CagL protein is regulated by pH-induced displacement of a neighboring helix. J. Biol. Chem. 2015, 290, 12929–12940. [Google Scholar] [CrossRef]
- Cosate, M.R.; Siqueira, G.H.; de Souza, G.O.; Vasconcellos, S.A.; Nascimento, A.L.T.O. Mammalian cell entry (Mce) protein of Leptospira interrogans binds extracellular matrix components, plasminogen and β2 integrin. Microbiol. Immunol. 2016, 60, 586–598. [Google Scholar] [CrossRef]
- McCarty, J.H. αvβ8 integrin adhesion and signaling pathways in development, physiology and disease. J. Cell Sci. 2020, 133, jcs239434. [Google Scholar] [CrossRef]
- Gianni, T.; Massaro, R.; Campadelli-Fiume, G. Dissociation of HSV gL from gH by αvβ6- or αvβ8-integrin promotes gH activation and virus entry. Proc. Natl. Acad. Sci. USA 2015, 112, E3901–E3910. [Google Scholar] [CrossRef]
- Sigrist, C.J.; Bridge, A.; le Mercier, P. A potential role for integrins in host cell entry by SARS-CoV-2. Antivir. Res. 2020, 177, 104759. [Google Scholar] [CrossRef]
- Bieritz, B.; Spessotto, P.; Colombatti, A.; Jahn, A.; Prols, F.; Hartner, A. Role of α8 integrin in mesangial cell adhesion, migration, and proliferation. Kidney Int. 2003, 64, 119–127. [Google Scholar] [CrossRef] [PubMed]
- Marek, I.; Becker, R.; Fahlbusch, F.B.; Menendez-Castro, C.; Rascher, W.; Daniel, C.; Volkert, G.; Hartner, A. Expression of the Alpha8 Integrin Chain Facilitates Phagocytosis by Renal Mesangial Cells. Cell. Physiol. Biochem. 2018, 45, 2161–2173. [Google Scholar] [CrossRef] [PubMed]
Species Name | TaxID | NCBI Accession |
---|---|---|
L. interrogans sv. Copenhageni | 267671 | AAS70826 |
L. kirschneri | 29507 | WP_004766834.1 |
L. noguchii | 28182 | WP_002178526.1 |
L. alstonii | 28452 | WP_036040698.1 |
L. weilii | 28184 | WP_061223108.1 |
L. santarosai | 28183 | WP_004465014.1 |
L. alexanderi | 100053 | WP_078123768.1 |
L. kmetyi | 408139 | WP_020986420.1 |
L. borgpetersenii | 174 | WP_002740814.1 |
L. licerasiae | 447106 | WP_135668817.1 |
L. fainei | 48782 | WP_016549264.1 |
L. broomii | 301541 | WP_010570345.1 |
L. inadai | 29506 | WP_010411470.1 |
L. wolffii | 409998 | WP_135698917.1 |
L. biflexa | 172 | WP_135736477.1 |
L. meyeri | 29508 | WP_020776522.1 |
L. terpstrae | 293075 | WP_002972933.1 |
L. wolbachii | 29511 | WP_015682622.1 |
L. vanthielii | 293085 | WP_135659155.1 |
L. yanagawae | 293069 | WP_015677120.1 |
Primer | Sequence (5′→3′) | Context of Use |
---|---|---|
LIC12254 F | ATCGCTCGAGCAAGAAGATTGTTCTAAG | Cloning |
LIC12254 R | ATCGGGTACCATCGTCAGAAAATGTGATTAAAGTTC | |
ΔRAA R | GTATTTGGATTCGTATCATAGATTAACGCAGCTCTTAGTCTCCATTTGGT | RGD replacement |
ΔRAA F | CTTTGATACCAAATGGAGACTAAGAGCTGCGTTAATCTATGATACGAATC | |
LIC12254 F | CCGTTTCCGAAGGTATTTGA | qPCR |
LIC12254 R | GCAAAATGTTGTCCGGCTAT | |
16S F | CACGAAAGCGTGGGTAGTGA | |
16S R | CAACGTTTAGGGCGTGGATTA | |
T7 F | TAATACGACTCACTATAGGG | Sequencing |
T7 R | TAGTTATTGCTCAGCGGTGG |
Annotation (NCBI) | Cleavage Site (LipoP) | Domain Prediction (Interprot) | Cellular Localization (CELLO) | Size (aa) |
---|---|---|---|---|
Outer membrane protein | SPI 34–35 | DUF5982 (56–119) Omp85/Surface bacterial antigen (128–511) | Outer membrane | 522 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cavenague, M.F.; Teixeira, A.F.; Fernandes, L.G.V.; Nascimento, A.L.T.O. LIC12254 Is a Leptospiral Protein That Interacts with Integrins via the RGD Motif. Trop. Med. Infect. Dis. 2023, 8, 249. https://doi.org/10.3390/tropicalmed8050249
Cavenague MF, Teixeira AF, Fernandes LGV, Nascimento ALTO. LIC12254 Is a Leptospiral Protein That Interacts with Integrins via the RGD Motif. Tropical Medicine and Infectious Disease. 2023; 8(5):249. https://doi.org/10.3390/tropicalmed8050249
Chicago/Turabian StyleCavenague, Maria F., Aline F. Teixeira, Luis G. V. Fernandes, and Ana L. T. O. Nascimento. 2023. "LIC12254 Is a Leptospiral Protein That Interacts with Integrins via the RGD Motif" Tropical Medicine and Infectious Disease 8, no. 5: 249. https://doi.org/10.3390/tropicalmed8050249
APA StyleCavenague, M. F., Teixeira, A. F., Fernandes, L. G. V., & Nascimento, A. L. T. O. (2023). LIC12254 Is a Leptospiral Protein That Interacts with Integrins via the RGD Motif. Tropical Medicine and Infectious Disease, 8(5), 249. https://doi.org/10.3390/tropicalmed8050249