A Generalizable Prioritization Protocol for Climate-Sensitive Zoonotic Diseases
Abstract
:1. Introduction
2. Materials and Methods
2.1. Conceptualizing Climate Sensitivity of a Zoonosis to Develop Criteria for Prioritization
2.2. Steps of the Prioritization Process
2.2.1. Workshop Preparation
2.2.2. Activity 1: List of Zoonotic Diseases to Be Targeted for Prioritization
2.2.3. Activity 2: Selection of Climate Sensitivity Criteria
2.2.4. Activity 3: Ranking of Criteria
2.2.5. Activity 4: Development of Questions and Answers
2.2.6. Activity 5: Scoring of Zoonoses
2.2.7. Activity 6: Validation of the Priority List of Zoonoses
3. Discussion
3.1. Criteria for Prioritizing Climate Sensitivity of a Zoonotic Disease
3.2. Design of Questions and Answers to Be Used in the Ranking of CSZs
3.3. Biases and Interdisciplinary Challenges
3.4. Quantifying Uncertainties in Zoonosis Prioritization
3.5. Opportunities and Limitations of the Tool
3.6. Expanding Beyond Climate Sensitivity and Zoonoses
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Jones, K.E.; Patel, N.G.; Levy, M.A.; Storeygard, A.; Balk, D.; Gittleman, J.L.; Daszak, P. Global Trends in Emerging Infectious Diseases. Nature 2008, 451, 990–993. [Google Scholar] [CrossRef] [PubMed]
- Mora, C.; McKenzie, T.; Gaw, I.M.; Dean, J.M.; von Hammerstein, H.; Knudson, T.A.; Setter, R.O.; Smith, C.Z.; Webster, K.M.; Patz, J.A.; et al. Over Half of Known Human Pathogenic Diseases Can Be Aggravated by Climate Change. Nat. Clim. Chang. 2022, 12, 869–875. [Google Scholar] [CrossRef]
- Carlson, C.J.; Albery, G.F.; Merow, C.; Trisos, C.H.; Zipfel, C.M.; Eskew, E.A.; Olival, K.J.; Ross, N.; Bansal, S. Climate Change Increases Cross-Species Viral Transmission Risk. Nature 2022, 607, 555–562. [Google Scholar] [CrossRef] [PubMed]
- Brioudes, A.; Warner, J.; Hedlefs, R.; Gummow, B. Diseases of Livestock in the Pacific Islands Region: Setting Priorities for Food Animal Biosecurity. Acta Trop. 2015, 143, 66–76. [Google Scholar] [CrossRef]
- McFadden, A.M.J.; Muellner, P.; Baljinnyam, Z.; Vink, D.; Wilson, N. Use of Multicriteria Risk Ranking of Zoonotic Diseases in a Developing Country: Case Study of Mongolia. Zoonoses Public Health 2016, 63, 138–151. [Google Scholar] [CrossRef]
- McIntyre, K.M.; Setzkorn, C.; Hepworth, P.J.; Morand, S.; Morse, A.P.; Baylis, M. A Quantitative Prioritisation of Human and Domestic Animal Pathogens in Europe. PLoS ONE 2014, 9, e103529. [Google Scholar] [CrossRef]
- Economopoulou, A.; Kinross, P.; Domanovic, D.; Coulombier, D. Infectious Diseases Prioritisation for Event-Based Surveillance at the European Union Level for the 2012 Olympic and Paralympic Games. Eurosurveillance 2014, 19, 20770. [Google Scholar]
- Havelaar, A.H.; van Rosse, F.; Bucura, C.; Toetenel, M.A.; Haagsma, J.A.; Kurowicka, D.; Heesterbeek, J.A.P.; Speybroeck, N.; Langelaar, M.F.M.; van der Giessen, J.W.B.; et al. Prioritizing Emerging Zoonoses in The Netherlands. PLoS ONE 2010, 5, e13965. [Google Scholar] [CrossRef]
- Ng, V.; Sargeant, J.M. A Stakeholder-Informed Approach to the Identification of Criteria for the Prioritization of Zoonoses in Canada. PLoS ONE 2012, 7, e29752. [Google Scholar]
- Standley, C.J.; Carlin, E.P.; Sorrell, E.M.; Barry, A.M.; Bile, E.; Diakite, A.S.; Keita, M.S.; Koivogui, L.; Mane, S.; Martel, L.D.; et al. Assessing Health Systems in Guinea for Prevention and Control of Priority Zoonotic Diseases: A One Health Approach. One Health 2019, 7, 100093. [Google Scholar] [CrossRef]
- Stebler, N.; Schuepbach-Regula, G.; Braam, P.; Falzon, L.C. Use a Modified Delphi Panel to Identify and Weight Criteria for Prioritization of Zoonotic Diseases in Switzerland. Prev. Vet. Med. 2015, 121, 165–169. [Google Scholar] [CrossRef] [PubMed]
- Ng, V.; Sargeant, J.M. A Quantitative Approach to the Prioritization of Zoonotic Diseases in North America: A Health Professionals’ Perspective. PLoS ONE 2013, 8, e72172. [Google Scholar] [CrossRef]
- Stebler, N.; Schuepbach-Regula, G.; Braam, P.; Falzon, L.C. Weighting of Criteria for Disease Prioritization Using Conjoint Analysis and Based on Health Professional and Student Opinion. PLoS ONE 2016, 11, e0151394. [Google Scholar] [CrossRef]
- Cox, R.; Sanchez, J.; Revie, C.W. Multi-Criteria Decision Analysis Tools for Prioritising Emerging or Re-Emerging Infectious Diseases Associated with Climate Change in Canada. PLoS ONE 2013, 8, e68338. [Google Scholar] [CrossRef]
- Gilsdorf, A.; Krause, G. Prioritisation of Infectious Diseases in Public Health: Feedback on the Prioritisation Methodology, 15 July 2008 to 15 January 2009. Eurosurveillance 2011, 16, 19861. [Google Scholar] [PubMed]
- Krause, G. How Can Infectious Diseases Be Prioritized in Public Health? A Standardized Prioritization Scheme for Discussion. EMBO Rep. 2008, 9, S22–S27. [Google Scholar] [PubMed]
- Kadohira, M.; Hill, G.; Yoshizaki, R.; Otq, S.; Yoshikawa, Y. Stakeholder Prioritization of Zoonoses in Japan with Analytic Hierarchy Process Method. Epidemiol. Infect. 2015, 143, 1477–1485. [Google Scholar]
- Rist, C.L.; Arriola, C.S.; Rubin, C. Prioritizing Zoonoses: A Proposed One Health Tool for Collaborative Decision-Making. PLoS ONE 2014, 9, e109986. [Google Scholar]
- Saaty, R.W. The Analytic Hierarchy Process—What It Is and How It Is Used. Math. Model. 1987, 9, 161–176. [Google Scholar] [CrossRef]
- Kheirallah, K.A.; Al-Mistarehi, A.-H.; Alsawalha, L.; Hijazeen, Z.; Mahrous, H.; Sheikali, S.; Al-Ramini, S.; Maayeh, M.; Dodeen, R.; Farajeh, M.; et al. Prioritizing Zoonotic Diseases Utilizing the One Health Approach: Jordan’s Experience. One Health 2021, 13, 100262. [Google Scholar] [CrossRef]
- Munyua, P.; Bitek, A.; Osoro, E.; Pieracci, E.G.; Muema, J.; Mwatondo, A.; Kungu, M.; Nanyingi, M.; Gharpure, R.; Njenga, K. Prioritization of Zoonotic Diseases in Kenya, 2015. PLoS ONE 2016, 11, e0161576. [Google Scholar]
- Pieracci, E.G.; Hall, A.J.; Gharpure, R.; Haile, A.; Walelign, E.; Deressa, A.; Bahiru, G.; Kibebe, M.; Walke, H.; Belay, E. Prioritizing Zoonotic Diseases in Ethiopia Using a One Health Approach. One Health 2016, 2, 131–135. [Google Scholar]
- Salyer, S.J.; Silver, R.; Simone, K.; Behravesh, C.B. Prioritizing Zoonoses for Global Health Capacity Building—Themes from One Health Zoonotic Disease Workshops in 7 Countries, 2014–2016. Emerg. Infect. Dis. 2017, 23, S55. [Google Scholar] [PubMed]
- Sekamatte, M.; Krishnasamy, V.; Bulage, L.; Kihembo, C.; Nantima, N.; Monje, F.; Ndumu, D.; Sentumbwe, J.; Mbolanyi, B.; Aruho, R. Multisectoral Prioritization of Zoonotic Diseases in Uganda, 2017: A One Health Perspective. PLoS ONE 2018, 13, e0196799. [Google Scholar]
- Wang, X.; Rainey, J.J.; Goryoka, G.W.; Liang, Z.; Wu, S.; Wen, L.; Duan, R.; Qin, S.; Huang, H.; Kharod, G. Using a One Health Approach to Prioritize Zoonotic Diseases in China, 2019. PLoS ONE 2021, 16, e0259706. [Google Scholar]
- Yasobant, S.; Saxena, D.; Bruchhausen, W.; Memon, F.Z.; Falkenberg, T. Multi-Sectoral Prioritization of Zoonotic Diseases: One Health Perspective from Ahmedabad, India. PLoS ONE 2019, 14, e0220152. [Google Scholar]
- Hongoh, V.; Michel, P.; Gosselin, P.; Samoura, K.; Ravel, A.; Campagna, C.; Cissé, H.D.; Waaub, J.-P. Multi-Stakeholder Decision Aid for Improved Prioritization of the Public Health Impact of Climate Sensitive Infectious Diseases. Int. J. Environ. Res. Public Health 2016, 13, 419. [Google Scholar] [CrossRef]
- Otten, A.; Fazil, A.; Chemeris, A.; Breadner, P.; Ng, V. Prioritization of Vector-Borne Diseases in Canada under Current Climate and Projected Climate Change. Microb. Risk Anal. 2020, 14, 100089. [Google Scholar] [CrossRef]
- Hussey, L.K.; Arku, G. Prioritizing Climate-Sensitive Infectious Diseases under a Changing Climate in Ghana: A Multicriteria Evaluation Analysis Approach. Reg. Environ. Change 2020, 20, 2. [Google Scholar] [CrossRef]
- IPCC. Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Core Writing Team, Pachauri, R.K., Meyer, L.A., Eds.; IPCC: Geneva, Switzerland, 2014; 151p. [Google Scholar]
- Mora, C.; Spirandelli, D.; Franklin, E.C.; Lynham, J.; Kantar, M.B.; Miles, W.; Smith, C.Z.; Freel, K.; Moy, J.; Louis, L.V.; et al. Broad Threat to Humanity from Cumulative Climate Hazards Intensified by Greenhouse Gas Emissions. Nat. Clim. Change 2018, 8, 1062–1071. [Google Scholar] [CrossRef]
- Baker, R.E.; Mahmud, A.S.; Miller, I.F.; Rajeev, M.; Rasambainarivo, F.; Rice, B.L.; Takahashi, S.; Tatem, A.J.; Wagner, C.E.; Wang, L.-F.; et al. Infectious Disease in an Era of Global Change. Nat. Rev. Microbiol. 2022, 20, 193–205. [Google Scholar] [CrossRef] [PubMed]
- Patz, J.A.; Campbell-Lendrum, D.; Holloway, T.; Foley, J.A. Impact of Regional Climate Change on Human Health. Nature 2005, 438, 310–317. [Google Scholar] [CrossRef]
- Wu, X.; Lu, Y.; Zhou, S.; Chen, L.; Xu, B. Impact of Climate Change on Human Infectious Diseases: Empirical Evidence and Human Adaptation. Environ. Int. 2016, 86, 14–23. [Google Scholar] [CrossRef]
- Rupasinghe, R.; Chomel, B.B.; Martínez-López, B. Climate Change and Zoonoses: A Review of the Current Status, Knowledge Gaps, and Future Trends. Acta Trop. 2022, 226, 106225. [Google Scholar] [CrossRef]
- Ihekweazu, C.; Michael, C.A.; Nguku, P.M.; Waziri, N.E.; Habib, A.G.; Muturi, M.; Olufemi, A.; Dzikwi-Emennaa, A.A.; Balogun, M.S.; Visa, T.I. Prioritization of Zoonotic Diseases of Public Health Significance in Nigeria Using the One-Health Approach. One Health 2021, 13, 100257. [Google Scholar]
- Balabanova, Y.; Gilsdorf, A.; Buda, S.; Burger, R.; Eckmanns, T.; Gärtner, B.; Groß, U.; Haas, W.; Hamouda, O.; Hübner, J. Communicable Diseases Prioritized for Surveillance and Epidemiological Research: Results of a Standardized Prioritization Procedure in Germany, 2011. PLoS ONE 2011, 6, e25691. [Google Scholar]
- Doherty, J.-A. Establishing Priorities for National Communicable Disease Surveillance. Can. J. Infect. Dis. Med. Microbiol. 2000, 11, 21–24. [Google Scholar]
- Humblet, M.-F.; Vandeputte, S.; Albert, A.; Gosset, C.; Kirschvink, N.; Haubruge, E.; Fecher-Bourgeois, F.; Pastoret, P.-P.; Saegerman, C. Multidisciplinary and Evidence-Based Method for Prioritizing Diseases of Food-Producing Animals and Zoonoses. Emerg. Infect. Dis. 2012, 18, e1. [Google Scholar] [PubMed]
- McKenzie, J.; Simpson, H.; Langstaff, I. Development of Methodology to Prioritise Wildlife Pathogens for Surveillance. Prev. Vet. Med. 2007, 81, 194–210. [Google Scholar] [CrossRef]
- Eby, P.; Peel, A.J.; Hoegh, A.; Madden, W.; Giles, J.R.; Hudson, P.J.; Plowright, R.K. Pathogen Spillover Driven by Rapid Changes in Bat Ecology. Nature 2023, 613, 340–344. [Google Scholar] [CrossRef]
- Bloom, D.E.; Cadarette, D. Infectious Disease Threats in the Twenty-First Century: Strengthening the Global Response. Front. Immunol. 2019, 10, 549. [Google Scholar]
- Patz, J.A.; Frumkin, H.; Holloway, T.; Vimont, D.J.; Haines, A. Climate Change: Challenges and Opportunities for Global Health. JAMA 2014, 312, 1565–1580. [Google Scholar] [CrossRef] [PubMed]
- Semenza, J.C.; Paz, S. Climate Change and Infectious Disease in Europe: Impact, Projection and Adaptation. Lancet Reg. Health Eur. 2021, 9, 100230. [Google Scholar] [CrossRef]
- Eliot, S. Guidelines for Conducting a Focus Group. Am. J. Reserchers 2005, 1, 1–10. [Google Scholar]
- Saaty, T.L. A Scaling Method for Priorities in Hierarchical Structures. J. Math. Psychol. 1977, 15, 234–281. [Google Scholar] [CrossRef]
- Caha, J.; Drážná, A. Information about FuzzyAHP Package for R, version 0.9.5; CRAN: Perth, ON, Canada, 2019.
- Saaty, T.L. The Analytic Hierarchy Process; McGraw-Hill: New York, NY, USA, 1980. [Google Scholar]
- van Laarhoven, P.J.M.; Pedrycz, W. A Fuzzy Extension of Saaty’s Priority Theory. Fuzzy Sets Syst. 1983, 11, 229–241. [Google Scholar] [CrossRef]
- Buckley, J.J. Fuzzy Hierarchical Analysis. Fuzzy Sets Syst. 1985, 17, 233–247. [Google Scholar] [CrossRef]
- Saaty, T.L. Decision Making for Leaders: The Analytic Hierarchy Process for Decisions in a Complex World; RWS Publications: Pittsburgh, PA, USA, 2001; ISBN 1-888603-13-5. [Google Scholar]
- Allen, T.; Murray, K.A.; Zambrana-Torrelio, C.; Morse, S.S.; Rondinini, C.; Di Marco, M.; Breit, N.; Olival, K.J.; Daszak, P. Global Hotspots and Correlates of Emerging Zoonotic Diseases. Nat. Commun. 2017, 8, 1124. [Google Scholar] [CrossRef]
- Mills James, N.; Gage Kenneth, L.; Khan Ali, S. Potential Influence of Climate Change on Vector-Borne and Zoonotic Diseases: A Review and Proposed Research Plan. Environ. Health Perspect. 2010, 118, 1507–1514. [Google Scholar] [CrossRef]
- Gubler, D.J.; Reiter, P.; Ebi, K.L.; Yap, W.; Nasci, R.; Patz, J.A. Climate Variability and Change in the United States: Potential Impacts on Vector- and Rodent-Borne Diseases. Environ. Health Perspect. 2001, 109, 223–233. [Google Scholar] [CrossRef]
- Nielebeck, C.; Kim, S.H.; Dedmon, L.; Pangilinan, M.; Quan, J.; Ota, W.; Monzón, J.D. A Novel Laboratory Method to Simulate Climatic Stress with Successful Application to Experiments with Medically Relevant Ticks. PLoS ONE 2022, 17, e0275314. [Google Scholar] [CrossRef]
- Randolph, S.E. Tick Ecology: Processes and Patterns behind the Epidemiological Risk Posed by Ixodid Ticks as Vectors. Parasitology 2004, 129, S37–S65. [Google Scholar] [CrossRef] [PubMed]
- Gloria-Soria, A.; Armstrong, P.M.; Powell, J.R.; Turner, P.E. Infection Rate of Aedes Aegypti Mosquitoes with Dengue Virus Depends on the Interaction between Temperature and Mosquito Genotype. Proc. R. Soc. B Biol. Sci. 2017, 284, 20171506. [Google Scholar] [CrossRef]
- Patz, J.A.; Olson, S.H. Climate Change and Health: Global to Local Influences on Disease Risk. Ann. Trop. Med. Parasitol. 2006, 100, 535–549. [Google Scholar] [PubMed]
- Liu-Helmersson, J.; Stenlund, H.; Wilder-Smith, A.; Rocklöv, J. Vectorial Capacity of Aedes Aegypti: Effects of Temperature and Implications for Global Dengue Epidemic Potential. PLoS ONE 2014, 9, e89783. [Google Scholar] [CrossRef]
- Kamiya, T.; Greischar, M.A.; Wadhawan, K.; Gilbert, B.; Paaijmans, K.; Mideo, N. Temperature-Dependent Variation in the Extrinsic Incubation Period Elevates the Risk of Vector-Borne Disease Emergence. Epidemics 2020, 30, 100382. [Google Scholar] [CrossRef]
- Gage, K.L.; Kosoy, M.Y. Natural History of Plague: Perspectives from More than a Century of Research. Annu. Rev. Entomol. 2005, 50, 505–528. [Google Scholar] [CrossRef]
- Jarrett, C.O.; Deak, E.; Isherwood, K.E.; Oyston, P.C.; Fischer, E.R.; Whitney, A.R.; Kobayashi, S.D.; DeLeo, F.R.; Hinnebusch, B.J. Transmission of Yersinia Pestis from an Infectious Biofilm in the Flea Vector. J. Infect. Dis. 2004, 190, 782–792. [Google Scholar]
- Braam, D.H. Zoonoses in the Margins: Environmental Displacement and Health Outcomes in the Indus Delta. Int. J. Equity Health 2022, 21, 189. [Google Scholar] [CrossRef] [PubMed]
- Bett, B.; Said, M.Y.; Sang, R.; Bukachi, S.; Wanyoike, S.; Kifugo, S.C.; Otieno, F.; Ontiri, E.; Njeru, I.; Lindahl, J.; et al. Effects of Flood Irrigation on the Risk of Selected Zoonotic Pathogens in an Arid and Semi-Arid Area in the Eastern Kenya. PLoS ONE 2017, 12, e0172626. [Google Scholar] [CrossRef]
- Beldomenico, P.M.; Begon, M. Disease Spread, Susceptibility and Infection Intensity: Vicious Circles? Trends Ecol. Evol. 2010, 25, 21–27. [Google Scholar] [CrossRef] [PubMed]
- Rohr, J.R.; Barrett, C.B.; Civitello, D.J.; Craft, M.E.; Delius, B.; DeLeo, G.A.; Hudson, P.J.; Jouanard, N.; Nguyen, K.H.; Ostfeld, R.S.; et al. Emerging Human Infectious Diseases and the Links to Global Food Production. Nat. Sustain. 2019, 2, 445–456. [Google Scholar] [CrossRef]
- Yasobant, S.; Patil, S.; Bhavsar, P.; Saxena, D. Risk Prioritization Tools for Emerging and Epidemic-Prone Diseases: A One Health Scoping Review. Int. J. One Health 2024, 10, 74–81. [Google Scholar] [CrossRef]
- Mihaljevic, J.R.; Chief, C.; Malik, M.; Oshinubi, K.; Doerry, E.; Gel, E.; Hepp, C.; Lant, T.; Mehrotra, S.; Sabo, S. An Inaugural Forum on Epidemiological Modeling for Public Health Stakeholders in Arizona. Front. Public Health 2024, 12, 1357908. [Google Scholar]
Linguistic Scale | Intensity of Importance |
---|---|
Extremely less important | 1/9 |
Strongly less important | 1/7 |
Moderately less important | 1/5 |
Slightly less important | 1/3 |
Equally important | 1 |
Slightly more important | 3 |
Moderately more important | 5 |
Strongly more important | 7 |
Extremely more important | 9 |
Criteria | Weight | Fuzzy Weights | Defuzzified | Normalized Defuzzified |
---|---|---|---|---|
Warming | 0.10 | 0.07, 0.10, 0.15 | 0.11 | 0.10 |
Flooding, storms, and cyclones | 0.65 | 0.49, 0.65, 0.86 | 0.67 | 0.65 |
Drought | 0.19 | 0.13, 0.19, 0.27 | 0.20 | 0.19 |
Sea level rise | 0.06 | 0.04, 0.06, 0.09 | 0.06 | 0.06 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Castonguay, A.C.; Chowdhury, S.; Shanta, I.S.; Schrijver, B.; Schrijver, R.; Wang, S.; Soares Magalhães, R.J. A Generalizable Prioritization Protocol for Climate-Sensitive Zoonotic Diseases. Trop. Med. Infect. Dis. 2024, 9, 188. https://doi.org/10.3390/tropicalmed9080188
Castonguay AC, Chowdhury S, Shanta IS, Schrijver B, Schrijver R, Wang S, Soares Magalhães RJ. A Generalizable Prioritization Protocol for Climate-Sensitive Zoonotic Diseases. Tropical Medicine and Infectious Disease. 2024; 9(8):188. https://doi.org/10.3390/tropicalmed9080188
Chicago/Turabian StyleCastonguay, Adam C., Sukanta Chowdhury, Ireen Sultana Shanta, Bente Schrijver, Remco Schrijver, Shiyong Wang, and Ricardo J. Soares Magalhães. 2024. "A Generalizable Prioritization Protocol for Climate-Sensitive Zoonotic Diseases" Tropical Medicine and Infectious Disease 9, no. 8: 188. https://doi.org/10.3390/tropicalmed9080188
APA StyleCastonguay, A. C., Chowdhury, S., Shanta, I. S., Schrijver, B., Schrijver, R., Wang, S., & Soares Magalhães, R. J. (2024). A Generalizable Prioritization Protocol for Climate-Sensitive Zoonotic Diseases. Tropical Medicine and Infectious Disease, 9(8), 188. https://doi.org/10.3390/tropicalmed9080188