Antimalarial Mechanisms and Resistance Status of Artemisinin and Its Derivatives
Abstract
:1. Introduction
2. A Brief Introduction to Artemisinin and Its Derivatives
3. Antimalarial Mechanism of Artemisinin and Its Derivatives
3.1. Key Factors of Antimalarial Action of Artemisinin and Its Derivatives
3.2. Action Targets of Artemisinin and Its Derivatives
3.2.1. Protein
3.2.2. Lipids
3.2.3. Nucleic Acid
4. Artemisinin Resistance
4.1. Mechanism of Artemisinin Resistance Mediated by Kelch13
4.2. Prevalence of Kelch13-Related Drug-Resistant Strains
4.3. Other Artemisinin Resistance-Related Genes
5. Discussion
Author Contributions
Funding
Conflicts of Interest
References
- Ocen, E.; Opito, R.; Tegu, C.; Oula, A.; Olupot-Olupot, P. Severe Malaria Burden, Clinical Spectrum and Outcomes at Apac District Hospital, Uganda: A Retrospective Study of Routine Health Facility-Based Data. Malar. J. 2023, 22, 325. [Google Scholar] [CrossRef] [PubMed]
- Breman, J.G.; Alilio, M.S.; Mills, A. Conquering the Intolerable Burden of Malaria: What’s New, What’s Needed: A Summary. Am. J. Trop. Med. Hyg. 2004, 71 (Suppl. S2), 1–15. [Google Scholar] [CrossRef] [PubMed]
- WHO. World Malaria Report 2023; WHO: Geneva, Switzerland, 2023; Available online: https://www.who.int/publications-detail-redirect/9789240086173 (accessed on 26 May 2024).
- Siqueira-Neto, J.L.; Wicht, K.J.; Chibale, K.; Burrows, J.N.; Fidock, D.A.; Winzeler, E.A. Antimalarial Drug Discovery: Progress and Approaches. Nat. Rev. Drug Discov. 2023, 22, 807–826. [Google Scholar] [CrossRef]
- Garcia-Bustos, J.F.; Gamo, F.-J. Antimalarial Drug Resistance and Early Drug Discovery. Curr. Pharm. Des. 2013, 19, 270–281. [Google Scholar] [CrossRef] [PubMed]
- Meshnick, S.R. Artemisinin: Mechanisms of Action, Resistance and Toxicity. Int. J. Parasitol. 2002, 32, 1655–1660. [Google Scholar] [CrossRef] [PubMed]
- Haynes, R.K.; Cheu, K.-W.; N’Da, D.; Coghi, P.; Monti, D. Considerations on the Mechanism of Action of Artemisinin Antimalarials: Part 1—The “carbon Radical” and “Heme” Hypotheses. Infect. Disord. Drug Targets 2013, 13, 217–277. [Google Scholar] [CrossRef]
- Noedl, H.; Se, Y.; Schaecher, K.; Smith, B.L.; Socheat, D.; Fukuda, M.M. Evidence of Artemisinin-Resistant Malaria in Western Cambodia. N. Engl. J. Med. 2008, 359, 2619–2620. [Google Scholar] [CrossRef]
- Talundzic, E.; Okoth, S.A.; Congpuong, K.; Plucinski, M.M.; Morton, L.; Goldman, I.F.; Kachur, P.S.; Wongsrichanalai, C.; Satimai, W.; Barnwell, J.W.; et al. Selection and Spread of Artemisinin-Resistant Alleles in Thailand Prior to the Global Artemisinin Resistance Containment Campaign. PLoS Pathog. 2015, 11, e1004789. [Google Scholar] [CrossRef]
- Iwagami, M.; Nakatsu, M.; Khattignavong, P.; Soundala, P.; Keomalaphet, S.; Lorpachan, L.; Xangsayalath, P.; Matsumoto-Takahashi, E.; Pommelet, V.; Hongvanthong, B.; et al. Heterogeneous Distribution of K13 Mutations in Plasmodium falciparum in Laos. Malar. J. 2018, 17, 483. [Google Scholar] [CrossRef]
- Thuy-Nhien, N.; Tuyen, N.K.; Tong, N.T.; Vy, N.T.; Thanh, N.V.; Van, H.T.; Huong-Thu, P.; Quang, H.H.; Boni, M.F.; Dolecek, C.; et al. K13 Propeller Mutations in Plasmodium falciparum Populations in Regions of Malaria Endemicity in Vietnam from 2009 to 2016. Antimicrob. Agents Chemother. 2017, 61, e01578-16. [Google Scholar] [CrossRef]
- Nyunt, M.H.; Hlaing, T.; Oo, H.W.; Tin-Oo, L.-L.K.; Phway, H.P.; Wang, B.; Zaw, N.N.; Han, S.S.; Tun, T.; San, K.K.; et al. Molecular Assessment of Artemisinin Resistance Markers, Polymorphisms in the K13 Propeller, and a Multidrug-Resistance Gene in the Eastern and Western Border Areas of Myanmar. Clin. Infect. Dis. 2015, 60, 1208–1215. [Google Scholar] [CrossRef] [PubMed]
- Uwimana, A.; Umulisa, N.; Venkatesan, M.; Svigel, S.S.; Zhou, Z.; Munyaneza, T.; Habimana, R.M.; Rucogoza, A.; Moriarty, L.F.; Sandford, R.; et al. Association of Plasmodium falciparum Kelch13 R561H Genotypes with Delayed Parasite Clearance in Rwanda: An Open-Label, Single-Arm, Multicentre, Therapeutic Efficacy Study. Lancet Infect. Dis. 2021, 21, 1120–1128. [Google Scholar] [CrossRef] [PubMed]
- Straimer, J.; Gandhi, P.; Renner, K.C.; Schmitt, E.K. High Prevalence of Plasmodium falciparum K13 Mutations in Rwanda Is Associated With Slow Parasite Clearance After Treatment With Artemether-Lumefantrine. J. Infect. Dis. 2021, 225, 1411–1414. [Google Scholar] [CrossRef]
- Myint, M.K.; Rasmussen, C.; Thi, A.; Bustos, D.; Ringwald, P.; Lin, K. Therapeutic Efficacy and Artemisinin Resistance in Northern Myanmar: Evidence from in Vivo and Molecular Marker Studies. Malar. J. 2017, 16, 143. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Xu, J.-W.; Deng, D.-W.; Wang, H.-Y.; Nie, R.-H.; Yin, Y.-J.; Li, M. Dihydroartemisinin-Piperaquine Efficacy in Plasmodium falciparum Treatment and Prevalence of Drug-Resistant Molecular Markers along China-Myanmar Border in 2014–2023. J. Glob. Antimicrob. Resist. 2023, 35, 271–278. [Google Scholar] [CrossRef] [PubMed]
- Luo, J.; Mobley, R.; Woodfine, S.; Drijfhout, F.; Horrocks, P.; Ren, X.-D.; Li, W.-W. Biotransformation of Artemisinin to a Novel Derivative via Ring Rearrangement by Aspergillus Niger. Appl. Microbiol. Biotechnol. 2022, 106, 2433–2444. [Google Scholar] [CrossRef]
- Liu, W.; Yu, C.; Wang, M.; He, Y.; Guo, Z.; He, J.; Jiang, R.; Xu, Q.; Liang, J.; Wang, S. Discovery of PlatinumIV-Artesunate Multiaction Prodrugs as Potent Antitumor and Antimalarial Agents. J. Med. Chem. 2023, 66, 8066–8085. [Google Scholar] [CrossRef]
- Chen, G.-Q.; Benthani, F.A.; Wu, J.; Liang, D.; Bian, Z.-X.; Jiang, X. Artemisinin Compounds Sensitize Cancer Cells to Ferroptosis by Regulating Iron Homeostasis. Cell Death Differ. 2020, 27, 242–254. [Google Scholar] [CrossRef]
- Xu, Q.; Duan, Y.-Y.; Pan, M.; Jin, Q.-W.; Tao, J.-P.; Huang, S.-Y. In Vitro Evaluation Reveals Effect and Mechanism of Artemether against Toxoplasma Gondii. Metabolites 2023, 13, 476. [Google Scholar] [CrossRef]
- Hua, L.; Liang, S.; Zhou, Y.; Wu, X.; Cai, H.; Liu, Z.; Ou, Y.; Chen, Y.; Chen, X.; Yan, Y.; et al. Artemisinin-Derived Artemisitene Blocks ROS-Mediated NLRP3 Inflammasome and Alleviates Ulcerative Colitis. Int. Immunopharmacol. 2022, 113, 109431. [Google Scholar] [CrossRef]
- Huang, Y.; Yang, Y.; Liu, G.; Xu, M. New Clinical Application Prospects of Artemisinin and Its Derivatives: A Scoping Review. Infect. Dis. Poverty 2023, 12, 115. [Google Scholar] [CrossRef] [PubMed]
- Su, L.-J.; Zhang, J.-H.; Gomez, H.; Murugan, R.; Hong, X.; Xu, D.; Jiang, F.; Peng, Z.-Y. Reactive Oxygen Species-Induced Lipid Peroxidation in Apoptosis, Autophagy, and Ferroptosis. Oxidative Med. Cell. Longev. 2019, 2019, 5080843. [Google Scholar] [CrossRef] [PubMed]
- Ismail, H.M.; Barton, V.; Phanchana, M.; Charoensutthivarakul, S.; Wong, M.H.L.; Hemingway, J.; Biagini, G.A.; O’Neill, P.M.; Ward, S.A. Artemisinin Activity-Based Probes Identify Multiple Molecular Targets within the Asexual Stage of the Malaria Parasites Plasmodium falciparum 3D7. Proc. Natl. Acad. Sci. USA 2016, 113, 2080–2085. [Google Scholar] [CrossRef]
- Jourdan, J.; Walz, A.; Matile, H.; Schmidt, A.; Wu, J.; Wang, X.; Dong, Y.; Vennerstrom, J.L.; Schmidt, R.S.; Wittlin, S.; et al. Stochastic Protein Alkylation by Antimalarial Peroxides. ACS Infect. Dis. 2019, 5, 2067–2075. [Google Scholar] [CrossRef] [PubMed]
- Eichhorn, T.; Winter, D.; Büchele, B.; Dirdjaja, N.; Frank, M.; Lehmann, W.-D.; Mertens, R.; Krauth-Siegel, R.L.; Simmet, T.; Granzin, J.; et al. Molecular Interaction of Artemisinin with Translationally Controlled Tumor Protein (TCTP) of Plasmodium Falciparum. Biochem. Pharmacol. 2013, 85, 38–45. [Google Scholar] [CrossRef] [PubMed]
- Hernandez Maldonado, J.; Grundmann, O. Drug-Drug Interactions of Artemisinin-Based Combination Therapies in Malaria Treatment: A Narrative Review of the Literature. J. Clin. Pharmacol. 2022, 62, 1197–1205. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.; Zheng, Z.; Liu, H.; Wang, X.; Qu, S.; Yang, Y.; Deng, S.; Zhang, Y.; Tuo, L.; Zhao, Y.; et al. Combined Transcriptome and Proteome Profiling for Role of PfEMP1 in Antimalarial Mechanism of Action of Dihydroartemisinin. Microbiol. Spectr. 2021, 9, e01278-21. [Google Scholar] [CrossRef] [PubMed]
- Bridgford, J.L.; Xie, S.C.; Cobbold, S.A.; Pasaje, C.F.A.; Herrmann, S.; Yang, T.; Gillett, D.L.; Dick, L.R.; Ralph, S.A.; Dogovski, C.; et al. Artemisinin Kills Malaria Parasites by Damaging Proteins and Inhibiting the Proteasome. Nat. Commun. 2018, 9, 3801. [Google Scholar] [CrossRef] [PubMed]
- Onchieku, N.M.; Kumari, S.; Pandey, R.; Sharma, V.; Kumar, M.; Deshmukh, A.; Kaur, I.; Mohmmed, A.; Gupta, D.; Kiboi, D.; et al. Artemisinin Binds and Inhibits the Activity of Plasmodium falciparum Ddi1, a Retroviral Aspartyl Protease. Pathogens 2021, 10, 1465. [Google Scholar] [CrossRef]
- Arora, P.; Narwal, M.; Thakur, V.; Mukhtar, O.; Malhotra, P.; Mohmmed, A. A Plasmodium falciparum Ubiquitin-Specific Protease ( Pf USP) Is Essential for Parasite Survival and Its Disruption Enhances Artemisinin Efficacy. Biochem. J. 2023, 480, 25–39. [Google Scholar] [CrossRef]
- Gao, P.; Chen, J.; Sun, P.; Wang, J.; Tang, H.; Xia, F.; Gu, L.; Zhang, H.; Wang, C.; Wong, Y.K.; et al. Chemical Proteomic Profiling with Photoaffinity Labeling Strategy Identifies Antimalarial Targets of Artemisinin. Chin. Chem. Lett. 2023, 34, 108296. [Google Scholar] [CrossRef]
- Mondal, D.; Dutta, R.; Banerjee, P.; Mukherjee, D.; Maiti, T.K.; Sarkar, N. Modulation of Membrane Fluidity Performed on Model Phospholipid Membrane and Live Cell Membrane: Revealing through Spatiotemporal Approaches of FLIM, FAIM, and TRFS. Anal. Chem. 2019, 91, 4337–4345. [Google Scholar] [CrossRef] [PubMed]
- Chen, P.Q.; Yuan, J.; Du, Q.Y.; Chen, L.; Li, G.Q.; Huang, Z.Y.; Yang, D.D.; Wu, L.N. Effects of Dihydroartemisinin on Fine Structure of Erythrocytic Stages of Plasmodium Berghei ANKA Strain. Acta Pharmacol. Sin. 2000, 21, 234–238. [Google Scholar] [PubMed]
- Hou, H.; Zhang, G.; Ma, L.; Su, P.; Zhang, Z.; Dai, B.; Ye, Z. Effects and Mechanism of Action of Artemisinin on Mitochondria of Plasmodium Berghei. Chin. J. Integr. Med. 2020, 26, 277–282. [Google Scholar] [CrossRef] [PubMed]
- Cao, J.Y.; Dixon, S.J. Mechanisms of Ferroptosis. Cell. Mol. Life Sci. 2016, 73, 2195–2209. [Google Scholar] [CrossRef]
- Feng, H.; Stockwell, B.R. Unsolved Mysteries: How Does Lipid Peroxidation Cause Ferroptosis? PLoS Biol. 2018, 16, e2006203. [Google Scholar] [CrossRef]
- Skorokhod, O.; Valente, E.; Mandili, G.; Ulliers, D.; Schwarzer, E. Micromolar Dihydroartemisinin Concentrations Elicit Lipoperoxidation in Plasmodium Falciparum-Infected Erythrocytes. Antioxidants 2023, 12, 1468. [Google Scholar] [CrossRef]
- Endale, H.T.; Tesfaye, W.; Mengstie, T.A. ROS Induced Lipid Peroxidation and Their Role in Ferroptosis. Front. Cell Dev. Biol. 2023, 11, 1226044. [Google Scholar] [CrossRef]
- Li, S.; Xu, W.; Wang, H.; Tang, T.; Ma, J.; Cui, Z.; Shi, H.; Qin, T.; Zhou, H.; Li, L.; et al. Ferroptosis Plays an Essential Role in the Antimalarial Mechanism of Low-Dose Dihydroartemisinin. Biomed. Pharmacother. 2022, 148, 112742. [Google Scholar] [CrossRef]
- Cadet, J.; Wagner, J.R. DNA Base Damage by Reactive Oxygen Species, Oxidizing Agents, and UV Radiation. Cold Spring Harb. Perspect. Biol. 2013, 5, a012559. [Google Scholar] [CrossRef]
- Gopalakrishnan, A.M.; Kumar, N. Antimalarial Action of Artesunate Involves DNA Damage Mediated by Reactive Oxygen Species. Antimicrob. Agents Chemother. 2015, 59, 317–325. [Google Scholar] [CrossRef] [PubMed]
- Gunjan, S.; Sharma, T.; Yadav, K.; Chauhan, B.S.; Singh, S.K.; Siddiqi, M.I.; Tripathi, R. Artemisinin Derivatives and Synthetic Trioxane Trigger Apoptotic Cell Death in Asexual Stages of Plasmodium. Front. Cell. Infect. Microbiol. 2018, 8, 256. [Google Scholar] [CrossRef] [PubMed]
- Tilley, L.; Straimer, J.; Gnädig, N.F.; Ralph, S.A.; Fidock, D.A. Artemisinin Action and Resistance in Plasmodium Falciparum. Trends Parasitol. 2016, 32, 682–696. [Google Scholar] [CrossRef] [PubMed]
- Hassett, M.R.; Roepe, P.D. Origin and Spread of Evolving Artemisinin-Resistant Plasmodium falciparum Malarial Parasites in Southeast Asia. Am. J. Trop. Med. Hyg. 2019, 101, 1204–1211. [Google Scholar] [CrossRef]
- Huang, F.; Yan, H.; Xue, J.-B.; Cui, Y.-W.; Zhou, S.-S.; Xia, Z.-G.; Abeyasinghe, R.; Ringwald, P.; Zhou, X.-N. Molecular Surveillance of Pfcrt, Pfmdr1 and Pfk13-Propeller Mutations in Plasmodium falciparum Isolates Imported from Africa to China. Malar. J. 2021, 20, 73. [Google Scholar] [CrossRef] [PubMed]
- Mihreteab, S.; Platon, L.; Berhane, A.; Stokes, B.H.; Warsame, M.; Campagne, P.; Criscuolo, A.; Ma, L.; Petiot, N.; Doderer-Lang, C.; et al. Increasing Prevalence of Artemisinin-Resistant HRP2-Negative Malaria in Eritrea. N. Engl. J. Med. 2023, 389, 1191–1202. [Google Scholar] [CrossRef]
- Ebong, C.; Sserwanga, A.; Namuganga, J.F.; Kapisi, J.; Mpimbaza, A.; Gonahasa, S.; Asua, V.; Gudoi, S.; Kigozi, R.; Tibenderana, J.; et al. Efficacy and Safety of Artemether-Lumefantrine and Dihydroartemisinin-Piperaquine for the Treatment of Uncomplicated Plasmodium falciparum Malaria and Prevalence of Molecular Markers Associated with Artemisinin and Partner Drug Resistance in Uganda. Malar. J. 2021, 20, 484. [Google Scholar] [CrossRef]
- Björkman, A.; Gil, P.; Alifrangis, M. Alarming Plasmodium falciparum Resistance to Artemisinin-Based Combination Therapy in Africa: The Critical Role of the Partner Drug. Lancet Infect. Dis. 2024, 24, e540–e541. [Google Scholar] [CrossRef]
- Nsanzabana, C. Resistance to Artemisinin Combination Therapies (ACTs): Do Not Forget the Partner Drug! Trop. Med. Infect. Dis. 2019, 4, 26. [Google Scholar] [CrossRef]
- WHO. Eliminating Malaria in the Greater Mekong Subregion: United to End a Deadly Diseas; WHO: Geneva, Switzerland, 2016; Available online: https://www.who.int/publications/i/item/WHO-HTM-GMP-2016.12 (accessed on 6 September 2024).
- Mok, S.; Stokes, B.H.; Gnädig, N.F.; Ross, L.S.; Yeo, T.; Amaratunga, C.; Allman, E.; Solyakov, L.; Bottrill, A.R.; Tripathi, J.; et al. Artemisinin-Resistant K13 Mutations Rewire Plasmodium Falciparum’s Intra-Erythrocytic Metabolic Program to Enhance Survival. Nat. Commun. 2021, 12, 530. [Google Scholar] [CrossRef]
- Birnbaum, J.; Scharf, S.; Schmidt, S.; Jonscher, E.; Hoeijmakers, W.A.M.; Flemming, S.; Toenhake, C.G.; Schmitt, M.; Sabitzki, R.; Bergmann, B.; et al. A Kelch13-Defined Endocytosis Pathway Mediates Artemisinin Resistance in Malaria Parasites. Science 2020, 367, 51–59. [Google Scholar] [CrossRef] [PubMed]
- Mok, S.; Ashley, E.A.; Ferreira, P.E.; Zhu, L.; Lin, Z.; Yeo, T.; Chotivanich, K.; Imwong, M.; Pukrittayakamee, S.; Dhorda, M.; et al. Drug Resistance. Population Transcriptomics of Human Malaria Parasites Reveals the Mechanism of Artemisinin Resistance. Science 2015, 347, 431–435. [Google Scholar] [CrossRef] [PubMed]
- Xiong, A.; Prakash, P.; Gao, X.; Chew, M.; Tay, I.J.J.; Woodrow, C.J.; Engelward, B.P.; Han, J.; Preiser, P.R. K13-Mediated Reduced Susceptibility to Artemisinin in Plasmodium falciparum Is Overlaid on a Trait of Enhanced DNA Damage Repair. Cell Rep. 2020, 32, 107996. [Google Scholar] [CrossRef] [PubMed]
- WHO. World Malaria Report 2020; WHO: Geneva, Switzerland, 2020; Available online: https://www.who.int/publications-detail-redirect/9789240015791 (accessed on 24 April 2024).
- Kagoro, F.M.; Barnes, K.I.; Marsh, K.; Ekapirat, N.; Mercado, C.E.G.; Sinha, I.; Humphreys, G.; Dhorda, M.; Guerin, P.J.; Maude, R.J. Mapping Genetic Markers of Artemisinin Resistance in Plasmodium falciparum Malaria in Asia: A Systematic Review and Spatiotemporal Analysis. Lancet Microbe 2022, 3, e184–e192. [Google Scholar] [CrossRef]
- Mathieu, L.C.; Cox, H.; Early, A.M.; Mok, S.; Lazrek, Y.; Paquet, J.-C.; Ade, M.-P.; Lucchi, N.W.; Grant, Q.; Udhayakumar, V.; et al. Local Emergence in Amazonia of Plasmodium falciparum K13 C580Y Mutants Associated with in Vitro Artemisinin Resistance. Elife 2020, 9, e51015. [Google Scholar] [CrossRef]
- Chenet, S.M.; Akinyi Okoth, S.; Huber, C.S.; Chandrabose, J.; Lucchi, N.W.; Talundzic, E.; Krishnalall, K.; Ceron, N.; Musset, L.; Macedo de Oliveira, A.; et al. Independent Emergence of the Plasmodium falciparum Kelch Propeller Domain Mutant Allele C580Y in Guyana. J. Infect. Dis. 2016, 213, 1472–1475. [Google Scholar] [CrossRef]
- Kobasa, T.; Talundzic, E.; Sug-Aram, R.; Boondat, P.; Goldman, I.F.; Lucchi, N.W.; Dharmarak, P.; Sintasath, D.; Fukuda, M.; Whistler, T.; et al. Emergence and Spread of Kelch13 Mutations Associated with Artemisinin Resistance in Plasmodium falciparum Parasites in 12 Thai Provinces from 2007 to 2016. Antimicrob. Agents Chemother. 2018, 62, e02141-17. [Google Scholar] [CrossRef]
- Lautu-Gumal, D.; Razook, Z.; Koleala, T.; Nate, E.; McEwen, S.; Timbi, D.; Hetzel, M.W.; Lavu, E.; Tefuarani, N.; Makita, L.; et al. Surveillance of Molecular Markers of Plasmodium falciparum Artemisinin Resistance (Kelch13 Mutations) in Papua New Guinea between 2016 and 2018. Int. J. Parasitol. Drugs Drug Resist. 2021, 16, 188–193. [Google Scholar] [CrossRef]
- Kong, X.; Feng, J.; Xu, Y.; Yan, G.; Zhou, S. Molecular Surveillance of Artemisinin Resistance-Related Pfk13 and Pfcrt Polymorphisms in Imported Plasmodium falciparum Isolates Reported in Eastern China from 2015 to 2019. Malar. J. 2022, 21, 369. [Google Scholar] [CrossRef]
- Das, S.; Manna, S.; Saha, B.; Hati, A.K.; Roy, S. Novel Pfkelch13 Gene Polymorphism Associates With Artemisinin Resistance in Eastern India. Clin. Infect. Dis. 2019, 69, 1144–1152. [Google Scholar] [CrossRef]
- Bonnington, C.A.; Phyo, A.P.; Ashley, E.A.; Imwong, M.; Sriprawat, K.; Parker, D.M.; Proux, S.; White, N.J.; Nosten, F. Plasmodium falciparum Kelch 13 Mutations and Treatment Response in Patients in Hpa-Pun District, Northern Kayin State, Myanmar. Malar. J. 2017, 16, 480. [Google Scholar] [CrossRef] [PubMed]
- Huang, F.; Takala-Harrison, S.; Jacob, C.G.; Liu, H.; Sun, X.; Yang, H.; Nyunt, M.M.; Adams, M.; Zhou, S.; Xia, Z.; et al. A Single Mutation in K13 Predominates in Southern China and Is Associated With Delayed Clearance of Plasmodium falciparum Following Artemisinin Treatment. J. Infect. Dis. 2015, 212, 1629–1635. [Google Scholar] [CrossRef] [PubMed]
- Khammanee, T.; Sawangjaroen, N.; Buncherd, H.; Tun, A.W.; Thanapongpichat, S. Molecular Surveillance of Pfkelch13 and Pfmdr1 Mutations in Plasmodium falciparum Isolates from Southern Thailand. Korean J. Parasitol. 2019, 57, 369–377. [Google Scholar] [CrossRef] [PubMed]
- Maeno, Y.; Quang, N.T.; Culleton, R.; Kawai, S.; Masuda, G.; Hori, K.; Nakazawa, S.; Marchand, R.P. Detection of the Plasmodium falciparum Kelch-13 Gene P553L Mutation in Sporozoites Isolated from Mosquito Salivary Glands in South-Central Vietnam. Parasites Vectors 2017, 10, 308. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Huang, F.; Yan, H.; Yin, J.; Xia, Z. A Review of Malaria Molecular Markers for Drug Resistance in Plasmodium falciparum and Plasmodium vivax in China. Front. Cell. Infect. Microbiol. 2023, 13, 1167220. [Google Scholar] [CrossRef]
- Delandre, O.; Daffe, S.M.; Gendrot, M.; Diallo, M.N.; Madamet, M.; Kounta, M.B.; Diop, M.N.; Bercion, R.; Sow, A.; Ngom, P.M.; et al. Absence of Association between Polymorphisms in the Pfcoronin and Pfk13 Genes and the Presence of Plasmodium falciparum Parasites after Treatment with Artemisinin Derivatives in Senegal. Int. J. Antimicrob. Agents 2020, 56, 106190. [Google Scholar] [CrossRef]
- Demas, A.R.; Sharma, A.I.; Wong, W.; Early, A.M.; Redmond, S.; Bopp, S.; Neafsey, D.E.; Volkman, S.K.; Hartl, D.L.; Wirth, D.F. Mutations in Plasmodium falciparum Actin-Binding Protein Coronin Confer Reduced Artemisinin Susceptibility. Proc. Natl. Acad. Sci. USA 2018, 115, 12799–12804. [Google Scholar] [CrossRef] [PubMed]
- Ajibaye, O.; Olukosi, Y.A.; Oriero, E.C.; Oboh, M.A.; Iwalokun, B.; Nwankwo, I.C.; Nnam, C.F.; Adaramoye, O.V.; Chukwemeka, S.; Okanazu, J.; et al. Detection of Novel Plasmodium falciparum Coronin Gene Mutations in a Recrudescent ACT-Treated Patient in South-Western Nigeria. Front. Cell. Infect. Microbiol. 2024, 14, 1366563. [Google Scholar] [CrossRef]
- Henrici, R.C.; van Schalkwyk, D.A.; Sutherland, C.J. Modification of Pfap2μ and Pfubp1 Markedly Reduces Ring-Stage Susceptibility of Plasmodium falciparum to Artemisinin In Vitro. Antimicrob. Agents Chemother. 2019, 64, e01542-19. [Google Scholar] [CrossRef]
- Cheng, W.; Wu, K.; Song, X.; Wang, W.; Du, W.; Li, J. Single-Nucleotide Polymorphisms of Artemisinin Resistance-Related Pfubp1 and Pfap2mu Genes in Imported Plasmodium falciparum to Wuhan, China. Infect. Genet. Evol. 2022, 101, 105286. [Google Scholar] [CrossRef]
- Zhang, T.; Liang, X.; Wei, H.; Lin, M.; Chen, J. Single-Nucleotide Polymorphisms of Artemisinin Resistance-Related Pfubp1 and Pfap2mu Genes in Bioko Island, Equatorial Guinea from 2018 to 2020. Chin. J. Schistosomiasis Control 2024, 35, 557–564. [Google Scholar] [CrossRef]
- Adams, T.; Ennuson, N.A.A.; Quashie, N.B.; Futagbi, G.; Matrevi, S.; Hagan, O.C.K.; Abuaku, B.; Koram, K.A.; Duah, N.O. Prevalence of Plasmodium falciparum Delayed Clearance Associated Polymorphisms in Adaptor Protein Complex 2 Mu Subunit (Pfap2mu) and Ubiquitin Specific Protease 1 (Pfubp1) Genes in Ghanaian Isolates. Parasites Vectors 2018, 11, 175. [Google Scholar] [CrossRef] [PubMed]
- Lê, H.G.; Naw, H.; Kang, J.-M.; Võ, T.C.; Myint, M.K.; Htun, Z.T.; Lee, J.; Yoo, W.G.; Kim, T.-S.; Shin, H.-J.; et al. Molecular Profiles of Multiple Antimalarial Drug Resistance Markers in Plasmodium falciparum and Plasmodium vivax in the Mandalay Region, Myanmar. Microorganisms 2022, 10, 2021. [Google Scholar] [CrossRef] [PubMed]
- Miotto, O.; Amato, R.; Ashley, E.A.; MacInnis, B.; Almagro-Garcia, J.; Amaratunga, C.; Lim, P.; Mead, D.; Oyola, S.O.; Dhorda, M.; et al. Genetic Architecture of Artemisinin-Resistant Plasmodium Falciparum. Nat. Genet. 2015, 47, 226–234. [Google Scholar] [CrossRef]
- Patel, O.P.S.; Beteck, R.M.; Legoabe, L.J. Exploration of Artemisinin Derivatives and Synthetic Peroxides in Antimalarial Drug Discovery Research. Eur. J. Med. Chem. 2021, 213, 113193. [Google Scholar] [CrossRef]
Drug-Resistant Strain | Country |
---|---|
C580Y | Thailand [9,60], Laos [10], Vietnam [11], Myanmar [12], Papua New Guinea [61], and China [62] |
P574L | Vietnam [11] and Thailand [9] |
F446I | India [63], Myanmar [64], and China [65] |
N458Y | Thailand [9], Myanmar [12], and China–Myanmar border [16] |
M476I | Myanmar [12], Thailand [66], and Africa [46] |
Y493H | Cambodia, Laos, eastern Thailand, and Vietnam [10,11] |
I543T | Cambodia, Laos, Thailand, and Vietnam [57] |
P553L | Vietnam [67], Ghana, Angola, Equatorial Guinea, and Nigeria [46] |
R561H | Thailand [60], Myanmar [64], and Rwanda [13,14] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zheng, D.; Liu, T.; Yu, S.; Liu, Z.; Wang, J.; Wang, Y. Antimalarial Mechanisms and Resistance Status of Artemisinin and Its Derivatives. Trop. Med. Infect. Dis. 2024, 9, 223. https://doi.org/10.3390/tropicalmed9090223
Zheng D, Liu T, Yu S, Liu Z, Wang J, Wang Y. Antimalarial Mechanisms and Resistance Status of Artemisinin and Its Derivatives. Tropical Medicine and Infectious Disease. 2024; 9(9):223. https://doi.org/10.3390/tropicalmed9090223
Chicago/Turabian StyleZheng, Dan, Tingting Liu, Shasha Yu, Zhilong Liu, Jing Wang, and Ying Wang. 2024. "Antimalarial Mechanisms and Resistance Status of Artemisinin and Its Derivatives" Tropical Medicine and Infectious Disease 9, no. 9: 223. https://doi.org/10.3390/tropicalmed9090223
APA StyleZheng, D., Liu, T., Yu, S., Liu, Z., Wang, J., & Wang, Y. (2024). Antimalarial Mechanisms and Resistance Status of Artemisinin and Its Derivatives. Tropical Medicine and Infectious Disease, 9(9), 223. https://doi.org/10.3390/tropicalmed9090223