Is the Pharmacokinetics of First-Line Anti-TB Drugs a Cause of High Mortality Rates in TB Patients Admitted to the ICU? A Non-Compartmental Pharmacokinetic Analysis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Ethics
2.2. Patients and Study Design
2.3. Drug Assay
2.4. Non-Compartmental Pharmacokinetics Analysis
2.5. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- World Health Organization. Global Tuberculosis Report 2022; WHO: Geneva, Switzerland, 2022; Volume 21. [Google Scholar]
- Neves, C.P.; Costa, A.G.; Safe, I.P.; De Souza Brito, A.; Jesus, J.S.; Kritski, A.L.; Lacerda, M.V.G.; Viveiros, M.; Cordeiro-Santos, M. The role of mini-bronchoalveolar lavage fluid in the diagnosis of pulmonary tuberculosis in critically ill patients. BMC Infect. Dis. 2020, 20, 229. [Google Scholar] [CrossRef] [PubMed]
- Singer, M.; Deutschman, C.S.; Seymour, C.; Shankar-Hari, M.; Annane, D.; Bauer, M.; Bellomo, R.; Bernard, G.R.; Chiche, J.-D.; Coopersmith, C.M.; et al. The third international consensus definitions for sepsis and septic shock (sepsis-3). J. Am. Med. Assoc. 2016, 315, 801–810. [Google Scholar] [CrossRef] [PubMed]
- Zahar, J.R.; Azoulay, E.; Klement, E.; De Lassence, A.; Lucet, J.C.; Regnier, B.; Schlemmer, B.; Bedos, J.-P. Delayed treatment contributes to mortality in ICU patients with severe active pulmonary tuberculosis and acute respiratory failure. Intensive Care Med. 2001, 27, 513–520. [Google Scholar] [CrossRef]
- Hagan, G.; Nathani, N. Clinical review: Tuberculosis on the intensive care unit. Crit. Care 2013, 17, 240. [Google Scholar] [CrossRef] [Green Version]
- Balkema, C.A.; Irusen, E.M.; Taljaard, J.J.; Koegelenberg, C.F.N. Tuberculosis in the intensive care unit: A prospective observational study. Int. J. Tuberc. Lung Dis. 2014, 18, 824–830. [Google Scholar] [CrossRef]
- Koegelenberg, C.F.N.; Balkema, C.A.; Jooste, Y.; Taljaard, J.J.; Irusen, E.M. Validation of a severity-of-illness score in patients with tuberculosis requiring intensive care unit admission. S. Afr. Med. J 2015, 105, 389–392. [Google Scholar] [CrossRef] [Green Version]
- Ferreira, M.D.; Das Neves, C.P.; De Souza, A.B.; Beraldi-Magalhães, F.; Migliori, G.B.; Kritski, A.L.; Cordeiro-Santos, M. Predictors of mortality among intensive care unit patients coinfected with tuberculosis and HIV. J. Bras. Pneumol. 2018, 44, 118–124. [Google Scholar] [CrossRef] [Green Version]
- World Health Organization. WHO Consolidated Guidelines on Tuberculosis; WHO: Geneva, Switzerland, 2022. [Google Scholar]
- Caminero, J.A. Likelihood of generating MDR-TB and XDR-TB under adequate National Tuberculosis Control Programme implementation. Int. J. Tuberc. Lung Dis. 2008, 12, 869–877. [Google Scholar]
- Pasipanodya, J.G.; McIlleron, H.; Burger, A.; Wash, P.A.; Smith, P.; Gumbo, T. Serum drug concentrations predictive of pulmonary tuberculosis outcomes. J. Infect. Dis. 2013, 208, 1464–1473. [Google Scholar] [CrossRef] [Green Version]
- Beraldi-magalhaes, F.; Parker, S.L.; Sanches, C.; Garcia, L.S.; Karoline, B.; Carvalho, S.; de Liz, M.V.; Pontarolo, R.; Lipman, J.; Cordeiro-Santos, M.; et al. Is Dosing of Ethambutol as Part of a Fixed-Dose Combination Product Optimal for Mechanically Ventilated ICU Patients with Tuberculosis? A Population Pharmacokinetic Study. Antibiotics 2021, 10, 1559. [Google Scholar] [CrossRef]
- Akhloufi, H.; Hulscher, M.; Melles, D.C.; Prins, J.M.; van der Sijs, H.; Verbon, A. Development of operationalized intravenous to oral antibiotic switch criteria. J. Antimicrob. Chemother. 2017, 72, 543–546. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lienhardt, C. Efficacy and Safety of a 4-Drug Fixed-Dose Combination Regimen Compared with Separate Drugs for Treatment of Pulmonary Tuberculosis. JAMA 2011, 305, 1415. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Koegelenberg, C.F.N.; Nortje, A.; Lalla, U.; Enslin, A.; Irusen, E.M.; Rosenkranz, B.; Seifart, H.; Bolliger, C.T. The pharmacokinetics of enteral antituberculosis drugs in patients requiring intensive care. S. Afr. Med. J. 2013, 103, 394–398. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chideya, S.; Winston, C.A.; Peloquin, C.A.; Bradford, W.Z.; Hopewell, P.C.; Wells, C.D.; Reingold, A.L.; Kenyon, T.A.; Moeti, T.L.; Tappero, J.W. Isoniazid, rifampin, ethambutol, and pyrazinamide pharmacokinetics and treatment outcomes among a predominantly HIV-infected cohort of adults with tuberculosis from botswana. Clin. Infect. Dis. 2009, 48, 1685–1694. [Google Scholar] [CrossRef]
- Kanji, S.; Hayes, M.; Ling, A.; Shamseer, L.; Chant, C.; Edwards, D.J.; Edwards, S.; Ensom, M.H.H.; Foster, D.R.; Hardy, B.; et al. Reporting Guidelines for Clinical Pharmacokinetic Studies: The ClinPK Statement. Clin. Pharmacokinet. 2015, 54, 783–795. [Google Scholar] [CrossRef]
- Fachi, M.M.; Vilhena, R.O.; Boger, B.; Domingos, E.L.; dos Santos, J.M.M.F.; Junkert, A.M.; Cobre, A.D.F.; Momade, D.R.O.; Beraldi-Magalhães, F.; De Liz, M.V.; et al. LC–QToF–MS method for quantification of ethambutol, isoniazid, pyrazinamide and rifampicin in human plasma and its application. Biomed. Chromatogr. 2020, 34, e4812. [Google Scholar] [CrossRef]
- Roberts, J.A.; Lipman, J. Pharmacokinetic issues for antibiotics in the critically ill patient. Crit. Care Med. 2009, 37, 840–851. [Google Scholar] [CrossRef] [Green Version]
- Gumbo, T.; Louie, A.; Deziel, M.R.; Liu, W.; Parsons, L.M.; Salfinger, M.; Drusano, G.L. Concentration-dependent Mycobacterium tuberculosis killing and prevention of resistance by rifampin. Antimicrob. Agents Chemother. 2007, 51, 3781–3788. [Google Scholar] [CrossRef] [Green Version]
- Pasipanodya, J.; Gumbo, T. An Oracle: Antituberculosis Pharmacokinetics-Pharmacodynamics, Clinical Correlation, and Clinical Trial Simulations to Predict the Future. Antimicrob. Agents Chemother. 2011, 55, 24–34. [Google Scholar] [CrossRef] [Green Version]
- Alsultan, A.; Peloquin, C.A. Therapeutic drug monitoring in the treatment of tuberculosis: An update. Drugs 2014, 74, 839–854. [Google Scholar] [CrossRef]
- Stott, K.E.; Pertinez, H.; Sturkenboom, M.G.G.; Boeree, M.J.; Aarnoutse, R.; Ramachandran, G.; Requena-Méndez, A.; Peloquin, C.; Koegelenberg, C.F.N.; Alffenaar, J.W.C.; et al. Pharmacokinetics of rifampicin in adult TB patients and healthy volunteers: A systematic review and meta-analysis. J. Antimicrob. Chemother. 2018, 73, 2305–2313. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rockwood, N.; Pasipanodya, J.G.; Denti, P.; Sirgel, F.; Lesosky, M.; Gumbo, T.; Meintjes, G.; McIlleron, H.; Wilkinson, R. Concentration-Dependent Antagonism and Culture Conversion in Pulmonary Tuberculosis. Clin. Infect. Dis. 2017, 64, 1350–1359. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Srivastava, S.; Deshpande, D.; Magombedze, G.; Gumbo, T. Efficacy Versus Hepatotoxicity of High-dose Rifampin, Pyrazinamide, and Moxifloxacin to Shorten Tuberculosis Therapy Duration: There Is Still Fight in the Old Warriors Yet! Clin. Infect. Dis. 2018, 67, S359–S364. [Google Scholar] [CrossRef] [PubMed]
- Zuur, M.A.; Pasipanodya, J.G.; Van Soolingen, D.; Van Der Werf, T.S.; Gumbo, T.; Alffenaar, J.C. Intermediate Susceptibility Dose-Dependent Breakpoints for High-Dose Rifampin, Isoniazid, and Pyrazinamide Treatment in Multidrug-Resistant Tuberculosis Programs. Clin. Infect. Dis. 2018, 67, 1743–1749. [Google Scholar] [CrossRef] [PubMed]
- Pasipanodya, J.G.; Gumbo, T. Clinical and Toxicodynamic Evidence that High-Dose Pyrazinamide Is Not More Hepatotoxic than the Low Doses Currently Used. Antimicrob. Agents Chemother. 2010, 54, 2847–2854. [Google Scholar] [CrossRef] [Green Version]
- Denti, P.; Jeremiah, K.; Chigutsa, E.; Faurholt-Jepsen, D.; PrayGod, G.; Range, N.; Castel, S.; Wiesner, L.; Hagen, C.M.; Christian, M.H.; et al. Pharmacokinetics of isoniazid, pyrazinamide, and ethambutol in newly diagnosed pulmonary TB patients in Tanzania. PLoS ONE 2015, 10, e0141002. [Google Scholar] [CrossRef] [Green Version]
- Seymour, C.W.; Liu, V.X.; Iwashyna, T.J.; Brunkhorst, F.M.; Rea, T.D.; Scherag, A.; Escobar, G.J.; Angus, D.C.; Iwashyna, T.J.; Brunkhorst, F.M.; et al. Assessment of Clinical Criteria for Sepsis: For the Third International Consensus Definitions for Sepsis and Septic Shock (Sepsis-3). JAMA 2016, 315, 762–774. [Google Scholar] [CrossRef] [Green Version]
- Qiu, J.; Wang, C.; Pan, X.; Pan, L.; Huang, X.; Xu, J.; Ji, X.; Mao, M. APACHE-II score for anti-tuberculosis tolerance in critically ill patients: A retrospective study. BMC Infect. Dis. 2019, 19, 106. [Google Scholar] [CrossRef] [Green Version]
- Loh, W.J.; Yu, Y.; Loo, C.M.; Low, S.Y. Factors associated with mortality among patients with active pulmonary tuberculosis requiring intensive care. Singap. Med. J. 2017, 58, 656–659. [Google Scholar] [CrossRef] [Green Version]
- Nagai, K.; Horita, N.; Sato, T.; Yamamoto, M.; Nagakura, H.; Kaneko, T. Age, Dehydration, Respiratory Failure, Orientation Disturbance, and Blood Pressure Score Predicts In-hospital Mortality in HIV-negative Non-multidrug-resistant Smear-positive Pulmonary Tuberculosis in Japan. Sci. Rep. 2016, 6, 21610. [Google Scholar] [CrossRef] [Green Version]
- Schultz, M.J.; Dunser, M.W.; Dondorp, A.M.; Adhikari, N.K.J.; Iyer, S.; Kwizera, A.; Lubell, Y.; Papali, A.; Pisani, L.; Riviello, E.D.; et al. Current challenges in the management of sepsis in ICUs in resource-poor settings and suggestions for the future. Intensive Care Med. 2017, 43, 612–624. [Google Scholar] [CrossRef] [PubMed]
- Muthu, V.; Dhooria, S.; Aggarwal, A.N.; Behera, D.; Sehgal, I.S.; Agarwal, R. Acute respiratory distress syndrome due to tuberculosis in a respiratory icu over a 16-year period. Crit. Care Med. 2017, 45, e1087–e1090. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. Global Tuberculosis Report 2021; WHO: Geneva, Switzerland, 2021. [Google Scholar]
- Humphrey, J.M.; Mpofu, P.; Pettit, A.C.; Musick, B.; Carter, E.J.; Messou, E.; Marcy, O.; Crabtree-Ramirez, B.; Yotebieng, M.; Anastos, K.; et al. Mortality among adults living with HIV treated for tuberculosis based on positive, negative, or no bacteriologic test results for tuberculosis: The IeDEA consortium. bioRxiv 2020. [Google Scholar] [CrossRef] [Green Version]
- World Health Organization. Technical Manual for Drug Susceptibility Testing of Medicines Used in the Treatment of Tuberculosis; World Health Organization: Geneva, Switzerland, 2018. [Google Scholar]
- Ängeby, K.; Juréen, P.; Kahlmeter, G.; Hoffner, S.E.; Schön, T. Challenging a dogma: Antimicrobial susceptibility testing breakpoints for Mycobacterium tuberculosis. Bull. World Health Organ. 2012, 90, 693–698. [Google Scholar] [CrossRef]
- Chigutsa, E.; Pasipanodya, J.G.; Visser, M.E.; Van Helden, P.D.; Smith, P.J.; Sirgel, F.A.; Gumbo, T.; McIlleron, H. Impact of nonlinear interactions of pharmacokinetics and mics on sputum bacillary kill rates as a marker of sterilizing effect in tuberculosis. Antimicrob. Agents Chemother. 2015, 59, 38–45. [Google Scholar] [CrossRef] [Green Version]
- Perumal, R.; Naidoo, K.; Naidoo, A.; Letsoalo, M.P.; Esmail, A.; Joubert, I.; Denti, P.; Wiesner, L.; Padayatchi, N.; Maartens, G.; et al. The impact of enteral feeding and therapeutic monitoring of rifampicin with dose escalation in critically ill patients with tuberculosis. Int. J. Infect. Dis. 2023, 126, 174–180. [Google Scholar] [CrossRef]
Characteristics | ICU (n = 13) | Outpatients (n = 20) | p-Value |
---|---|---|---|
Age (yrs) | 32 (30–52) | 40 (33–46) | 0.53 |
Gender (Male/Female) | 10 (77%)/3 (33%) | 16 (80%)/4 (20%) | 1.00 |
Weight (kg) | 52.5 (46.1–60.0) | 58.4 (53.1–67.0) | 0.14 |
SOFA score | 10 (6.3–12.0) | - | |
APACHE II score | 28 (20–33) | 5 (4–7) | <0.01 |
HIV, n (%) | 12 (92%) | 15 (75%) | 0.42 |
Creatinine clearance (mL/min) | 45.8 (0.0–97.5) | 114 (86.5–158) | 0.02 |
Rifampin | Parameter | ICU (n = 5) | Outpatients (n = 13) | p-Value |
AUC (mg·h/L) | 46.6 (40.6–77.4) | 25.1 (21.2–31.5) | <0.01 | |
Cmax (mg/L) | 7.3 (6.6–10.1) | 6.7 (4.1–8.4) | 0.33 | |
Ka (h−1) | 0.12 (0.09–0.25) | 0.35 (0.25–0.49) | 0.20 | |
CL (L/h) | 9.35 (6.78–13.7) | 20.7 (16.4–24.7) | 0.07 | |
Tmax (h) | 2 (2–4) | 2 (2–4) | 0.80 | |
Vd (L) | 59.2 (53.1–78.2) | 83.6 (77.5–102.1) | 0.33 | |
t1/2 (h) | 6.0 (4.1–7.5) | 2.0 (1.4–2.7) | 0.19 | |
Isoniazid | Parameter | ICU (n = 11) | Outpatients (n = 18) | p-Value |
AUC (mg·h/L) | 15.2 (6.8–27.8) | 14.4 (5.43–31.0) | 0.95 | |
Cmax (mg/L) | 0.70 (0.29–1.6) | 0.80 (0.51–1.10) | 0.72 | |
Ka (h−1) | 0.01 (0.01–0.06) | 0.35 (0.25–0.49) | 0.20 | |
CL (L/h) | 8.60 (2.51–14.5) | 33.9 (3.36–47.8) | 0.22 | |
Tmax (h) | 1 (0.5–3) | 2 (1–2) | 0.76 | |
Vd (L) | 1350 (416–2170) | 1740 (842–1750) | 1.00 | |
t1/2 (h) | 125 (12–560) | 24 (22–52) | 0.84 | |
Pyrazinamide | Parameter | ICU (n = 13) | Outpatients (n = 20) | p-Value |
AUC (mg·h/L) | 46.2 (12.4–143) | 58.4 (35.0–74.6) | 0.65 | |
Cmax (mg/L) | 3.5 (2.8–14) | 7.3 (5.6–8.5) | 0.37 | |
Ka (h−1) | 0.1 (0.08–0.1) | 0.1 (0.09–0.2) | 0.25 | |
CL (L/h) | 8.23 (5.47–9.82) | 21.2 (16.5–31.0) | <0.01 | |
Tmax (h) | 1 (1–2) | 2 (2–4) | <0.01 | |
Vd (L) | 94.7 (81.0–113) | 221 (163–264) | <0.01 | |
t1/2 (h) | 7.0 (7.0–8.4) | 5.4 (4.6–7.3) | 0.26 | |
Ethambutol | Parameter | ICU (n = 10) | Outpatients (n = 20) | p-Value |
AUC (mg·h/L) | 22.0 (6.82–36.1) | 6.46 (4.84–8.73) | 0.01 | |
Cmax (mg/L) | 2.3 (1.0–3.1) | 1.2 (1.1–1.6) | 0.13 | |
Ka (h−1) | 0.04 (0.03–0.08) | 0.22 (0.15–0.28) | <0.01 | |
CL (L/h) | 25.1 (10.4–61.8) | 131 (117–159) | <0.01 | |
Tmax (h) | 2 (2–5.5) | 3 (2–4) | 0.96 | |
Vd (L) | 486 (399–811) | 811 (584–1050) | 0.06 | |
t1/2 (h) | 16 (9–24) | 3.2 (2.5–4.6) | <0.01 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Beraldi-Magalhaes, F.; Parker, S.L.; Sanches, C.; Garcia, L.S.; Souza Carvalho, B.K.; Costa, A.A.; Fachi, M.M.; de Liz, M.V.; de Souza, A.B.; Safe, I.P.; et al. Is the Pharmacokinetics of First-Line Anti-TB Drugs a Cause of High Mortality Rates in TB Patients Admitted to the ICU? A Non-Compartmental Pharmacokinetic Analysis. Trop. Med. Infect. Dis. 2023, 8, 312. https://doi.org/10.3390/tropicalmed8060312
Beraldi-Magalhaes F, Parker SL, Sanches C, Garcia LS, Souza Carvalho BK, Costa AA, Fachi MM, de Liz MV, de Souza AB, Safe IP, et al. Is the Pharmacokinetics of First-Line Anti-TB Drugs a Cause of High Mortality Rates in TB Patients Admitted to the ICU? A Non-Compartmental Pharmacokinetic Analysis. Tropical Medicine and Infectious Disease. 2023; 8(6):312. https://doi.org/10.3390/tropicalmed8060312
Chicago/Turabian StyleBeraldi-Magalhaes, Francisco, Suzanne L. Parker, Cristina Sanches, Leandro Sousa Garcia, Brenda Karoline Souza Carvalho, Amanda Araujo Costa, Mariana Millan Fachi, Marcus Vinicius de Liz, Alexandra Brito de Souza, Izabella Picinin Safe, and et al. 2023. "Is the Pharmacokinetics of First-Line Anti-TB Drugs a Cause of High Mortality Rates in TB Patients Admitted to the ICU? A Non-Compartmental Pharmacokinetic Analysis" Tropical Medicine and Infectious Disease 8, no. 6: 312. https://doi.org/10.3390/tropicalmed8060312
APA StyleBeraldi-Magalhaes, F., Parker, S. L., Sanches, C., Garcia, L. S., Souza Carvalho, B. K., Costa, A. A., Fachi, M. M., de Liz, M. V., de Souza, A. B., Safe, I. P., Pontarolo, R., Wallis, S., Lipman, J., Roberts, J. A., & Cordeiro-Santos, M. (2023). Is the Pharmacokinetics of First-Line Anti-TB Drugs a Cause of High Mortality Rates in TB Patients Admitted to the ICU? A Non-Compartmental Pharmacokinetic Analysis. Tropical Medicine and Infectious Disease, 8(6), 312. https://doi.org/10.3390/tropicalmed8060312