Automatic Calibration of a Device for Blood Pressure Waveform Measurement
Abstract
:1. Introduction
2. Design and Operation of the Sensor
3. Sensor Calibration Procedure
4. Preliminary Tests on Volunteers
5. Conclusions and Future Work
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
BP | Blood pressure |
References
- O’Rourke, M.; Pauca, A.; Jiang, X. Pulse wave analysis. Br. J. Clin. Pharmacol. 2001, 51, 507. [Google Scholar] [CrossRef] [PubMed]
- Sharman, J.; Lim, R.; Qasem, A.; Coombes, J.; Burgess, M.; Franco, J.; Garrahy, P.; Wilkinson, I.; Marwick, T. Validation of a generalized transfer function to noninvasively derive central blood pressure during exercise. Hypertension 2006, 47, 1203–1208. [Google Scholar] [CrossRef] [PubMed]
- Nelson, M.; Stepanek, J.; Cevette, M.; Covalciuc, M.; Hurst, R.; Tajik, A. Noninvasive measurement of central vascular pressures with arterial tonometry: Clinical revival of the pulse pressure waveform? Mayo Clin. Proc. 2010, 85, 460–472. [Google Scholar] [CrossRef] [PubMed]
- Penaz, J. Photoelectric measurement of blood pressure, volume and flow in the finger. In Digest of the 10th International Conference on Medical and Biological Engineering; University of Illinois Urbana-Champaign: Urbana, IL, USA, 1973; Volume 104, p. 104. [Google Scholar]
- Durham, D. Pneumatic applanation tonometer. Trans. Am. Acad. Ophthalmol. Otolaryngol. 1965, 69, 1029–1047. [Google Scholar]
- O’Brien, E.; Waeber, B.; Parati, G.; Staessen, J.; Myers, M. Blood pressure measuring devices: Recommendations of the European Society of Hypertension. BMJ 2001, 322, 531–536. [Google Scholar] [CrossRef]
- Drzewiecki, G.; Melbin, J.; Noordergraaf, A. Arterial tonometry: Review and analysis. J. Biomech. 1983, 16, 141–152. [Google Scholar] [CrossRef]
- Ng, K.; Ting, C.; Yeo, J.; Sim, K.; Peh, W.; Chua, N.; Chua, N.; Kwong, F. Progress on the development of the MediWatch ambulatory blood pressure monitor and related devices. Blood Press. Monit. 2004, 9, 149–165. [Google Scholar] [CrossRef]
- Babbs, C. Oscillometric measurement of systolic and diastolic blood pressures validated in a physiologic mathematical model. Biomed. Eng. Online 2012, 11, 56. [Google Scholar] [CrossRef]
- Ward, M.; Langton, J. Blood pressure measurement. Contin. Educ. Anaesth. Crit. Care Pain 2007, 7, 122–126. [Google Scholar] [CrossRef]
- Tomczuk, K.; Werszko, M.; Sasiadek, J.; Kosek, J.; Berny, W.; Weiser, A.; Feder-Kubis, J. Development of a tonometric sensor for measurement and recording of arterial pressure waveform. Rev. Sci. Instrum. 2013, 84, 095003. [Google Scholar] [CrossRef]
- Sorvoja, H.; Myllyla, R. Noninvasive blood pressure measurement methods. Mol. Quantum Acoust. 2006, 27, 239–264. [Google Scholar]
- Saugel, B.; Dueck, R.; Wagner, J. Measurement of blood pressure. Best Pract. Res. Clin. Anaesthesiol. 2014, 28, 309–322, Hemodynamic Monitoring Devices. [Google Scholar] [CrossRef] [PubMed]
- Drzewiecki, G.; Solanki, B.; Wang, J.J.; Li, K. Noninvasive determination of arterial pressure and volume using tonometry [electric impedance plethysmography]. In Proceedings of the ELECTRO ′96: Professional Program Proceedings, Somerset, NJ, USA, 30 April–2 May 1996; pp. 61–63. [Google Scholar] [CrossRef]
- Wesseling, K. Physiocal, calibrating finger vascular physiology for Finapres. Homeostasis 1995, 36, 67–82. [Google Scholar]
- Dasrao, M.S.; Hock, Y.J.; Sim, E.K. Diagnostic blood pressure wave analysis and ambulatory monitoring using a novel non-invasive portable device. In Proceedings of the International Conference Biomedical Engineering Biovision, Bangalore, India, 21–24 December 2001; pp. 267–272. [Google Scholar]
- Wesseling, K. A century of noninvasive arterial pressure measurement: From Marey to Peñáz and Finapres. Homeost. Health Dis. 1995, 36, 50–66. [Google Scholar]
- Birch, A.; Morris, S. Do the Finapres and Colin radial artery tonometer measure the same blood pressure changes following deflation of thigh cuffs? Physiol. Meas. 2003, 24, 653–660. [Google Scholar] [CrossRef] [PubMed]
- Langewouters, G.; Settels, J.; Roelandt, R.; Wesseling, K. Why use Finapres or Portapres rather than intraarterial or intermittent non-invasive techniques of blood pressure measurement? J. Med. Eng. Technol. 1998, 22, 37–43. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Liu, S.; Chern, C.; Hsieh, J. Development of an arterial applanation tonometer for detecting arterial blood pressure and volume. Biomed. Eng. Appl. Basis Commun. 2004, 16, 322–330. [Google Scholar] [CrossRef]
- Ismail, S.; Nayan, N.; Jaafar, R.; May, Z. Recent Advances in Non-Invasive Blood Pressure Monitoring and Prediction Using a Machine Learning Approach. Sensors 2022, 22, 6195. [Google Scholar] [CrossRef]
- Zhao, S.; Liu, R.; Fei, C.; Guan, D. Dynamic Interface Pressure Monitoring System for the Morphological Pressure Mapping of Intermittent Pneumatic Compression Therapy. Sensors 2019, 19, 2881. [Google Scholar] [CrossRef]
- Zambrana-Vinaroz, D.; Vicente-Samper, J.; Juan, C.G.; Esteve-Sala, V.; Sabater-Navarro, J. Non-Invasive Device for Blood Pressure Wave Acquisition by Means of Mechanical Transducer. Sensors 2019, 19, 4311. [Google Scholar] [CrossRef]
- Kang, X.; Zhang, J.; Shao, Z.; Wang, G.; Geng, X.; Zhan, Y.; Zhang, H. A Wearable and Real-Time Pulse Wave Monitoring System Based on a Flexible Compound Sensor. Biosensors 2022, 12, 133. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Z.; Cui, T.; Li, D.; Jian, J.; Li, Z.; Ji, S.; Li, X.; Xu, J.; Liu, H.; Yang, Y.; et al. Wearable Continuous Blood Pressure Monitoring Devices Based on Pulse Wave Transit Time and Pulse Arrival Time: A Review. Materials 2023, 16, 2133. [Google Scholar] [CrossRef] [PubMed]
- Chandrasekhar, A.; Kim, C.; Naji, M.; Natarajan, K.; Hahn, J.; Mukkamala, R. Smartphone-based blood pressure monitoring via the oscillometric finger-pressing method. Sci. Transl. Med. 2018, 10, eaap8674. [Google Scholar] [CrossRef] [PubMed]
- Schoot, T.; Weenk, M.; Van de Belt, T.; Engelen, L.; Van Goor, H.; Bredie, S. A New Cuffless Device for Measuring Blood Pressure: A Real-Life Validation Study. J. Med. Internet Res. 2016, 18, e85. [Google Scholar] [CrossRef]
- Boubouchairopoulou, N.; Kollias, A.; Chiu, B.; Chen, B.; Lagou, S.; Anestis, P.; Stergiou, G. A novel cuffless device for self-measurement of blood pressure: Concept, performance and clinical validation. J. Hum. Hypertens. 2017, 31, 479–482. [Google Scholar] [CrossRef] [PubMed]
- Masè, M.; Mattei, W.; Cucino, R.; Faes, L.; Nollo, G. Feasibility of cuff-free measurement of systolic and diastolic arterial blood pressure. J. Electrocardiol. 2011, 44, 201–207. [Google Scholar] [CrossRef] [PubMed]
- Gesche, H.; Grosskurth, D.; Küchle, R.G.; Patzak, A. Continuous blood pressure measurement by using the pulse transit time: Comparison to a cuff-based method. Eur. J. Appl. Physiol. 2012, 112, 309–315. [Google Scholar] [CrossRef]
- Lee, W.; Rho, Y.; Hyeon, S.; Song, J.; Lee, S. Measurement of cuffless blood pressure by using a magnetoplethysmogram pulsimeter. Insights Blood Press. 2016, 2, 1–8. [Google Scholar]
- Wang, Y.; Chen, C.; Sue, C.; Lu, W.; Chiou, Y. Estimation of blood pressure in the radial artery using strain-based pulse wave and photoplethysmography sensors. Micromachines 2018, 9, 556. [Google Scholar] [CrossRef]
- Kaniusas, R.; Pfutzner, H.; Mehnen, L.; Kosel, J.; Tellez-Blanco, C.; Varoneckas, G.; Alonderis, A.; Meydan, T.; Vázquez, M.; Rohn, M.; et al. Method for continuous nondisturbing monitoring of blood pressure by magnetoelastic skin curvature sensor and ECG. IEEE Sens. J. 2006, 6, 819–828. [Google Scholar] [CrossRef]
- Franchi, D.; Bedini, R.; Manfredini, F.; Berti, S.; Palagi, G.; Ghione, S.; Ripoli, A. Blood pressure evaluation based on arterial pulse wave velocity. In Proceedings of the Computers in Cardiology 1996, Indianapolis, IN, USA, 8–11 September 1996; pp. 397–400. [Google Scholar]
- Antsiperov, V.; Mansurov, G. Wearable Pneumatic Sensor for Non-invasive Continuous Arterial Blood Pressure Monitoring. In Bioinformatics and Biomedical Engineering; Springer: Cham, Switzerland, 2018; pp. 383–394. [Google Scholar]
- De Smedt, S. Noninvasive intraocular pressure monitoring: Current insights. Clin. Ophthalmol. 2015, 9, 1385. [Google Scholar] [CrossRef] [PubMed]
- MPX5050 Datasheet. Available online: https://www.nxp.com/docs/en/data-sheet/MPX5050.pdf (accessed on 1 July 2023).
- 984m.333704 Datasheet. Available online: https://www.kelvintech.pl/wsCMS/uploads/pdfs/nenutec-984.pdf (accessed on 1 July 2023).
- O’Brien, E.; Atkins, N.; Stergiou, G.; Karpettas, N.; Parati, G.; Asmar, R.; Imai, Y.; Wang, J.; Mengden, T.; Shennan, A.; et al. European Society of Hypertension International Protocol revision 2010 for the validation of blood pressure measuring devices in adults. Blood Press. Monit. 2010, 15, 23–38. [Google Scholar] [CrossRef] [PubMed]
Subject | ||||||
---|---|---|---|---|---|---|
mmHg | mmHg | V | V | mmHg | % | |
1 | 131.9 | 91.2 | 1.70 | 1.32 | 130.3 | 1.2 |
76.7 | 1.14 | 72.7 | 5.3 | |||
2 | 122.8 | 95.9 | 1.92 | 1.58 | 130.9 | −6.6 |
76.3 | 1.33 | 70.2 | 8.1 | |||
3 | 127.7 | 99.5 | 1.86 | 1.55 | 131.4 | −2.9 |
83.0 | 1.38 | 82.0 | 1.2 | |||
4 | 126.6 | 91.5 | 1.69 | 1.38 | 123.4 | 2.5 |
80.2 | 1.25 | 78.0 | 2.6 | |||
5 | 143.0 | 107.0 | 1.90 | 1.52 | 146.1 | −2.2 |
92.0 | 1.34 | 88.5 | 3.9 | |||
6 | 128.8 | 100.1 | 1.65 | 1.43 | 122.8 | 4.7 |
83.1 | 1.20 | 76.4 | 8.1 | |||
7 | 131.4 | 106.0 | 1.67 | 1.37 | 136.9 | −4.2 |
65.0 | 1.02 | 70.0 | −7.6 | |||
8 | 119.7 | 96.4 | 1.84 | 1.56 | 125.2 | −4.6 |
76.3 | 1.32 | 71.7 | 6.1 | |||
9 | 118.9 | 93.7 | 1.45 | 1.16 | 123.6 | −3.9 |
79.2 | 1.05 | 82.4 | −4.0 | |||
10 | 122.5 | 96.2 | 1.55 | 1.22 | 130.2 | −6.3 |
80.4 | 1.13 | 86.9 | −8.1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Siemasz, R.; Tomczuk, K.; Malecha, Z.; Felisiak, P.A.; Weiser, A. Automatic Calibration of a Device for Blood Pressure Waveform Measurement. Sensors 2023, 23, 7985. https://doi.org/10.3390/s23187985
Siemasz R, Tomczuk K, Malecha Z, Felisiak PA, Weiser A. Automatic Calibration of a Device for Blood Pressure Waveform Measurement. Sensors. 2023; 23(18):7985. https://doi.org/10.3390/s23187985
Chicago/Turabian StyleSiemasz, Rafał, Krzysztof Tomczuk, Ziemowit Malecha, Piotr Andrzej Felisiak, and Artur Weiser. 2023. "Automatic Calibration of a Device for Blood Pressure Waveform Measurement" Sensors 23, no. 18: 7985. https://doi.org/10.3390/s23187985
APA StyleSiemasz, R., Tomczuk, K., Malecha, Z., Felisiak, P. A., & Weiser, A. (2023). Automatic Calibration of a Device for Blood Pressure Waveform Measurement. Sensors, 23(18), 7985. https://doi.org/10.3390/s23187985