Precision Prediction for Dengue Fever in Singapore: A Machine Learning Approach Incorporating Meteorological Data
Abstract
:1. Introduction
2. Method
3. Results
3.1. Descriptive Analysis
3.1.1. Epidemic of Dengue in Singapore
3.1.2. Temporal Sequence of Climatological Variables
3.1.3. Correlation Analysis among Variables
3.2. Machine Learning Prediction of Dengue in Singapore
- Mode 1.
- Incorporating both lag effects and temporal factors;
- Mode 2.
- Considering only the lag effects;
- Mode 3.
- Focusing solely on temporal factors;
- Mode 4.
- Neglecting both lag effects and temporal factors.
3.3. Evaluation of the Efficacy of Various Predictive Models
3.4. Model Interpretation
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Dengue and Severe Dengue. Available online: https://www.who.int/news-room/fact-sheets/detail/dengue-and-severe-dengue (accessed on 7 February 2024).
- Sperança, M.; Rodriguez-Morales, A.J. (Eds.) Dengue Fever in a One Health Perspective; IntechOpen: Rijeka, Croatia, 2020; ISBN 978-1-78985-202-8. [Google Scholar]
- Aguiar, M.; Anam, V.; Blyuss, K.B.; Estadilla, C.D.S.; Guerrero, B.V.; Knopoff, D.; Kooi, B.W.; Srivastav, A.K.; Steindorf, V.; Stollenwerk, N. Mathematical Models for Dengue Fever Epidemiology: A 10-Year Systematic Review. Phys. Life Rev. 2022, 40, 65–92. [Google Scholar] [CrossRef] [PubMed]
- Roy, S.K.; Bhattacharjee, S. Dengue Virus: Epidemiology, Biology, and Disease Aetiology. Can. J. Microbiol. 2021, 67, 687–702. [Google Scholar] [CrossRef] [PubMed]
- Hales, S.; de Wet, N.; Maindonald, J.; Woodward, A. Potential Effect of Population and Climate Changes on Global Distribution of Dengue Fever: An Empirical Model. Lancet 2002, 360, 830–834. [Google Scholar] [CrossRef] [PubMed]
- Cabrera, M.; Leake, J.; Naranjo-Torres, J.; Valero, N.; Cabrera, J.C.; Rodríguez-Morales, A.J. Dengue Prediction in Latin America Using Machine Learning and the One Health Perspective: A Literature Review. Trop. Med. Infect. Dis. 2022, 7, 322. [Google Scholar] [CrossRef]
- Ho, S.H.; Lim, J.T.; Ong, J.; Hapuarachchi, H.C.; Sim, S.; Ng, L.C. Singapore’s 5 Decades of Dengue Prevention and Control—Implications for Global Dengue Control. PLoS Neglected Trop. Dis. 2023, 17, e0011400. [Google Scholar] [CrossRef]
- Tozan, Y.; Sjödin, H.; Muñoz, Á.G.; Rocklöv, J. Transmission Dynamics of Dengue and Chikungunya in a Changing Climate: Do We Understand the Eco-Evolutionary Response? Expert Rev. Anti-Infect. Ther. 2020, 18, 1187–1193. [Google Scholar] [CrossRef] [PubMed]
- Desjardins, M.R. A Mixed-Methods Approach for Vector-Borne Disease Surveillance in Colombia. Ph.D. Thesis, The University of North Carolina at Charlotte, Charlotte, NC, USA, 2020. [Google Scholar]
- Rabinovich, J.E.; Alvarez Costa, A.; Muñoz, I.J.; Schilman, P.E.; Fountain-Jones, N.M. Machine-Learning Model Led Design to Experimentally Test Species Thermal Limits: The Case of Kissing Bugs (Triatominae). PLoS Neglected Trop. Dis. 2021, 15, e0008822. [Google Scholar] [CrossRef]
- Jayaraj, V.J.; Avoi, R.; Gopalakrishnan, N.; Raja, D.B.; Umasa, Y. Developing a Dengue Prediction Model Based on Climate in Tawau, Malaysia. Acta Trop. 2019, 197, 105055. [Google Scholar] [CrossRef]
- Li, D.; Xiang, D.; Zhang, S.-X.; Zheng, J.-X. The Effect of COVID-19 on Infectious Disease to Outpatient of Children: A Machine Learning Study. SVOA Paediatr. 2023, 2, 102–112. [Google Scholar] [CrossRef]
- Keshavamurthy, R.; Dixon, S.; Pazdernik, K.T.; Charles, L.E. Predicting Infectious Disease for Biopreparedness and Response: A Systematic Review of Machine Learning and Deep Learning Approaches. One Health 2022, 15, 100439. [Google Scholar] [CrossRef]
- Ong, J.; Aik, J.; Ng, L.C. Short Report: Adult Aedes Abundance and Risk of Dengue Transmission. PLoS Neglected Trop. Dis. 2021, 15, e0009475. [Google Scholar] [CrossRef] [PubMed]
- Ong, J.; Chong, C.-S.; Yap, G.; Lee, C.; Abdul Razak, M.A.; Chiang, S.; Ng, L.-C. Gravitrap Deployment for Adult Aedes Aegypti Surveillance and Its Impact on Dengue Cases. PLoS Neglected Trop. Dis. 2020, 14, e0008528. [Google Scholar] [CrossRef]
- Project Wolbachia–Singapore, Consortium; Ching, N.L. Wolbachia-Mediated Sterility Suppresses Aedes Aegypti Populations in the Urban Tropics. medRxiv 2021, 2021-06. [Google Scholar] [CrossRef]
- Harapan, H.; Ryan, M.; Yohan, B.; Abidin, R.S.; Nainu, F.; Rakib, A.; Jahan, I.; Emran, T.B.; Ullah, I.; Panta, K.; et al. COVID-19 and Dengue: Double Punches for Dengue-Endemic Countries in Asia. Rev. Med. Virol. 2021, 31, e2161. [Google Scholar] [CrossRef] [PubMed]
- Cooksey, R. Descriptive Statistics for Summarising Data. In Illustrating Statistical Procedures: Finding Meaning in Quantitative Data; Springer: Singapore, 2020; pp. 61–139. [Google Scholar]
- Wawro, G.; Katznelson, I. Time Counts: Quantitative Analysis for Historical Social Science; Princeton University Press: Princeton, NJ, USA, 2022; ISBN 978-0-691-15504-3. [Google Scholar]
- Iwamura, T.; Guzman-Holst, A.; Murray, K.A. Accelerating Invasion Potential of Disease Vector Aedes Aegypti under Climate Change. Nat. Commun. 2020, 11, 2130. [Google Scholar] [CrossRef] [PubMed]
- Harris, S. The Nature, Causes, Effects and Mitigation of Climate Change on the Environment; IntechOpen: Rijeka, Croatia, 2022; ISBN 978-1-83968-611-5. [Google Scholar]
- Nuraini, N.; Fauzi, I.S.; Fakhruddin, M.; Sopaheluwakan, A.; Soewono, E. Climate-Based Dengue Model in Semarang, Indonesia: Predictions and Descriptive Analysis. Infect. Dis. Model. 2021, 6, 598–611. [Google Scholar] [CrossRef]
- Yang, H.; Nguyen, T.-N.; Chuang, T.-W. An Integrative Explainable Artificial Intelligence Approach to Analyze Fine-Scale Land-Cover and Land-Use Factors Associated with Spatial Distributions of Place of Residence of Reported Dengue Cases. Trop. Med. Infect. Dis. 2023, 8, 238. [Google Scholar] [CrossRef] [PubMed]
- Dong, J.; Zeng, W.; Wu, L.; Huang, J.; Gaiser, T.; Srivastava, A.K. Enhancing Short-Term Forecasting of Daily Precipitation Using Numerical Weather Prediction Bias Correcting with XGBoost in Different Regions of China. Eng. Appl. Artif. Intell. 2023, 117, 105579. [Google Scholar] [CrossRef]
- Paniri, M.; Dowlatshahi, M.B.; Nezamabadi-pour, H. MLACO: A Multi-Label Feature Selection Algorithm Based on Ant Colony Optimization. Knowl.-Based Syst. 2020, 192, 105285. [Google Scholar] [CrossRef]
- Soh, S.; Ho, S.H.; Seah, A.; Ong, J.; Dickens, B.S.; Tan, K.W.; Koo, J.R.; Cook, A.R.; Tan, K.B.; Sim, S.; et al. Economic Impact of Dengue in Singapore from 2010 to 2020 and the Cost-Effectiveness of Wolbachia Interventions. PLoS Glob. Public Health 2021, 1, e0000024. [Google Scholar] [CrossRef]
- Carrasco-Escobar, G.; Moreno, M.; Fornace, K.; Herrera-Varela, M.; Manrique, E.; Conn, J.E. The Use of Drones for Mosquito Surveillance and Control. Parasites Vectors 2022, 15, 473. [Google Scholar] [CrossRef] [PubMed]
- Chandra, G.; Mukherjee, D. Chapter 35—Effect of Climate Change on Mosquito Population and Changing Pattern of Some Diseases Transmitted by Them. In Advances in Animal Experimentation and Modeling; Sobti, R.C., Ed.; Academic Press: Cambridge, MA, USA, 2022; pp. 455–460. ISBN 978-0-323-90583-1. [Google Scholar]
- Sarma, D.K.; Kumar, M.; Nina, P.B.; Balasubramani, K.; Pramanik, M.; Kutum, R.; Shubham, S.; Das, D.; Kumawat, M.; Verma, V.; et al. An Assessment of Remotely Sensed Environmental Variables on Dengue Epidemiology in Central India. PLoS Neglected Trop. Dis. 2022, 16, e0010859. [Google Scholar] [CrossRef] [PubMed]
- Peña-García, V.H.; Luvall, J.C.; Christofferson, R.C. Arbovirus Transmission Predictions Are Affected by Both Temperature Data Source and Modeling Methodologies across Cities in Colombia. Microorganisms 2023, 11, 1249. [Google Scholar] [CrossRef] [PubMed]
- Nkiruka, O.; Prasad, R.; Clement, O. Prediction of Malaria Incidence Using Climate Variability and Machine Learning. Inform. Med. Unlocked 2021, 22, 100508. [Google Scholar] [CrossRef]
- da Silva Neto, S.R.; Oliveira, T.T.; Teixeira, I.V.; de Oliveira, S.B.A.; Sampaio, V.S.; Lynn, T.; Endo, P.T. Machine Learning and Deep Learning Techniques to Support Clinical Diagnosis of Arboviral Diseases: A Systematic Review. PLoS Neglected Trop. Dis. 2022, 16, e0010061. [Google Scholar] [CrossRef]
- Rabinovich, J.E. Morphology, Life Cycle, Environmental Factors and Fitness—A Machine Learning Analysis in Kissing Bugs (Hemiptera, Reduviidae, Triatominae). Front. Ecol. Evol. 2021, 9, 651683. [Google Scholar] [CrossRef]
Metrics | Mode 1 | Mode 2 | Mode 3 | Mode 4 |
---|---|---|---|---|
XGBoost | SVM | XGBoost | XGBoost | |
MAE | 89.12 | 160.73 | 160.65 | 175.49 |
RMSE | 156.07 | 268.83 | 232.58 | 247.86 |
0.83 | 0.5 | 0.49 | 0.42 |
Sequence | Feature | Importance | Cover | Frequency |
---|---|---|---|---|
1 | Week | 0.54 | 0.08 | 0.04 |
2 | Cloudcoverlag1 | 0.10 | 0.01 | 0.01 |
3 | Cloudcoverlag5 | 0.07 | 0.01 | 0.01 |
4 | Preciplag5 | 0.03 | 0.01 | 0.01 |
5 | Cloudcover | 0.02 | 0.00 | 0.01 |
6 | Dewlag7 | 0.02 | 0.00 | 0.00 |
7 | Tempmax | 0.02 | 0.01 | 0.08 |
8 | Cloudcoverlag7 | 0.01 | 0.00 | 0.00 |
9 | Cloudcoverlag3 | 0.01 | 0.00 | 0.01 |
10 | Dewlag3 | 0.01 | 0.01 | 0.01 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tian, N.; Zheng, J.-X.; Li, L.-H.; Xue, J.-B.; Xia, S.; Lv, S.; Zhou, X.-N. Precision Prediction for Dengue Fever in Singapore: A Machine Learning Approach Incorporating Meteorological Data. Trop. Med. Infect. Dis. 2024, 9, 72. https://doi.org/10.3390/tropicalmed9040072
Tian N, Zheng J-X, Li L-H, Xue J-B, Xia S, Lv S, Zhou X-N. Precision Prediction for Dengue Fever in Singapore: A Machine Learning Approach Incorporating Meteorological Data. Tropical Medicine and Infectious Disease. 2024; 9(4):72. https://doi.org/10.3390/tropicalmed9040072
Chicago/Turabian StyleTian, Na, Jin-Xin Zheng, Lan-Hua Li, Jing-Bo Xue, Shang Xia, Shan Lv, and Xiao-Nong Zhou. 2024. "Precision Prediction for Dengue Fever in Singapore: A Machine Learning Approach Incorporating Meteorological Data" Tropical Medicine and Infectious Disease 9, no. 4: 72. https://doi.org/10.3390/tropicalmed9040072
APA StyleTian, N., Zheng, J. -X., Li, L. -H., Xue, J. -B., Xia, S., Lv, S., & Zhou, X. -N. (2024). Precision Prediction for Dengue Fever in Singapore: A Machine Learning Approach Incorporating Meteorological Data. Tropical Medicine and Infectious Disease, 9(4), 72. https://doi.org/10.3390/tropicalmed9040072