Impact of Climatic Factors on the Temporal Trend of Malaria in India from 1961 to 2021
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- WHO. World Malaria Report 2023. World Health Organization: Geneva, Switzerland, 2023. Available online: https://www.who.int/teams/global-malaria-programme/reports/world-malaria-report-2023 (accessed on 27 June 2023).
- Duffy, P.E.; Gorres, J.P.; Healy, S.A.; Fried, M. Malaria vaccines: A new era of prevention and control. Nat. Rev. Microbiol. 2024, 22, 756–772. [Google Scholar] [CrossRef] [PubMed]
- WHO. South—East Asia India—Health Topics Malaria. World Health Organization: Geneva, Switzerland, 2022. Available online: https://www.who.int/india/health-topics/malaria (accessed on 2 March 2023).
- WHO. World Malaria Report 2021. World Health Organization: Geneva, Switzerland, 2021. Available online: https://www.who.int/teams/global-malaria-programme/reports/world-malaria-report-2021 (accessed on 25 March 2023).
- National Health Profile 2002, Central Bureau of Health Intelligence 2002. Available online: https://www.cbhidghs.nic.in/index4.php?lang=1&level=0&linkid=958&lid=970 (accessed on 5 June 2023).
- National Health Profile 2023. Central Bureau of Health Intelligence. 2023. Available online: https://cbhidghs.mohfw.gov.in/WriteReadData/l892s/Final_Central%20Bureau%20of%20Health%20Intelligene%20July%202024.pdf (accessed on 14 June 2024).
- NVBDCP (National Vector Borne Disease Control Programme); Monthly Malaria Situation in States and Union Territories. New Delhi: Ministry of Health and Family Welfare, Government of India, National Vector-Borne Disease Control Programme. 2022. Available online: https://ncvbdc.mohfw.gov.in/index4.php?lang=1&level=0&linkid=420&lid=3699 (accessed on 5 August 2023).
- Khan, N.; Awasthi, G.; Das, A. How can the complex epidemiology of malaria in India impact its elimination? Trends Parasitol. 2023, 39, 432–444. [Google Scholar] [CrossRef]
- Ripple, W.J.; Wolf, C.; Gregg, J.W.; Rockström, J.; Mann, M.E.; Oreskes, N.; Lenton, T.M.; Rahmstorf, S.; Newsome, T.M.; Xu, C.; et al. The 2024 state of the climate report: Perilous times on planet Earth. BioScience 2024, biae087. [Google Scholar] [CrossRef]
- Wangdi, K.; Gatton, M.L.; Kelly, G.C.; Banwell, C.; Dev, V.; Clements, A.C.A. Malaria elimination in India and regional implications. Lancet Infect. Dis. 2016, 16, e214–e224. [Google Scholar] [CrossRef]
- Rahi, M.; Mishra, A.K.; Chand, G.; Baharia, R.K.; Hazara, R.K.; Singh, S.P.; Khan, S.; Sreehari, U.; Kamaraju, D.; Kumar, G.; et al. Malaria Vector Bionomics: Countrywide Surveillance Study on Implications for Malaria Elimination in India. JMIR Public Health Surveill. 2024, 17, e42050. [Google Scholar] [CrossRef] [PubMed]
- Small, J.; Goetz, S.J.; Hay, S.I. Climatic suitability for malaria transmission in Africa, 1911–1995. Proc. Natl. Acad. Sci. USA 2003, 100, 15341–15345. [Google Scholar] [CrossRef]
- Lindsay, S.W.; Birley, M.H. Climate change and malaria transmission. Ann. Trop. Med. Parasitol. 1996, 90, 573–588. [Google Scholar] [CrossRef] [PubMed]
- Detinova, T.S. Age-grouping methods in Diptera of medical importance with special reference to some vectors of malaria. Monogr. Ser. World Health Organ. 1962, 47, 13–191. [Google Scholar] [CrossRef] [PubMed]
- Macdonald, G. The Epidemiology and Control of Malaria; Oxford University Press: London, UK, 1957. [Google Scholar]
- Davidson, G. Estimation of the survival rate of Anopheline mosquitoes in nature. Nature 1954, 174, 792–793. [Google Scholar] [CrossRef] [PubMed]
- Macdonald, G. The analysis of equilibrium in malaria. Trop. Dis. Bull. 1952, 49, 813–829. [Google Scholar]
- Zhou, G.; Minakawa, N.; Githeko, A.K.; Yan, G. Association between climate variability and malaria epidemics in the East African highlands. Proc. Natl. Acad. Sci. USA 2004, 101, 2375–2380, Erratum in: Proc. Natl. Acad. Sci. USA 2004, 101, 13694. [Google Scholar] [CrossRef] [PubMed]
- Petric, M. Modeling the Influence of Meteorological Conditions on Mosquito Vector Population Dynamics (Diptera, Culicidae); University of Novi Sad (Serbia) ProQuest Dissertations Publishing: Novi Sad, Serbia, 2020. Available online: https://nardus.mpn.gov.rs/handle/123456789/17569 (accessed on 20 October 2024).
- Patz, J.A.; Campbell-Lendrum, D.; Holloway, T.; Foley, J.A. Impact of regional climate change on human health. Nature 2005, 438, 310–317. [Google Scholar] [CrossRef]
- Lafferty, K.D. The ecology of climate change and infectious diseases. Ecology 2009, 90, 888–900. [Google Scholar] [CrossRef]
- Gething, P.W.; Smith, D.L.; Patil, A.P.; Tatem, A.J.; Snow, R.W.; Hay, S.I. Climate change and the global malaria recession. Nature 2010, 465, 342–345. [Google Scholar] [CrossRef] [PubMed]
- Centre Bureau of Health Intelligence. Health Statistics of India 1961–1998, Health Information of India 1999–2005, National Health Profile 2005–2021 New Delhi: Centre Bureau of Health Intelligence. Available online: https://cbhidghs.mohfw.gov.in/index1.php?lang=1&level=1&sublinkid=34&lid=33 (accessed on 25 May 2022).
- IMD. Pune. India Meteorological Department; Government of India. Available online: https://www.imdpune.gov.in/ (accessed on 5 February 2021).
- Open Government Data Platform; Government of India. Available online: https://data.gov.in/ (accessed on 22 March 2023).
- Statista. India—Statistics & Facts. Available online: https://www.statista.com/ (accessed on 19 July 2022).
- World Population Prospects 2024; Department of Economic and Social Affairs; Population Division; United Nations. 2024. Available online: https://population.un.org/wpp/Download/Standard/MostUsed/ (accessed on 19 October 2023).
- Fernando, S.D. Climate Change and Malaria—A Complex Relationship. UN Chronicle; United Nations. 2012. Available online: https://www.un.org/en/chronicle/article/climate-change-and-malaria-complex-relationship (accessed on 22 October 2023).
- Zhou, G.; Minakawa, N.; Githeko, A.K.; Yan, G. Climate variability and malaria epidemics in the highlands of East Africa. Trends Parasitol. 2005, 21, 54–56. [Google Scholar] [CrossRef] [PubMed]
- Pascual, M.; Ahumada, J.A.; Chaves, L.F.; Rodó, X.; Bouma, M. Malaria resurgence in the East African highlands: Temperature trends revisited. Proc. Natl. Acad. Sci. USA 2006, 103, 5829–5834. [Google Scholar] [CrossRef]
- Baldari, M.; Tamburro, A.; Sabatinelli, G.; Romi, R.; Severini, C.; Cuccagna, G.; Fiorilli, G.; Allegri, M.P.; Buriani, C.; Toti, M. Malaria in Maremma, Italy. Lancet 1998, 351, 1246–1247. [Google Scholar] [CrossRef]
- Krüger, A.; Rech, A.; Su, X.Z.; Tannich, E. Two cases of autochthonous Plasmodium falciparum malaria in Germany with evidence for local transmission by indigenous Anopheles plumbeus. Trop. Med. Int. Health 2001, 6, 983–985. [Google Scholar] [CrossRef] [PubMed]
- Hay, S.I.; Cox, J.; Rogers, D.J.; Randolph, S.E.; Stern, D.I.; Shanks, G.D.; Myers, M.F.; Snow, R.W. Climate change and the resurgence of malaria in the East African highlands. Nature 2002, 415, 905–909. [Google Scholar] [CrossRef] [PubMed]
- Caminade, C.; McIntyre, K.M.; Jones, A.E. Impact of recent and future climate change on vector-borne diseases. Ann. N.Y. Acad. Sci. 2019, 1436, 157–173. [Google Scholar] [CrossRef] [PubMed]
- Dye, C.; Reiter, P. Temperatures without fevers? Science 2000, 289, 1697–1698. [Google Scholar] [CrossRef] [PubMed]
- Feachem, R.G.A.; Chen, I.; Akbari, O.; Bertozzi-Villa, A.; Bhatt, S.; Binka, F.; Boni, M.F.; Buckee, C.; Dieleman, J.; Dondorp, A.; et al. Malaria eradication within a generation: Ambitious, achievable, and necessary. Lancet 2019, 394, 1056–1112. [Google Scholar] [CrossRef] [PubMed]
- Reiter, P. Global warming and malaria: Knowing the horse before hitching the cart. Malar. J. 2008, 7, S3. [Google Scholar] [CrossRef] [PubMed]
- Thomas, C.J.; Davies, G.; Dunn, C.E. Mixed picture for changes in stable malaria distribution with future climate in Africa. Trends Parasitol. 2004, 20, 216–220. [Google Scholar] [CrossRef] [PubMed]
- Murdock, C.C.; Sternberg, E.D.; Thomas, M.B. Malaria transmission potential could be reduced with current and future climate change. Sci. Rep. 2016, 6, 27771. [Google Scholar] [CrossRef] [PubMed]
- National Framework for Malaria Elimination in India (2016–2030); Directorate of National Vector Borne Disease Control Programme (NVBDCP) Directorate General of Health Services (DGHS) Ministry of Health & Family Welfare Government of India. Available online: https://nvbdcp.gov.in/WriteReadData/l892s/National-framework-for-malaria-elimination-in-India-2016%E2%80%932030.pdf (accessed on 5 December 2022).
- Katzenberger, A.; Schewe, J.; Pongratz, J.; Levermann, A. Robust increase of Indian monsoon rainfall and its variability under future warming in CMIP6 models. Earth Syst. Dynam. 2021, 12, 367–386. [Google Scholar]
- Reddy, C.S.; Jha, C.S.; Diwakar, P.G.; Dadhwal, V.K. Nationwide classification of forest types of India using remote sensing and GIS. Environ. Monit. Assess. 2015, 187, 777. [Google Scholar] [CrossRef] [PubMed]
Climatic Factors | Correlation Coefficient | p Value | R2 Value |
---|---|---|---|
Rainfall | 0.28 | 0.028 | 0.6016 |
Relative Humidity | −0.43 | 0.005 | 0.4812 |
Minimum Temperature | −0.23 | 0.078 | 0.8692 |
Maximum Temperature | −0.06 | 0.631 | 0.274 |
Mean Temperature | −0.16 | 0.204 | 0.673 |
Square Root of Malaria Cases | Temperature (°C) | Rainfall (cm) | RH (%) | |||||||
---|---|---|---|---|---|---|---|---|---|---|
Minimum | Maximum | Mean | ||||||||
Range | Years | Range | Years | Range | Years | Range | Years | Range | Years | |
<1000 | <18 | 3 | 29.5–30 | 2 | <24 | 2 | 60–80 | 0 | 45–50 | 0 |
18–19 | 7 | 30.0–30.5 | 7 | 24–25 | 10 | 80–100 | 7 | 50–55 | 2 | |
19–20 | 2 | 30.5–31.0 | 5 | 25–26 | 3 | 100–120 | 7 | 55–60 | 1 | |
20–21 | 3 | 31.0–31.5 | 2 | 26–27 | 1 | 120–140 | 1 | 60–65 | 2 | |
21–22 | 1 | >31.5 °C | -- | -- | -- | >140 | 1 | 65–70 | 1 | |
Total | 16 | Total | 16 | Total | 16 | Total | 16 | Total | 6 | |
>1000 | <18 | 4 | 29.5–30 | 9 | <24 | 3 | 60–80 | 3 | 45–50 | 0 |
18–19 | 29 | 30.0–30.5 | 16 | 24–25 | 37 | 80–100 | 8 | 50–55 | 6 | |
19–20 | 9 | 30.5–31.0 | 17 | 25–26 | 4 | 100–120 | 20 | 55–60 | 14 | |
20–21 | 2 | 31.0–31.5 | 2 | 26–27 | 1 | 120–140 | 14 | 60–65 | 15 | |
21–22 | 1 | >31.5 | 1 | -- | -- | >140 | 0 | 65–70 | 0 | |
Total | 45 | Total | 45 | Total | 45 | Total | 45 | Total | 35 | |
Total years | 61 | 61 | 61 | 61 | 41 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mayilsamy, M.; Veeramanoharan, R.; Jain, K.; Balakrishnan, V.; Rajaiah, P. Impact of Climatic Factors on the Temporal Trend of Malaria in India from 1961 to 2021. Trop. Med. Infect. Dis. 2024, 9, 309. https://doi.org/10.3390/tropicalmed9120309
Mayilsamy M, Veeramanoharan R, Jain K, Balakrishnan V, Rajaiah P. Impact of Climatic Factors on the Temporal Trend of Malaria in India from 1961 to 2021. Tropical Medicine and Infectious Disease. 2024; 9(12):309. https://doi.org/10.3390/tropicalmed9120309
Chicago/Turabian StyleMayilsamy, Muniaraj, Rajamannar Veeramanoharan, Kamala Jain, Vijayakumar Balakrishnan, and Paramasivan Rajaiah. 2024. "Impact of Climatic Factors on the Temporal Trend of Malaria in India from 1961 to 2021" Tropical Medicine and Infectious Disease 9, no. 12: 309. https://doi.org/10.3390/tropicalmed9120309
APA StyleMayilsamy, M., Veeramanoharan, R., Jain, K., Balakrishnan, V., & Rajaiah, P. (2024). Impact of Climatic Factors on the Temporal Trend of Malaria in India from 1961 to 2021. Tropical Medicine and Infectious Disease, 9(12), 309. https://doi.org/10.3390/tropicalmed9120309