Experimental Results in a Variable-Pitch Wells Rotor †
Abstract
:1. Introduction
2. Experimental Setup and Procedure
3. Results
3.1. Global Performance for a Complete Piston Period
3.2. Performance During the Inflow Phase
3.3. Local Performance for the Same Value of
4. Conclusions
- Both the output torque and pressure drop for any given stable operating condition decrease with the blade stagger angle; the maximum value of the efficiency grows and moves to larger flow rates, but it occurs almost for the same value of the pressure coefficient.
- When pitching the blades, the flow obstruction decreases, mitigating the three-dimensional characteristic of the inlet flow that naturally tends to move from the hub to the tip, due to the reducing solidity and to the tip clearance.
- For the same value of the available energy provided by the OWC, pitching the blades produces almost the same specific work along the blade height, while the local aerodynamic efficiency, at every radial position, grows with the stagger angle. This is due to the lower aerodynamic losses experienced in the presence of staggered blades.
- On the contrary, for the same value of the available energy provided by the OWC, the exit kinetic energy losses become larger with the blade stagger angle, although their relatively small contribution to the overall losses does not affect the trend in rotor efficiency.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Nomenclature
C | absolute velocity |
c | blade chord |
efficiency | |
f | frequency of rotation |
h | enthalpy per unit mass |
i | incidence angle |
P | total pressure |
p | static pressure |
static pressure drop coefficient | |
Q | volumetric flow rate |
r | rotor radius |
T | aerodynamic torque |
t | tip clearance |
torque coefficient | |
wave/piston period | |
U | peripheral speed |
V | velocity |
W | relative velocity |
relative total pressure loss coefficient | |
Z | piston position |
z | number of blades |
Greek symbols | |
absolute flow angle | |
relative flow angle | |
radial flow angle | |
stagger angle | |
hub-to-tip ratio | |
rotor angular velocity | |
work coefficient | |
fluid density | |
rotor solidity | |
exit kinetic energy losses | |
Subscripts and superscripts | |
1 | inlet |
2 | outlet |
hub | |
r | radial |
relative flow | |
isentropic | |
t | total |
tangential | |
tip | |
z | axial |
Acronyms | |
CFD | computational fluid dynamics |
OWC | oscillating water column |
PTO | power take-off |
WEC | wave energy converter |
References
- Gunn, K.; Stock-Williams, C. Quantifying the global wave power resource. Renew. Energy 2012, 44, 296–304. [Google Scholar] [CrossRef]
- Guo, B.; Ringwood, J.V. A review of wave energy technology from a research and commercial perspective. IET Renew. Power Gener. 2021, 15, 3065–3090. [Google Scholar] [CrossRef]
- López, I.; Andreu, J.; Ceballos, S.; Martínez de Alegría, I.; Kortabarria, I. Review of wave energy technologies and the necessary power-equipment. Renew. Sustain. Energy Rev. 2013, 27, 413–434. [Google Scholar] [CrossRef]
- Aderinto, T.; Li, H. Review on Power Performance and Efficiency of Wave Energy Converters. Energies 2019, 12, 4329. [Google Scholar] [CrossRef]
- Guo, C.; Sheng, W.; De Silva, D.G.; Aggidis, G. A Review of the Levelized Cost of Wave Energy Based on a Techno-Economic Model. Energies 2023, 16, 2144. [Google Scholar] [CrossRef]
- Delmonte, N.; Barater, D.; Giuliani, F.; Cova, P.; Buticchi, G. Oscillating water column power conversion: A technology review. In Proceedings of the 2014 IEEE Energy Conversion Congress and Exposition (ECCE), Pittsburgh, PA, USA, 14–18 September 2014; pp. 1852–1859. [Google Scholar] [CrossRef]
- Drew, B.; Plummer, A.R.; Sahinkaya, M.N. A review of wave energy converter technology. Proc. Inst. Mech. Eng. Part A J. Power Energy 2009, 223, 887–902. [Google Scholar] [CrossRef]
- Curto, D.; Franzitta, V.; Guercio, A. Sea wave energy. A review of the current technologies and perspectives. Energies 2021, 14, 6604. [Google Scholar] [CrossRef]
- Wells, Alan Arthur Fluid Driven Rotary Transducer. British Patent No. 1595700, 13 November 1976.
- Raghunathan, S. The Wells air turbine for wave energy conversion. Prog. Aerosp. Sci. 1995, 31, 335–386. [Google Scholar] [CrossRef]
- Shehata, A.; Xiao, Q.; Saqr, K.; Alexander, D. Wells turbine for wave energy conversion: A review. Int. J. Energy Res. 2017, 41, 6–38. [Google Scholar] [CrossRef]
- Setoguchi, T.; Santhakumar, S.; Maeda, H.; Takao, M.; Kaneko, K. A review of impulse turbines for wave energy conversion. Renew. Energy 2001, 23, 261–292. [Google Scholar] [CrossRef]
- Boake, C.; Whittaker, T.; Folley, M.; Ellen, H. Overview and initial operational experience of the LIMPET Wave Energy Plant. In Proceedings of the 12th International Offshore and Polar Engineering Conference, Kitakyushu, Japan, 26–31 May 2002; Volume 12. [Google Scholar]
- Torre-Enciso, Y.; Ortubia, I.; de Aguileta, L.I.L.; Marqués, J. Mutriku Wave Power Plant: From the thinking out to the reality. In Proceedings of the 8th European Wave and Tidal Energy Conference, Uppsala, Sweden, 7–10 September 2009. [Google Scholar]
- Gato, L.; Falcão, A.d.O. Aerodynamics of the Wells turbine. Int. J. Mech. Sci. 1988, 30, 383–395. [Google Scholar] [CrossRef]
- Raghunathan, S.; Tan, C.P.; Ombaka, O.O. Performance of the Wells self-rectifying air turbine. Aeronaut. J. 1985, 89, 369–379. [Google Scholar] [CrossRef]
- Amundarain, M.; Alberdi, M.; Garrido, A.J.; Garrido, I.; Maseda, J. Wave energy plants: Control strategies for avoiding the stalling behaviour in the Wells turbine. Renew. Energy 2010, 35, 2639–2648. [Google Scholar] [CrossRef]
- Anderson, J. Fundamentals of Aerodynamics; McGraw-Hill Education: New York, NY, USA, 2010. [Google Scholar]
- Barambones, O.; Cortajarena, J.; Gonzalez de Durana, J.; Alkorta, P. A real time sliding mode control for a wave energy converter based on a Wells turbine. Ocean Eng. 2018, 163, 275–287. [Google Scholar] [CrossRef]
- Lekube, J.; Garrido, A.; Garrido, I. Variable speed control in Wells turbine-based oscillating water column devices: Optimum rotational speed. In Proceedings of the 6th International Conference on Power Science and Engineering ICPSE2017, St. Petersburg, Russia, 2–4 December 2017; Volume 136. [Google Scholar] [CrossRef]
- Licheri, F.; Ghisu, T.; Cambuli, F.; Puddu, P. Wells turbine efficiency improvements: Experimental application of a speed control strategy. J. Phys. Conf. Ser. 2022, 2385, 012132. [Google Scholar] [CrossRef]
- Licheri, F.; Puddu, P.; Cambuli, F.; Ghisu, T. Experimental investigation on a speed controlled Wells turbine for wave energy conversion. In International Conference on Offshore Mechanics and Arctic Engineering; Volume 8: Ocean Renewable Energy; American Society of Mechanical Engineers: New York, NY, USA, 2022; p. V008T09A077. [Google Scholar] [CrossRef]
- M’zoughi, F.; Garrido, I.; Bouallègue, S.; Ayadi, M.; Garrido, A.J. Intelligent Airflow Controls for a Stalling-Free Operation of an Oscillating Water Column-Based Wave Power Generation Plant. Electronics 2019, 8, 70. [Google Scholar] [CrossRef]
- Salter, S.H.; Taylor, J.R.M.; Caldwell, N.J. Power conversion mechanisms for wave energy. Proc. Inst. Mech. Eng. Part M 2002, 216, 1–27. [Google Scholar] [CrossRef]
- Gato, L.M.C.; de O. Falcão, A.F. Aerodynamics of the Wells turbine: Control by swinging rotor-blades. Int. J. Mech. Sci. 1989, 31, 425–434. [Google Scholar] [CrossRef]
- Gato, L.M.C.; Eça, L.R.C.; Falcão, A.F.d.O. Performance of the Wells Turbine With Variable Pitch Rotor Blades. J. Energy Resour. Technol. 1991, 113, 141–146. [Google Scholar] [CrossRef]
- Gato, L.M.C.; Webster, M. An experimental investigation into the effect of rotor blade sweep on the performance of the variable-pitch Wells turbine. Proc. Inst. Mech. Eng. Part A J. Power Energy 2001, 215, 611–622. [Google Scholar] [CrossRef]
- Kim, T.; Setoguchi, T.; Takao, M.; Kaneko, K.; Santhakumar, S. Study of turbine with self-pitch-controlled blades for wave energy conversion. Int. J. Therm. Sci. 2002, 41, 101–107. [Google Scholar] [CrossRef]
- Tease, W.K. Dynamic Response of a Variable Pitch Wells Turbine; Report; Turbine Department, Wavegen: Inverness, UK, 2007. [Google Scholar]
- Licheri, F.; Climan, A.; Puddu, P.; Cambuli, F.; Ghisu, T. Numerical study of a Wells turbine with variable pitch rotor blades. Energy Procedia 2018, 148, 511–518. [Google Scholar] [CrossRef]
- Licheri, F.; Ghisu, T.; Cambuli, F.; Puddu, P. Experimental characterization of a variable-pitch Wells turbine. J. Phys. Conf. Ser. 2024, 2893, 012131. [Google Scholar] [CrossRef]
- Sarmento, A.J.N.A.; Gato, L.M.C.; Falcão, A.F.d.O. Turbine-controlled wave energy absorption by oscillating water column devices. Ocean Eng. 1990, 17, 481–497. [Google Scholar] [CrossRef]
- Taylor, J.R.; Caldwell, N. Design and Construction of the Variable-Pitch Air Turbine for the Azores Wave Energy Plant. In Proceedings of the 3rd European Wave Power Conference, Patras, Greece, 30 September–2 October 1998; pp. 328–337. [Google Scholar]
- Falcão, A.F.O.; Sarmento, A.J.N.A.; Gato, L.M.C.; Brito-Melo, A. The Pico OWC wave power plant: Its lifetime from conception to closure 1986–2018. Appl. Ocean Res. 2020, 98, 102104. [Google Scholar] [CrossRef]
- Paderi, M.; Puddu, P. Experimental investigation in a Wells turbine under bi-directional flow. Renew. Energy 2013, 57, 570–576. [Google Scholar] [CrossRef]
- Licheri, F.; Ghisu, T.; Cambuli, F.; Puddu, P. Experimental reconstruction of the local flow field in a Wells turbine using a three-dimensional pressure probe. Energy 2024, 296, 131062. [Google Scholar] [CrossRef]
- Licheri, F.; Ghisu, T.; Cambuli, F.; Puddu, P.; Carta, M. Effects of tip gap size and aspect ratio on the performance of a Wells turbine. Renew. Energy 2025, 242, 122389. [Google Scholar] [CrossRef]
- Licheri, F.; Ghisu, T.; Cambuli, F.; Puddu, P.; Carta, M. Experimental results in a variable-pitch Wells rotor. In Proceedings of the 16th European Turbomachinery Conference, Hannover, Germany, 24–28 March 2025; Paper n. ETC2025-254. Available online: https://www.euroturbo.eu/publications/conference-proceedings-repository/ (accessed on 8 April 2023).
- Peng, J.; Hu, C.; Yang, C. Influence of incoming wave conditions on the hysteretic behavior of an oscillating water column system for wave energy conversion. Ocean Eng. 2023, 280, 114828, Corrigendum in Ocean Eng. 2023, 290, 116209. [Google Scholar] [CrossRef]
- Bryer, D.W.; Pankhurst, R.C. Pressure-Probe Methods for Determining Wind Speed and Direction. Aeronaut. J. 1971, 75, 126. [Google Scholar] [CrossRef]
- Shannon, C. Communication in the Presence of Noise. Proc. IRE 1949, 37, 10–21. [Google Scholar] [CrossRef]
- Horlock, J. Losses and efficiencies in axial-flow turbines. Int. J. Mech. Sci. 1960, 2, 48–75. [Google Scholar] [CrossRef]
- Dixon, S.L.; Hall, C.A. Fluid Mechanics and Thermodynamics of Turbomachinery, 6th ed.; Elsevier, Inc.: Amsterdam, The Netherlands, 2010. [Google Scholar]
- Licheri, F.; Ghisu, T.; Cambuli, F.; Puddu, P. Detailed investigation of the local flow-field in a Wells turbine coupled to an OWC simulator. Renew. Energy 2022, 197, 583–593. [Google Scholar] [CrossRef]
- Coleman, H.W.; Glenn Steel, W., Jr. Experimentation, Validation, and Uncertainty Analysis for Engineers, 3rd ed.; John Wiley & Sons, Ltd.: New York, NY, USA, 2009. [Google Scholar] [CrossRef]
- Falcão, A.F.O.; Gato, L.M.C. 8.05—Air Turbines. In Comprehensive Renewable Energy; Elsevier: Oxford, UK, 2012; pp. 111–149. [Google Scholar] [CrossRef]
rotor tip radius, | 124.7 mm |
rotor hub radius, | 95 mm |
chord length, c | 36 mm |
number of blades, z | 14 |
airfoil profile | NACA 0015 |
rotor solidity | 0.729 |
tip-gap-to-chord ratio, | 4.4% |
hub-to-tip ratio, | 0.76 |
sweep ratio | 15/36 |
blade stagger angle, | 0–5–10 deg |
piston period, | 7 s |
stroke amplitude | ≈850 mm |
turbine rotational frequency, f | 45 Hz |
number of radial probe positions | 13 |
number of acquired periods per position | 7 |
sampling rate | 200 Hz |
[deg] | |||
---|---|---|---|
0 | 0.26 | 0.75 | 0.2 |
5 | 0.31 | 0.64 | 0.2 |
10 | 0.37 | 0.53 | 0.2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Published by MDPI on behalf of the EUROTURBO. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY-NC-ND) license (https://creativecommons.org/licenses/by-nc-nd/4.0/).
Share and Cite
Licheri, F.; Ghisu, T.; Cambuli, F.; Puddu, P.; Carta, M. Experimental Results in a Variable-Pitch Wells Rotor. Int. J. Turbomach. Propuls. Power 2025, 10, 10. https://doi.org/10.3390/ijtpp10020010
Licheri F, Ghisu T, Cambuli F, Puddu P, Carta M. Experimental Results in a Variable-Pitch Wells Rotor. International Journal of Turbomachinery, Propulsion and Power. 2025; 10(2):10. https://doi.org/10.3390/ijtpp10020010
Chicago/Turabian StyleLicheri, Fabio, Tiziano Ghisu, Francesco Cambuli, Pierpaolo Puddu, and Mario Carta. 2025. "Experimental Results in a Variable-Pitch Wells Rotor" International Journal of Turbomachinery, Propulsion and Power 10, no. 2: 10. https://doi.org/10.3390/ijtpp10020010
APA StyleLicheri, F., Ghisu, T., Cambuli, F., Puddu, P., & Carta, M. (2025). Experimental Results in a Variable-Pitch Wells Rotor. International Journal of Turbomachinery, Propulsion and Power, 10(2), 10. https://doi.org/10.3390/ijtpp10020010