Do Babesia microti Hosts Share a Blood Group System Gene Ortholog, Which Could Generate an Erythrocyte Antigen That Is Essential for Parasite Invasion?
Abstract
:1. Introduction
2. Materials and Methods
2.1. hBG System Genes and Orthologs
2.2. Literature Review
2.3. Animal Taxonomy and Total Number of Genes in NCBI
3. Results
Species | Genbank Common Name | NCBI BLAST Name | NCBI Gene Entries | # Studies Showing Infection * |
---|---|---|---|---|
Peromyscus leucopus | white-footed mouse | rodents | 32,259 | 5 [7,8,45,46,53] |
Sorex araneus | European shrew | insectivores | 28,675 | 5 [37,54,55,56,57] |
Myodes glareolus | bank vole | rodents | 30,720 | 5 [37,58,59,60,61] |
Mesocricetus auratus | golden hamster | rodents | 36,157 | 5 [62,63,64,65,66] |
Mus musculus | house mouse | rodents | 107,992 | 5 [67,68,69,70,71] |
Meriones unguiculatus | Mongolian gerbil | rodents | 34,732 | 5 [72,73,74,75,76] |
Rattus norvegicus | Norway rat | rodents | 47,827 | 5 [67,70,77,78,79] |
Felis catus | domestic cat | carnivores | 39,395 | 5 [51,80,81,82,83] |
Macaca mulatta | Rhesus monkey | primates | 40,413 | 4 [65,84,85,86] |
Camelus dromedarius | Arabian camel | even-toed ungulates | 37,476 | 3 [87,88,89] |
Apodemus sylvaticus | European woodmouse | rodents | 34,663 | 3 [58,59,60] |
Canis lupus familiaris | dog | carnivores | 50,757 | 3 [35,51,52] |
Arvicola amphibius | Eurasian water vole | rodents | 28,375 | 2 [90,91] |
Peromyscus maniculatus bairdii | prairie deer mouse | rodents | 36,461 | 2 [45,46] ^ |
Macaca fascicularis | crab-eating macaque | primates | 35,716 | 2 [84,92] |
Cricetulus griseus | Chinese hamster | rodents | 34,824 | 2 [38,39] |
Sciurus carolinensis | gray squirrel | rodents | 37,368 | 2 [7,8] |
Papio anubis | olive baboon | primates | 39,330 | 2 [36,93] |
Rattus rattus | black rat | rodents | 32,124 | 2 [94,95] |
Panthera leo | lion | carnivores | 32,109 | 2 [80,96] |
Mus caroli | Ryukyu mouse | rodents | 32,457 | 2 [79,94] |
Microtus ochrogaster | prairie vole | rodents | 26,434 | 1 [97] |
Ursus americanus | American black bear | carnivores | 28,897 | 1 [98] |
Mus pahari | shrew mouse | rodents | 29,520 | 1 [94] |
Microtus fortis | reed vole | rodents | 29,738 | 1 [99] |
Meles meles | Eurasian badger | carnivores | 31,234 | 1 [100] |
Panthera tigris | tiger | carnivores | 33,598 | 1 [80] |
Vulpes vulpes | red fox | carnivores | 29,062 | 1 [101] |
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Yang, Y.; Christie, J.; Köster, L.; Du, A.; Yao, C. Emerging Human Babesiosis with “Ground Zero” in North America. Microorganisms 2021, 9, 440. [Google Scholar] [CrossRef] [PubMed]
- Gray, E.B.; Herwaldt, B.L. Babesiosis Surveillance—United States, 2011–2015. MMWR. Surveill. Summ. 2019, 68, 1–11. [Google Scholar] [CrossRef]
- Holbrook, N.R.; Klontz, E.H.; Adams, G.C.; Schnittman, S.R.; Issa, N.C.; Bond, S.A.; Branda, J.A.; Lemieux, J.E. Babesia microti Variant with Multiple Resistance Mutations Detected in an Immunocompromised Patient Receiving Atovaquone Prophylaxis. Open Forum Infect. Dis. 2023, 10, ofad097. [Google Scholar] [CrossRef] [PubMed]
- Marcos, L.A.; Wormser, G.P. Relapsing Babesiosis With Molecular Evidence of Resistance to Certain Antimicrobials Commonly Used to Treat Babesia microti Infections. Open Forum Infect. Dis. 2023, 10, ofad391. [Google Scholar] [CrossRef] [PubMed]
- Rogers, R.; Krause, P.J.; Norris, A.M.; Ting, M.H.; Nagami, E.H.; Cilley, B.; Vannier, E. Broad Antimicrobial Resistance in a Case of Relapsing Babesiosis Successfully Treated With Tafenoquine. Clin. Infect. Dis. 2022, 76, 741–744. [Google Scholar] [CrossRef] [PubMed]
- Krause, P.J.; Rogers, R.; Shah, M.K.; Kang, H.; Parsonnet, J.; Kodama, R.; Vannier, E. Tafenoquine for Relapsing Babesiosis: A Case Series. Clin. Infect. Dis. 2024, 79, 130–137. [Google Scholar] [CrossRef]
- Hersh, M.H.; Tibbetts, M.; Strauss, M.; Ostfeld, R.S.; Keesing, F. Reservoir competence of wildlife host species for Babesia microti. Emerg. Infect. Dis. 2012, 18, 1951–1957. [Google Scholar] [CrossRef]
- Hersh, M.H.; Ostfeld, R.S.; McHenry, D.J.; Tibbetts, M.; Brunner, J.L.; Killilea, M.E.; LoGiudice, K.; Schmidt, K.A.; Keesing, F. Co-infection of blacklegged ticks with Babesia microti and Borrelia burgdorferi is higher than expected and acquired from small mammal hosts. PLoS ONE 2014, 9, e99348. [Google Scholar] [CrossRef]
- Jajosky, R.P.; Jajosky, A.N.; Jajosky, P.G. Can exchange transfusions using red blood cells from donors with Southeast Asian ovalocytosis prevent or ameliorate cerebral malaria in patients with multi-drug resistant Plasmodium falciparum? Transfus. Apher. Sci. 2017, 56, 865–866. [Google Scholar] [CrossRef]
- Jajosky, R.P.; Jajosky, A.N.; Jajosky, P.G. Can the Therapeutically-rational Exchange (T-REX) of Glucose-6-phosphate Dehydrogenase Deficient Red Blood Cells Reduce Plasmodium falciparum Malaria Morbidity and Mortality? J. Nepal. Health Res. Counc. 2018, 16, 108. [Google Scholar] [CrossRef]
- Jajosky, R.P.; Jajosky, A.N.; Jajosky, P.G. Can Therapeutically-Rational Exchange (T-REX) of Thalassemic Red Blood Cells Improve the Clinical Course of Plasmodium falciparum Malaria? Eurasian J. Med. 2018, 50, 215–216. [Google Scholar] [CrossRef]
- Jajosky, R.P.; Jajosky, A.N.; Jajosky, P.G. To prevent or ameliorate severe Plasmodium falciparum malaria, why not evaluate the impact of exchange transfusions of sickle cell trait red blood cells? Transfus. Apher. Sci. 2018, 57, 63–64. [Google Scholar] [CrossRef]
- Jajosky, R.P.; Jajosky, A.N.; Jajosky, P.G. Can Exchange Transfusions Using Red Blood Cells from Donors with Hemoglobin E Trait Prevent or Ameliorate Severe Malaria in Patients with Multi-drug Resistant Plasmodium falciparum? Indian J. Hematol. Blood Transfus. 2018, 34, 591–592. [Google Scholar] [CrossRef] [PubMed]
- Jajosky, R.P.; Jajosky, A.N.; Jajosky, P.G. Can therapeutically-rational exchange (T-REX) of type-O red blood cells (RBCs) benefit Plasmodium falciparum malaria patients? Transfus. Apher. Sci. 2019, 58, 344–345. [Google Scholar] [CrossRef] [PubMed]
- Jajosky, R.P.; Jajosky, A.N.; Jajosky, P.G. Therapeutically-rational exchange (T-REX) of Gerbich-negative red blood cells can be evaluated in Papua New Guinea as “a rescue adjunct” for patients with Plasmodium falciparum malaria. Ther. Apher. Dial. 2021, 25, 242–247. [Google Scholar] [CrossRef]
- Jajosky, R.P.; Wu, S.-C.; Jajosky, P.G.; Stowell, S.R. Plasmodium knowlesi (Pk) Malaria: A Review & Proposal of Therapeutically Rational Exchange (T-REX) of Pk-Resistant Red Blood Cells. Trop. Med. Infect. Dis. 2023, 8, 478. [Google Scholar] [CrossRef] [PubMed]
- Jajosky, R.P.; Jajosky, A.N.; Jajosky, P.G. Optimizing exchange transfusion for patients with severe Babesia divergens babesiosis: Therapeutically-Rational Exchange (T-REX) of M antigen-negative and/or S antigen-negative red blood cells should be evaluated now. Transfus. Clin. Biol. 2018, 26, 76–79. [Google Scholar] [CrossRef] [PubMed]
- WHO. World Malaria Report 2023; WHO: Geneva, Switzerland, 2023.
- Moorthy, V.; Hamel, M.J.; Smith, P.G. Malaria vaccines for children: And now there are two. Lancet 2024, 403, 504–505. [Google Scholar] [CrossRef]
- Miller, L.H.; Mason, S.J.; Clyde, D.F.; McGinniss, M.H. The resistance factor to Plasmodium vivax in blacks: The Duffy-blood-group genotype, FyFy. N. Engl. J. Med. 1976, 295, 302–304. [Google Scholar] [CrossRef]
- Miller, L.H.; Hudson, D.; Davidhaynes, J. Identification of Plasmodium knowlesi erythrocyte binding proteins. Mol. Biochem. Parasitol. 1988, 31, 217–222. [Google Scholar] [CrossRef]
- Wertheimer, S.P.; Barnwell, J.W. Plasmodium vivax interaction with the human Duffy blood group glycoprotein: Identification of a parasite receptor-like protein. Exp. Parasitol. 1989, 69, 340–350. [Google Scholar] [CrossRef] [PubMed]
- Dickey, T.H.; Tolia, N.H. Designing an effective malaria vaccine targeting Plasmodium vivax Duffy-binding protein. Trends Parasitol. 2023, 39, 850–858. [Google Scholar] [CrossRef] [PubMed]
- Silk, S.E.; Kalinga, W.F.; Salkeld, J.; Mtaka, I.M.; Ahmed, S.; Milando, F.; Diouf, A.; Bundi, C.K.; Balige, N.; Hassan, O.; et al. Blood-stage malaria vaccine candidate RH5.1/Matrix-M in healthy Tanzanian adults and children; an open-label, non-randomised, first-in-human, single-centre, phase 1b trial. Lancet Infect. Dis. 2024. [Google Scholar] [CrossRef]
- Liu, Y.; Hu, G.; Wang, Y.; Ren, W.; Zhao, X.; Ji, F.; Zhu, Y.; Feng, F.; Gong, M.; Ju, X.; et al. Functional and genetic analysis of viral receptor ACE2 orthologs reveals a broad potential host range of SARS-CoV-2. Proc. Natl. Acad. Sci. USA 2021, 118, e2025373118. [Google Scholar] [CrossRef]
- Maurer, K.J.; Quimby, F.W. Chapter 34—Animal Models in Biomedical Research. In Laboratory Animal Medicine, 3rd ed.; Fox, J.G., Anderson, L.C., Otto, G.M., Pritchett-Corning, K.R., Whary, M.T., Eds.; Academic Press: Boston, MA, USA, 2015; pp. 1497–1534. [Google Scholar]
- Wanaguru, M.; Liu, W.; Hahn, B.H.; Rayner, J.C.; Wright, G.J. RH5–Basigin interaction plays a major role in the host tropism of Plasmodium falciparum. Proc. Natl. Acad. Sci. USA 2013, 110, 20735–20740. [Google Scholar] [CrossRef]
- Salzberg, S.L. Open questions: How many genes do we have? BMC Biol. 2018, 16, 94. [Google Scholar] [CrossRef]
- Borggraefe, I.; Yuan, J.; Telford, S.R., 3rd; Menon, S.; Hunter, R.; Shah, S.; Spielman, A.; Gelfand, J.A.; Wortis, H.H.; Vannier, E. Babesia microti primarily invades mature erythrocytes in mice. Infect. Immun. 2006, 74, 3204–3212. [Google Scholar] [CrossRef]
- ISBT. Table of Blood Group Systems 2023. Available online: https://www.isbtweb.org/resource/tableofbloodgroupsystems.html (accessed on 1 January 2023).
- NCBI. NCBI Gene 2024. Available online: https://www.ncbi.nlm.nih.gov/gene (accessed on 1 January 2023).
- NCBI. Command-Line Tools 2024. Available online: https://www.ncbi.nlm.nih.gov/datasets/docs/v2/download-and-install/ (accessed on 1 January 2024).
- NLM. How Are Orthologs Calculated? 2024. Available online: https://www.ncbi.nlm.nih.gov/kis/info/how-are-orthologs-calculated/#:~:text=With%20a%20few%20exceptions%2C%20ortholog,based%20on%20protein%20sequence%20similarity (accessed on 1 January 2023).
- Google. Google Scholar 2024. Available online: https://scholar.google.com/ (accessed on 1 January 2023).
- Ohmori, T.; Uetsuka, K.; Nunoya, T. Experimental infection of dogs with Babesia microti. J. Protozool. Res. 2011, 21, 78–84. [Google Scholar] [CrossRef]
- Maamun, J.M.; Suleman, M.A.; Akinyi, M.; Ozwara, H.; Kariuki, T.; Carlsson, H.-E. Prevalence of Babesia microti in free-ranging baboons and african green monkeys. J. Parasitol. 2011, 97, 63–67. [Google Scholar] [CrossRef]
- Samokhvalov, M.V.; Kovalevskii, Y.V.; Korenberg, E.I.; Morozov, A.V.; Kuzikov, I.V.; Sheftel’, B.I. Small mammals as potential reservoir hosts of Babesia microti in the Middle Urals. Biol. Bull. 2010, 37, 748–752. [Google Scholar] [CrossRef]
- Ike, K.; Komatsu, T.; Murakami, T.; Kato, Y.; Takahashi, M.; Uchida, Y.; Imai, S. High susceptibility of Djungarian hamsters (Phodopus sungorus) to the infection with Babesia microti supported by hemodynamics. J. Veter. Med. Sci. 2005, 67, 515–520. [Google Scholar] [CrossRef] [PubMed]
- Ike, K.; Murakami, T.; Komatsu, T.; Uchida, Y.; Imai, S. Susceptibility of Chinese hamsters (Cricetulus griseus) to the infection of Babesia microti. J. Veter. Med. Sci. 2005, 67, 333–336. [Google Scholar] [CrossRef]
- Bonnet, S.I.; Nadal, C. Experimental Infection of Ticks: An Essential Tool for the Analysis of Babesia Species Biology and Transmission. Pathogens 2021, 10, 1403. [Google Scholar] [CrossRef] [PubMed]
- Kocan, K.M.; de la Fuente, J.; Coburn, L.A. Insights into the development of Ixodes scapularis: A resource for research on a medically important tick species. Parasites Vectors 2015, 8, 592. [Google Scholar] [CrossRef]
- Goethert, H.K. What Babesia microti Is Now. Pathogens 2021, 10, 1168. [Google Scholar] [CrossRef]
- NCBI. Taxonomy 2024. Available online: https://www.ncbi.nlm.nih.gov/taxonomy (accessed on 1 January 2024).
- NCBI. Datasets 2024. Available online: https://www.ncbi.nlm.nih.gov/datasets/ (accessed on 1 January 2024).
- Rocco, J.M.; Regan, K.M.; Larkin, J.L.; Eichelberger, C.; Wisgo, J.; Nealen, P.M.; Irani, V.R. Higher Prevalence of Babesia microti than Borrelia burgdorferi in Small Mammal Species in Central Pennsylvania, United States. Vector-Borne Zoonotic Dis. 2020, 20, 151–154. [Google Scholar] [CrossRef]
- Larson, R.T.; Bron, G.M.; Lee, X.; Zembsch, T.E.; Siy, P.N.; Paskewitz, S.M. Peromyscus maniculatus (Rodentia: Cricetidae): An overlooked reservoir of tick-borne pathogens in the Midwest, USA? Ecosphere 2021, 12, e03831. [Google Scholar] [CrossRef]
- Burbrink, F.T.; Crother, B.I.; Murray, C.M.; Smith, B.T.; Ruane, S.; Myers, E.A.; Pyron, R.A. Empirical and philosophical problems with the subspecies rank. Ecol. Evol. 2022, 12, e9069. [Google Scholar] [CrossRef] [PubMed]
- Fuller, L. Continuous in vitro propagation of Babesia microti. Infect. Immun. 2024, 92, e0048123. [Google Scholar] [CrossRef]
- Piesman, J.; Spielman, A.; Etkind, P.; Ruebush, T.K., 2nd; Juranek, D.D. Role of deer in the epizootiology of Babesia microti in Massachusetts, USA. J. Med. Entomol. 1979, 15, 537–540. [Google Scholar] [CrossRef]
- Wu, J.; Cao, J.; Zhou, Y.; Zhang, H.; Gong, H.; Zhou, J. Evaluation on Infectivity of Babesia microti to Domestic Animals and Ticks Outside the Ixodes Genus. Front. Microbiol. 2017, 8, 1915. [Google Scholar] [CrossRef] [PubMed]
- Akram, I.N.; Parveen, T.; Abrar, A.; Mehmood, A.K.; Iqbal, F. Molecular detection of Babesia microti in dogs and cat blood samples collected from Punjab (Pakistan). Trop. Biomed. 2019, 36, 304–309. [Google Scholar]
- Gabrielli, S.; Otašević, S.; Ignjatović, A.; Savić, S.; Fraulo, M.; Arsić-Arsenijević, V.; Momčilović, S.; Cancrini, G. Canine Babesioses in Noninvestigated Areas of Serbia. Vector-Borne Zoonotic Dis. 2015, 15, 535–538. [Google Scholar] [CrossRef]
- Tufts, D.M.; Diuk-Wasser, M.A. Transplacental transmission of tick-borne Babesia microti in its natural host Peromyscus leucopus. Parasites Vectors 2018, 11, 286. [Google Scholar] [CrossRef] [PubMed]
- Ferrari, G.; Girardi, M.; Cagnacci, F.; Devineau, O.; Tagliapietra, V. First Record of Hepatozoon spp. in Alpine Wild Rodents: Implications and Perspectives for Transmission Dynamics across the Food Web. Microorganisms 2022, 10, 712. [Google Scholar] [CrossRef]
- Bown, K.J.; Lambin, X.; Telford, G.; Heyder-Bruckner, D.; Ogden, N.H.; Birtles, R.J. The common shrew (Sorex araneus): A neglected host of tick-borne infections? Vector-Borne Zoonotic Dis. 2011, 11, 947–953. [Google Scholar] [CrossRef] [PubMed]
- Rar, V.A.; Epikhina, T.I.; Livanova, N.N.; Panov, V.V. Genetic diversity of Babesia in Ixodes persulcatus and small mammals from North Ural and West Siberia, Russia. Parasitology 2010, 138, 175–182. [Google Scholar] [CrossRef]
- Rar, V.A.; Epikhina, T.I.; Livanova, N.N.; Panov, V.V.; Pukhovskaya, N.M.; Vysochina, N.P.; Ivanov, L.I. Detection of Babesia DNA in small mammals and ixodid ticks in the North Urals, Western Siberia, and Far East of Russia. Mol. Genet. Microbiol. Virol. 2010, 25, 118–123. [Google Scholar] [CrossRef]
- Usluca, S.; Celebi, B.; Karasartova, D.; Gureser, A.S.; Matur, F.; Oktem, M.A.; Sozen, M.; Karatas, A.; Babur, C.; Mumcuoglu, K.Y.; et al. Molecular Survey of Babesia microti (Aconoidasida: Piroplasmida) in Wild Rodents in Turkey. J. Med. Entomol. 2019, 56, 1605–1609. [Google Scholar] [CrossRef]
- Zintl, A.; McManus, A.; Galan, M.; Diquattro, M.; Giuffredi, L.; Charbonnel, N.; Gray, J.; Holland, C.; Stuart, P. Presence and identity of Babesia microti in Ireland. Ticks Tick-Borne Dis. 2023, 14, 102221. [Google Scholar] [CrossRef]
- Azagi, T.; Jaarsma, R.I.; van Leeuwen, A.D.; Fonville, M.; Maas, M.; Franssen, F.F.J.; Kik, M.; Rijks, J.M.; Montizaan, M.G.; Groenevelt, M.; et al. Circulation of Babesia Species and Their Exposure to Humans through Ixodes ricinus. Pathogens 2021, 10, 386. [Google Scholar] [CrossRef] [PubMed]
- Kallio, E.R.; Begon, M.; Birtles, R.J.; Bown, K.J.; Koskela, E.; Mappes, T.; Watts, P.C. First Report of Anaplasma phagocytophilum and Babesia microti in Rodents in Finland. Vector-Borne Zoonotic Dis. 2014, 14, 389–393. [Google Scholar] [CrossRef] [PubMed]
- Moritz, E.D.; Winton, C.S.; Tonnetti, L.; Townsend, R.L.; Berardi, V.P.; Hewins, M.-E.; Weeks, K.E.; Dodd, R.Y.; Stramer, S.L. Screening for Babesia microti in the U.S. Blood Supply. N. Engl. J. Med. 2016, 375, 2236–2245. [Google Scholar] [CrossRef]
- Torianyk, I.I. Biological method for babesiosis detection: The unified version in vivo. Wiad Lek 2021, 74, 268–272. [Google Scholar] [CrossRef]
- Zamoto, A.; Tsuji, M.; Kawabuchi, T.; Wei, Q.; Asakawa, M.; Ishihara, C. US-Type Babesia microti isolated from small wild mammals in Eastern Hokkaido, Japan. J. Veter. Med. Sci. 2004, 66, 919–926. [Google Scholar] [CrossRef] [PubMed]
- Gumber, S.; Nascimento, F.S.; Rogers, K.A.; Bishop, H.S.; Rivera, H.N.; Xayavong, M.V.; Devare, S.G.; Schochetman, G.; Amancha, P.K.; Qvarnstrom, Y.; et al. Experimental transfusion-induced Babesia microti infection: Dynamics of parasitemia and immune responses in a rhesus macaque model. Transfusion 2016, 56, 1508–1519. [Google Scholar] [CrossRef] [PubMed]
- Lemieux, J.E.; Tran, A.D.; Freimark, L.; Schaffner, S.F.; Goethert, H.; Andersen, K.G.; Bazner, S.; Li, A.; McGrath, G.; Sloan, L.; et al. A global map of genetic diversity in Babesia microti reveals strong population structure and identifies variants associated with clinical relapse. Nat. Microbiol. 2016, 1, 16079. [Google Scholar] [CrossRef]
- Zeng, Z.; Zhou, S.; Xu, G.; Liu, W.; Han, T.; Liu, J.; Wang, J.; Deng, Y.; Xiao, F. Prevalence and phylogenetic analysis of Babesia parasites in reservoir host species in Fujian province, Southeast China. Zoonoses Public Health 2022, 69, 915–924. [Google Scholar] [CrossRef]
- Tołkacz, K.; Rodo, A.; Wdowiarska, A.; Bajer, A.; Bednarska, M. Impact of Babesia microti infection on the initiation and course of pregnancy in BALB/c mice. Parasites Vectors 2021, 14, 132. [Google Scholar] [CrossRef]
- Cai, Y.; Chen, S.; Yang, C.; Zhao, Z.; Li, H.; Lu, Y.; Ai, L.; Chu, Y.; Shen, H.; Chen, J. Dynamics of routine blood tests in BALB/c mice with Babesia microti infection. Zhongguo Xue Xi Chong Bing Fang Zhi Za Zhi 2018, 30, 300–306. [Google Scholar] [CrossRef]
- Wei, C.-Y.; Wang, X.-M.; Wang, Z.-S.; Wang, Z.-H.; Guan, Z.-Z.; Zhang, L.-H.; Dou, X.-F.; Wang, H. High prevalence of Babesia microti in small mammals in Beijing. Infect. Dis. Poverty 2020, 9, 155. [Google Scholar] [CrossRef] [PubMed]
- Shen, L.; Wang, C.; Wang, R.; Hu, X.; Liao, S.; Liu, W.; Du, A.; Ji, S.; Galon, E.M.; Li, H.; et al. Serum metabolomic profiles in BALB/c mice induced by Babesia microti infection. Front. Cell. Infect. Microbiol. 2023, 13, 1179967. [Google Scholar] [CrossRef]
- Cornillot, E.; Dassouli, A.; Garg, A.; Pachikara, N.; Randazzo, S.; Depoix, D.; Carcy, B.; Delbecq, S.; Frutos, R.; Silva, J.C.; et al. Whole genome mapping and re-organization of the nuclear and mitochondrial genomes of Babesia microti isolates. PLoS ONE 2013, 8, e72657. [Google Scholar] [CrossRef] [PubMed]
- Gray, J.; von Stedingk, L.V.; Gürtelschmid, M.; Granström, M. Transmission studies of Babesia microti in Ixodes ricinus ticks and gerbils. J. Clin. Microbiol. 2002, 40, 1259–1263. [Google Scholar] [CrossRef] [PubMed]
- Pichon, B.; Egan, D.; Rogers, M.; Gray, J. Detection and identification of pathogens and host DNA in unfed host-seeking Ixodes ricinus L. (Acari: Ixodidae). J. Med. Entomol. 2003, 40, 723–731. [Google Scholar] [CrossRef]
- Gray, J.S.; Pudney, M. Activity of atovaquone against Babesia microti in the Mongolian gerbil, Meriones unguiculatus. J. Parasitol. 1999, 85, 723. [Google Scholar] [CrossRef]
- Ruebush, T.K.; Contacos, P.G.; Steck, E.A. Chemotherapy of Babesia microti infections in Mongolian Jirds. Antimicrob. Agents Chemother. 1980, 18, 289–291. [Google Scholar] [CrossRef]
- Zhao, X.-G.; Li, H.; Sun, Y.; Zhang, Y.-Y.; Jiang, J.-F.; Liu, W.; Cao, W.-C. Dual infection with Anaplasma phagocytophilum and Babesia microti in a Rattus norvegicus, China. Ticks Tick-Borne Dis. 2013, 4, 399–402. [Google Scholar] [CrossRef]
- de Cock, M.P.; de Vries, A.; Fonville, M.; Esser, H.J.; Mehl, C.; Ulrich, R.G.; Joeres, M.; Hoffmann, D.; Eisenberg, T.; Schmidt, K.; et al. Increased rat-borne zoonotic disease hazard in greener urban areas. Sci. Total Environ. 2023, 896, 165069. [Google Scholar] [CrossRef]
- Karnchanabanthoeng, A.; Morand, S.; Jittapalapong, S.; Carcy, B. Babesia Occurrence in Rodents in Relation to Landscapes of Mainland Southeast Asia. Vector-Borne Zoonotic Dis. 2018, 18, 121–130. [Google Scholar] [CrossRef]
- Bosman, A.-M. Detection of Babesia Species in Domestic and Wild Southern African Felids by Means of DNA Probes 2010. Available online: https://repository.up.ac.za/bitstream/handle/2263/23149/dissertation.pdf?sequence=1&isAllowed=y (accessed on 1 January 2023).
- Spada, E.; Proverbio, D.; Galluzzo, P.; Perego, R.; De Giorgi, G.B.; Roggero, N.; Caracappa, S. Frequency of Piroplasms Babesia microti and Cytauxzoon felis in Stray Cats from Northern Italy. BioMed Res. Int. 2014, 2014, 943754. [Google Scholar] [CrossRef] [PubMed]
- Bosman, A.-M.; Penzhorn, B.L.; Brayton, K.A.; Schoeman, T.; Oosthuizen, M.C. A novel Babesia sp. associated with clinical signs of babesiosis in domestic cats in South Africa. Parasites Vectors 2019, 12, 138. [Google Scholar] [CrossRef]
- Muz, M.N.; Erat, S.; Mumcuoglu, K.Y. Protozoan and Microbial Pathogens of House Cats in the Province of Tekirdag in Western Turkey. Pathogens 2021, 10, 1114. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.Y.; Yang, Y.C.; Chen, Z.P.; Shi, Y.L. Infection of Plasmodium knowlesi and Babesia microti in farmed monkeys in Guangxi. Chin. J. Parasitol. Parasit. Dis. 2019, 37, 494–496. [Google Scholar]
- van Duivenvoorde, L.M.; der Wel, A.V.-V.; van der Werff, N.M.; Braskamp, G.; Remarque, E.J.; Kondova, I.; Kocken, C.H.M.; Thomas, A.W. Suppression of Plasmodium cynomolgi in Rhesus Macaques by Coinfection with Babesia microti. Infect. Immun. 2010, 78, 1032–1039. [Google Scholar] [CrossRef]
- Ruebush, T.K.; Warren, M.; Spielman, A.; Collins, W.E.; Piesman, J. Tick transmission of Babesia microti to rhesus monkeys (Macaca mulatta). Am. J. Trop. Med. Hyg. 1981, 30, 555–559. [Google Scholar] [CrossRef]
- Rizk, M.A. Molecular detection of Babesia microti in one-humped camel (Camelus dromedarius) in Halayeb and Shalateen, Halayeb, Egypt. Egypt. Veter. Med. Soc. Parasitol. J. (EVMSPJ) 2021, 17, 109–119. [Google Scholar] [CrossRef]
- Ashour, R.; Hamza, D.; Kadry, M.; Sabry, M.A. Molecular detection of Babesia microti in dromedary camels in Egypt. Trop. Anim. Health Prod. 2023, 55, 91. [Google Scholar] [CrossRef] [PubMed]
- Amer, M.M.; Galon, E.M.; Soliman, A.M.; Do, T.; Zafar, I.; Ma, Y.; Li, H.; Ji, S.; Mohanta, U.K.; Xuan, X. Molecular detection of tick-borne piroplasmids in camel blood samples collected from Cairo and Giza governorates, Egypt. Acta Trop. 2024, 256, 107252. [Google Scholar] [CrossRef]
- Gelling, M.; Macdonald, D.W.; Telfer, S.; Jones, T.; Bown, K.; Birtles, R.; Mathews, F. Parasites and pathogens in wild populations of water voles (Arvicola amphibius) in the UK. Eur. J. Wildl. Res. 2011, 58, 615–619. [Google Scholar] [CrossRef]
- Mackenzie, L.S.; Lambin, X.; Bryce, E.; Davies, C.L.; Hassall, R.; Shati, A.A.M.; Sutherland, C.; Telfer, S.E. Patterns and drivers of vector-borne microparasites in a classic metapopulation. Parasitology 2023, 150, 866–882. [Google Scholar] [CrossRef] [PubMed]
- Lu, Y.-Y.; Peng, H.; Zhu, H.-M.; Li, J.; Xue, S.-L. Investigation of two blood parasitic protozoa infection in farmed Macaca fascicularis in Guangxi Zhuang Autonomous Region. Zhongguo Xue Xi Chong Bing Fang Zhi Za Zhi 2016, 28, 141–145. [Google Scholar] [CrossRef]
- Ezzelarab, M.; Yeh, P.; Wagner, R.; Cooper, D.K.C. Babesia as a complication of immunosuppression following pig-to-baboon heart transplantation. Xenotransplantation 2007, 14, 162–165. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.-R.; Ye, L.; Fan, J.-W.; Li, C.; Tang, F.; Liu, W.; Ren, L.-Z.; Bai, J.-Y. Detection of Kobe-type and Otsu-type Babesia microti in wild rodents in China’s Yunnan province. Epidemiol. Infect. 2017, 145, 2704–2710. [Google Scholar] [CrossRef] [PubMed]
- Zanet, S.; Occhibove, F.; Capizzi, D.; Fratini, S.; Giannini, F.; Hoida, A.D.; Sposimo, P.; Valentini, F.; Ferroglio, E. Zoonotic Microparasites in Invasive Black Rats (Rattus rattus) from Small Islands in Central Italy. Animals 2023, 13, 3279. [Google Scholar] [CrossRef] [PubMed]
- Broughton, H.M. Infectious Diseases of the Felidae: Parasite Communities from Miniature to Massive: Oregon State University. 2017. Available online: https://ir.library.oregonstate.edu/concern/graduate_thesis_or_dissertations/cj82kd043 (accessed on 1 January 2023).
- Burkot, T.R.; Schneider, B.S.; Pieniazek, N.J.; Happ, C.M.; Rutherford, J.S.; Slemenda, S.B.; Hoffmeister, E.; O Maupin, G.; Zeidner, N.S. Babesia microti and Borrelia bissettii transmission by Ixodes spinipalpis ticks among prairie voles, Microtus ochrogaster, in Colorado. Parasitology 2000, 121 Pt 6, 595–599. [Google Scholar] [CrossRef]
- Zolnik, C.P.; Makkay, A.M.; Falco, R.C.; Daniels, T.J. American Black Bears as Hosts of Blacklegged Ticks (Acari: Ixodidae) in the Northeastern United States. J. Med. Entomol. 2015, 52, 1103–1110. [Google Scholar] [CrossRef]
- Fan, D.L.M.; Xu, H.; Hu, M.; Zhang, J.; Sun, Y. The situation of mice and ticks infected by Babesia microti. Chin. J. Hyg. Insect Equip. 2012, 18, 48–50. Available online: https://www.cabidigitallibrary.org/doi/full/10.5555/20123361212 (accessed on 1 January 2023).
- Hong, S.-H.; Kim, H.-J.; Jeong, Y.-I.; Cho, S.-H.; Lee, W.-J.; Kim, J.-T.; Lee, S.-E. Serological and Molecular Detection of Toxoplasma gondii and Babesia microti in the Blood of Rescued Wild Animals in Gangwon-do (Province), Korea. Korean J. Parasitol. 2017, 55, 207–212. [Google Scholar] [CrossRef]
- Karbowiak, G.; Majláthová, V.; Hapunik, J.; Pet’ko, B.; Wita, I. Apicomplexan parasites of red foxes (Vulpes vulpes) in northeastern Poland. Acta Parasitol. 2010, 55, 210–214. [Google Scholar] [CrossRef]
- Jajosky, R.P.; O’bryan, J.; Spichler-Moffarah, A.; Jajosky, P.G.; Krause, P.J.; Tonnetti, L. The impact of ABO and RhD blood types on Babesia microti infection. PLoS Neglected Trop. Dis. 2023, 17, e0011060. [Google Scholar] [CrossRef]
- Baneth, G.; Cardoso, L.; Brilhante-Simões, P.; Schnittger, L. Establishment of Babesia vulpes n. sp. (Apicomplexa: Babesiidae), a piroplasmid species pathogenic for domestic dogs. Parasites Vectors 2019, 12, 129. [Google Scholar] [CrossRef]
- Baniecki, M.L.; Moon, J.; Sani, K.; Lemieux, J.E.; Schaffner, S.F.; Sabeti, P.C. Development of a SNP barcode to genotype Babesia microti infections. PLoS Neglected Trop. Dis. 2019, 13, e0007194. [Google Scholar] [CrossRef]
- Crosnier, C.; Bustamante, L.Y.; Bartholdson, S.J.; Bei, A.K.; Theron, M.; Uchikawa, M.; Mboup, S.; Ndir, O.; Kwiatkowski, D.P.; Duraisingh, M.T.; et al. Basigin is a receptor essential for erythrocyte invasion by Plasmodium falciparum. Nature 2011, 480, 534–537. [Google Scholar] [CrossRef]
- Miller, L.H.; Mason, S.J.; Dvorak, J.A.; McGinniss, M.H.; Rothman, I.K. Erythrocyte receptors for (Plasmodium knowlesi) malaria: Duffy blood group determinants. Science 1975, 189, 561–563. [Google Scholar] [CrossRef] [PubMed]
- Jajosky, R.P.; Patel, S.R.; Wu, S.-C.; Patel, K.R.; Covington, M.L.; Vallecillo-Zúniga, M.L.; Ayona, D.; Bennett, A.; Luckey, C.J.; E Hudson, K.; et al. Prior Immunization to an Intracellular Antigen Enhances Subsequent Red Blood Cell Alloimmunization in Mice. Blood 2023, 141, 2642–2653. [Google Scholar] [CrossRef] [PubMed]
- Maier, C.L.; Jajosky, R.P.; Patel, S.R.; Verkerke, H.P.; Fuller, M.D.; Allen, J.W.; Zerra, P.E.; Fasano, R.M.; Chonat, S.; Josephson, C.D.; et al. Storage differentially impacts alloimmunization to distinct red cell antigens following transfusion in mice. Transfusion 2023, 63, 457–462. [Google Scholar] [CrossRef] [PubMed]
- Patel, S.R.; Gibb, D.R.; Girard-Pierce, K.; Zhou, X.; Rodrigues, L.C.; Arthur, C.M.; Bennett, A.L.; Jajosky, R.P.; Fuller, M.; Maier, C.L.; et al. Marginal Zone B Cells Induce Alloantibody Formation Following RBC Transfusion. Front. Immunol. 2018, 9, 2516. [Google Scholar] [CrossRef]
- Zerra, P.E.; Patel, S.R.; Jajosky, R.P.; Arthur, C.M.; McCoy, J.W.; Allen, J.W.L.; Chonat, S.; Fasano, R.M.; Roback, J.D.; Josephson, C.D.; et al. Marginal zone B cells mediate a CD4 T-cell–dependent extrafollicular antibody response following RBC transfusion in mice. Blood 2021, 138, 706–721. [Google Scholar] [CrossRef]
- Mener, A.; Patel, S.R.; Arthur, C.M.; Chonat, S.; Wieland, A.; Santhanakrishnan, M.; Liu, J.; Maier, C.L.; Jajosky, R.P.; Girard-Pierce, K.; et al. Complement serves as a switch between CD4+ T cell–independent and –dependent RBC antibody responses. J. Clin. Investig. 2018, 3, e121631. [Google Scholar] [CrossRef]
- Jajosky, R.P.; Patel, K.R.; Allen, J.W.L.; Zerra, P.E.; Chonat, S.; Ayona, D.; Maier, C.L.; Morais, D.; Wu, S.-C.; Luckey, C.J.; et al. Antibody-mediated antigen loss switches augmented immunity to antibody-mediated immunosuppression. Blood 2023, 142, 1082–1098. [Google Scholar] [CrossRef]
- Magid-Bernstein, J.; Beaman, C.B.; Carvalho-Poyraz, F.; Boehme, A.; Hod, E.A.; Francis, R.O.; Elkind, M.S.V.; Agarwal, S.; Park, S.; Claassen, J.; et al. Impacts of ABO-incompatible platelet transfusions on platelet recovery and outcomes after intracerebral hemorrhage. Blood 2021, 137, 2699–2703. [Google Scholar] [CrossRef] [PubMed]
- Arthur, C.M.; Stowell, S.R. The Development and Consequences of Red Blood Cell Alloimmunization. Annu. Rev. Pathol. Mech. Dis. 2023, 18, 537–564. [Google Scholar] [CrossRef] [PubMed]
- Thein, S.L.; Pirenne, F.; Fasano, R.M.; Habibi, A.; Bartolucci, P.; Chonat, S.; Hendrickson, J.E.; Stowell, S.R. Hemolytic transfusion reactions in sickle cell disease: Underappreciated and potentially fatal. Haematologica 2020, 105, 539–544. [Google Scholar] [CrossRef] [PubMed]
- Avent, N.D.; Reid, M.E. The Rh blood group system: A review. Blood 2000, 95, 375–387. [Google Scholar] [CrossRef] [PubMed]
- George, R.; Lum, M.D.; Kalogeropoulos, A.; Spitzer, E.; Marcos, L.A. 270. RhD negative Blood Type is Associated with Higher Levels of Babesia microti Parasitemia and May Be a Useful Point-of-Care Biomarker in Human Babesiosis. Open Forum Infect. Dis. 2023, 10. [Google Scholar] [CrossRef]
- Jajosky, R.P.; Jajosky, A.N.; Jajosky, P.G. The Centers for Disease Control and Prevention and State Health Departments should include Blood-Type Variables in their Babesiosis Case Reports. Transfus. Apher. Sci. 2020, 59, 102824. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jajosky, R.P.; Jajosky, A.N.; Jajosky, P.G.; Stowell, S.R. Do Babesia microti Hosts Share a Blood Group System Gene Ortholog, Which Could Generate an Erythrocyte Antigen That Is Essential for Parasite Invasion? Trop. Med. Infect. Dis. 2024, 9, 195. https://doi.org/10.3390/tropicalmed9090195
Jajosky RP, Jajosky AN, Jajosky PG, Stowell SR. Do Babesia microti Hosts Share a Blood Group System Gene Ortholog, Which Could Generate an Erythrocyte Antigen That Is Essential for Parasite Invasion? Tropical Medicine and Infectious Disease. 2024; 9(9):195. https://doi.org/10.3390/tropicalmed9090195
Chicago/Turabian StyleJajosky, Ryan P., Audrey N. Jajosky, Philip G. Jajosky, and Sean R. Stowell. 2024. "Do Babesia microti Hosts Share a Blood Group System Gene Ortholog, Which Could Generate an Erythrocyte Antigen That Is Essential for Parasite Invasion?" Tropical Medicine and Infectious Disease 9, no. 9: 195. https://doi.org/10.3390/tropicalmed9090195
APA StyleJajosky, R. P., Jajosky, A. N., Jajosky, P. G., & Stowell, S. R. (2024). Do Babesia microti Hosts Share a Blood Group System Gene Ortholog, Which Could Generate an Erythrocyte Antigen That Is Essential for Parasite Invasion? Tropical Medicine and Infectious Disease, 9(9), 195. https://doi.org/10.3390/tropicalmed9090195