Impact of the Exhaust Geometry on Flow Losses in a High-Pressure Steam Turbine †
Abstract
:1. Introduction
Literature Survey
2. Results
2.1. Validation of Numerical Model
2.1.1. Test Rig
2.1.2. Numerical Model Part 1
2.1.3. Mesh Sensitivity and Model Inaccuracy
2.1.4. Turbulence Modeling
2.2. Parameter Study
2.2.1. Numerical Model Part 2
2.2.2. Corner Radii
2.2.3. Wall Angle
2.2.4. Aspect Ratio
2.2.5. Optimised Design
3. Discussion
- It could be shown that sharp corners and therefore a rectangular cross-section is advantageous over a round cross-section, as the stagnant flow in the corners leads to additional drag forces and thus lower rotational velocity of the ring vortex.
- A negatively inclined wall in flow direction at the diffuser exit leads to an increased diffusion and therefore lower flow losses.
- A large aspect ratio h/w of the ring chamber cross-section leads to lower flow losses due to increased diffusion and a smaller ring vortex.
Acknowledgments
Author Contributions
Conflicts of Interest
Appendix A. Simulation Results for Exhaust Model 2
References
- Traupel, W. Thermische Turbomaschinen, 3rd ed.; Springer: Berlin–Heidelberg, Germany, 1988. [Google Scholar]
- Hausenblas, H. Versuche an Abströmgehäusen thermischer Turbomaschinen. Konstruktion 1963, 15, 492–494. [Google Scholar]
- Hübl, H.P. Beitrag zur Berechnung des Spiralgehäuses von Radialverdichtern und Vorherbestimmung seines Betriebsverhaltens; Mitteilung des Instituts für Dampf- und Gasturbinen: Aachen, Germany, 1975; Number 7; p. 122 et sqq. [Google Scholar]
- Lendorff, B.; Meienberg, H. Detail-Entwicklung im Bau von Turboverdichtern. Escher Wyss Mitt. 1944, 17/18, 60–67. [Google Scholar]
- Mishina, H.; Gyobu, I. Performance investigations of large capacity centrifugal compressors. In Proceedings of the ASME International Gas Turbine Conference, London, UK, 9–13 April 1978. 78-GT-3.
- Stiefel, W. Experiences in the development of radial compressors. In Lecture Series 50: Advanced Radial Compressors; von Karman Institute for Fluid Dynamics: Sint-Genesius-Rode, Belgium, 1972. [Google Scholar]
- Ayder, E. Experimental and Numerical Analysis of the Flow in Centrifugal Compressor and Pump Volutes. Ph.D. Thesis, von Karman Institute for Fluid Dynamics, Sint-Genesius-Rode, Belgium, 1993. [Google Scholar]
- Brown, W.B.; Bradshaw, G.R. Design and Performance of Family of Diffusing Scrolls with Mixed-Flow Impeller and Vaneless Diffuser; Technical Report 936; NACA: Washington, DC, USA, 1949. [Google Scholar]
- Yang, S.; Kong, F.; Chen, B. Research on pump volute design method using CFD. Int. J. Rotating Mach. 2011, 2011, 137860. [Google Scholar] [CrossRef]
- Reunanen, A. Experimental and Numerical Analysis of Different Volutes in a Centrifugal Compressor. Ph.D. Thesis, Lappeenranta University of Technology, Lappeenranta, Finland, 2001. [Google Scholar]
- Urban, M. Experimentelle Strömungsuntersuchungen an Modellen von HD-Abströmgehäusen; Internal Report; Siemens: München, Germany, 1997. [Google Scholar]
- Kuwamura, Y.; Matsumoto, K.; Uehara, H. Development of new high-performance labyrinth seal using aerodynamic approach. In Proceedings of the ASME Turbo Expo, San Antonio, TX, USA, 3–7 June 2013. GT2013-94106.
- Steglich, T.; Kitzinger, J.; Seume, J.; Van den Braembusche, R.; Prinsier, J. Improved diffuser/volute combinations for centrifugal compressors. J. Turbomach. 2008, 130. [Google Scholar] [CrossRef]
Mesh 1 | Mesh 2 | Mesh 3 | Mesh 4 | Mesh 5 | Mesh 6 | |
---|---|---|---|---|---|---|
Mesh size (Node Count) | 4 mio | 3 mio | 3 mio | 2.5 mio | 2.5 mio | 2 mio |
Boundary Layer Resolution () | 10.0 | 10.1 | 5.3 | 9.9 | 10.0 | 19.0 |
Number of Prism Layers | 30 | 23 | 23 | 23 | 19 | 15 |
Normalized Loss Coefficient | 0.976 | 0.988 | 1.008 | 1.000 | 0.984 | 0.869 |
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Musch, C.; Hecker, S.; Gloss, D.; Steinhoff, R. Impact of the Exhaust Geometry on Flow Losses in a High-Pressure Steam Turbine. Int. J. Turbomach. Propuls. Power 2016, 1, 2. https://doi.org/10.3390/ijtpp1010002
Musch C, Hecker S, Gloss D, Steinhoff R. Impact of the Exhaust Geometry on Flow Losses in a High-Pressure Steam Turbine. International Journal of Turbomachinery, Propulsion and Power. 2016; 1(1):2. https://doi.org/10.3390/ijtpp1010002
Chicago/Turabian StyleMusch, Christian, Simon Hecker, Daniel Gloss, and Ruben Steinhoff. 2016. "Impact of the Exhaust Geometry on Flow Losses in a High-Pressure Steam Turbine" International Journal of Turbomachinery, Propulsion and Power 1, no. 1: 2. https://doi.org/10.3390/ijtpp1010002
APA StyleMusch, C., Hecker, S., Gloss, D., & Steinhoff, R. (2016). Impact of the Exhaust Geometry on Flow Losses in a High-Pressure Steam Turbine. International Journal of Turbomachinery, Propulsion and Power, 1(1), 2. https://doi.org/10.3390/ijtpp1010002