Radial Turbine Thermo-Mechanical Stress Optimization by Multidisciplinary Discrete Adjoint Method
Abstract
:1. Introduction
1.1. Background
1.2. Motivation
1.3. Goal of the Paper
2. Primal Solver
2.1. Mapping Procedure
2.2. Partitioned Coupling
2.3. Solid Heat Transfer Solver
2.4. Fluid Solver
2.5. Solid Mechanical Solver
3. Adjoint Solver
3.1. Adjoint Variables
3.2. Adjoint Response Function
3.3. Adjoint Mechanical Solver
3.4. Adjoint Heat Transfer Solver
3.5. Adjoint hFFB Procedure (Solid → Fluid)
3.6. Adjoint Fluid Solver
3.7. Adjoint hFFB Procedure (Fluid → Solid)
4. Validation
4.1. Flat Plate (Primal Mode)
4.2. Rotor Mesh Sensitivity Analysis
4.3. Gradients Accuracy Evaluation
5. Results and Discussion
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Nomenclature
CFD | Computational Fluid Dynamics |
FEM | Finite Element Method |
DWI | Distance-Weighted Interpolation |
CHT | Conjugate Heat Transfer |
FSI | Fluid Structure Interaction |
JT-KIRK | Jacobian Trained Krylov Implicit Runge Kutta |
MUSCL | Monotonic Upstream-centered Scheme for Conservation Laws |
design variable | |
thermal expansion coefficient [K−1] | |
thermal strain [-] | |
von Mises stresses [Pa] | |
adjoint variable | |
distance between i-th fluid cell-solid node coupling in DWI procedure [m] | |
temperature gradient normal to wall [K/m] | |
elasticity-strain matrix | |
virtual heat transfer coefficient [W/m2 K] | |
cost function, objective function | |
thermal conductivity coefficient [W/mK] | |
heat flux from fluid domain normal to the wall [W/m2] | |
heat flux in solid domain normal to the wall [W/m2] | |
non-linear residuals in fluid analysis | |
fluid temperature in first layer of inner domain cells [K] | |
virtual fluid bulk temperature [K] | |
virtual fluid bulk temperature interpolated by DWI procedure [K] | |
fluid temperature at the wall [K] | |
fluid temperature in first layer of ghost cells [K] | |
reference temperature for thermal strains calculation [K] | |
conservative flow variables in fluid analysis | |
adjoint variable | |
primitive flow variables at domain boundaries in fluid analysis | |
fluid/solid grid coordinate (x,y,z) [m] |
References
- Vassberg, J.C.; Jameson, A. Industrial Application of Aerodynamic Shape Optimization; von Karman Institute for Fluid Dynamics Lecture Series 2018-04; von Karman Institute for Fluid Dynamics: Sint-Genesius-Rode, Belgium, 2018. [Google Scholar]
- Hildebrandt, T.; Thiel, P.; Suganuma, H. Multidisziplinäre und Multikriterielle Kennfeld Optimierung eines Turboladerverdichters für Motorsport Anwendungen. In Proceedings of the 23rd Supercharging Conference, Dresden, Germany, 20–21 September 2018; pp. 355–371. [Google Scholar]
- Fröhlig, F.; Kech, J.; Lachenmaier, N.; Männle, T. The Development of the ZR-Turbocharger-family from MTU to Increase Efficiency and Dynamic of the Charging System. In Proceedings of the 24th Supercharging Conference, Dresden, Germany, 26–27 September 2019; pp. 31–50. [Google Scholar]
- Wöhr, M.; Schneid, M.; Palenschat, T.; Dillmann, A.; Müller, M. Automated Turbocharger Compressor Development at Daimler Trucks. In Proceedings of the 13th International Conference on Turbochargers and Turbocharging, London, UK, 16–17 May 2018; pp. 153–165. [Google Scholar]
- Buske, C.; Krumme, A.; Schmidt, T.; Dresbach, C.; Zur, S.; Tiefers, R. Distributed Multidisciplinary Optimization of a Turbine Blade Regarding Performance, Reliability and Castability. In Proceedings of the ASME Turbo Expo 2016—Volume 2C: Turbomachinery, Seoul, Korea, 13–17 June 2016. [Google Scholar]
- Liu, X.; Furrer, D.; Kosters, J.; Holmes, J. Vision 2040: A Roadmap for Integrated, Multiscale Modeling and Simulation of Materials and Systems; NASA/CR-2018-219771; NASA Technical Reports Server: Washington, DC, USA, 2018.
- Lotz, R.D.; Andrews, D.N.; McHenry, J.P.; Van Saun, D.; Watson, J.P. Further Development of a High-efficiency Compressor Stage Suited to Post Euro VI Emissions and Fuel Economy Legislation. In Proceedings of the 13th International Conference on Turbochargers and Turbocharging, London, UK, 16–17 May 2018; pp. 139–151. [Google Scholar]
- Ioannou, E.; Costall, A.W.; Khairuddin, U.; Ramasamy, P.; Haigh, E. Turbocharger Turbine Aerodynamic Optimization for Reduced Fuel Consumption and CO2 Emissions from Heavy-duty Diesel Engines: Experimental Validation and Flow Field Analysis. In Proceedings of the 13th International Conference on Turbochargers and Turbocharging, London, UK, 16–17 May 2018; pp. 373–388. [Google Scholar]
- Abbas, H.A.; Sarker, R.; Newton, C. PDE: A Pareto-Frontier Differential Evolution Approach for Multi-objective Optimization Problems. In Proceedings of the Congress of Evolutionary Computation, Piscataway, NJ, USA, 27–30 May 2001; Volume 2, pp. 971–978. [Google Scholar]
- Siller, U.; Voβ, C.; Nicke, E. Automated Multidisciplinary Optimization of a Transonic Axial Compressor. In Proceedings of the 47th AIAA Aerospace Sciences Meeting Including The New Horizons Forum and Aerospace Exposition, Orlando, FL, USA, 5–8 January 2009. [Google Scholar]
- Goldberg, D.E. Genetic Algorithms in Search, Optimization and Machine Learning; Addison-Wesley Longman Publishing: Boston, MA, USA, 1989. [Google Scholar]
- Conn, A.R.; Scheinberg, K.; Vicente, L.N. Introduction to Derivative-Free Optimization; MOS-SIAM Series on Optimization; SIAM: Philadelphia, PA, USA, 2009. [Google Scholar]
- Trunk, G.V. A Problem of Dimensionality: A Simple Example. IEEE Transaction on Pattern Analysis and Machine Intelligence; IEEE: Piscataway, NJ, USA, 1979; Volume 1, Issue 3, pp. 306–307. [Google Scholar]
- Jameson, A. Aerodynamic Design via Control Theory. J. Sci. Comput. 1988, 3, 233–260. [Google Scholar] [CrossRef] [Green Version]
- Giles, M.B.; Pierce, N.A. An Introduction to the Adjoint Approach to Design. Flow Turbul. Combust. 2000, 65, 393–415. [Google Scholar] [CrossRef]
- Martins, J.R.R.A.; Sturdza, P.; Alonso, J.J. The Complex-step Derivative Approximation. In ACM Transactions on Mathematical Software; Association for Computing Machinery: New York, NY, USA, 2003; Volume 29, Issue 3. [Google Scholar]
- Luo, J.; Xiong, J.; Liu, F.; McBean, I. Three-Dimensional Aerodynamic Design Optimization of a Turbine Blade by Using an Adjoint Method. J. Turbomach. 2011, 133, 011026. [Google Scholar] [CrossRef]
- Pironneau, O. On Optimum Design in Fluid Mechanics. J. Fluid Mech. 1974, 64, 97–110. [Google Scholar] [CrossRef]
- Mueller, L. Adjoint-Based Optimization of Turbomachinery Applied to Axial and Radial Turbines. Ph.D. Thesis, Université Libre de Bruxelles, Bruxelles, Belgium, 2019. [Google Scholar]
- Verstraete, T.; Mueller, L.; Mueller, J.D. CAD-Based Adjoint Optimization of the Stresses in a Radial Turbine. In Proceedings of the ASME Turbo Expo 2017, Charlotte, NC, USA, 26–30 June 2017; Volume 2C. Paper No. GT2017-65005. [Google Scholar]
- Schwalbach, M.; Mueller, L.; Verstraete, T.; Gauger, N.R. CAD-Based Adjoint Multidisciplinary Optimization of a Radial Turbine under Structural Constraints. In Proceedings of the 2018 Global Power and Propulsion Forum, Montreal, QC, Canada, 10–12 January 2018. Paper No. GPPS-NA-2018-133. [Google Scholar]
- Mueller, L.; Prinsier, J.; Verstraete, T.; Racca, A. CAD-Based Multidisciplinary Adjoint Optimization of a Radial Compressor Impeller. In Proceedings of the 24th Supercharging Conference, Dresden, Germany, 26–27 September 2019; pp. 415–434. [Google Scholar]
- Pini, M.; Persico, G.; Dossena, V. Robust Adjoint-Based Shape Optimization of Supersonic Turbomachinery Cascades. In Proceedings of the ASME Turbo Expo, Dusseldorf, Germany, 16–20 June 2014. [Google Scholar]
- Lachenmaier, N.; Baumgärtner, D.; Schiffer, H.P.; Kech, J. Gradient-free and Gradient-based Optimization of a Radial Turbine. In Proceedings of the 13th European Conference on Turbomachinery Fluid dynamics & Thermodynamics, Lausanne, Switzerland, 8–12 April 2019. [Google Scholar]
- He, L.; Wang, D.X. Concurrent Blade Aerodynamic-Aero-elastic Design Optimization Using Adjoint Method. J. Turbomach. 2011, 133, 011021. [Google Scholar] [CrossRef]
- Xu, S.; Radford, D.; Meyer, M.; Mueller, J.D. Stabilisation of Discrete Steady Adjoint Solvers. J. Comput. Phys. 2015, 299, 175–195. [Google Scholar] [CrossRef]
- Xu, S.; Timme, S. Robust and Efficient Adjoint Solver for Complex Flow Conditions. Comput. Fluids 2017, 148, 26–38. [Google Scholar] [CrossRef] [Green Version]
- Rakut, C.; Diefenthal, M.; Tadesse, H.; Wirsum, M. Radial Turbine Temperature Field; FVV Information Sessions Turbomachinery, Project 1064; FVV: Würzburg, Germany, 2015. [Google Scholar]
- Makhija, D.S.; Beran, P.S. Concurrent Shape and Topology Optimization for Unsteady Conjugate Heat Transfer. Struct. Multidiscip. Optim. 2020, 62, 1275–1297. [Google Scholar] [CrossRef]
- Jaksch, P. Implementation of an Adjoint Thermal Solver for Inverse Problems. In Proceedings of the 12th European Conference on Turbomachinery Fluid Dynamics & Thermodynamics, Stockholm, Sweden, 3–7 April 2017. [Google Scholar]
- Subramaniam, V.; Dbouk, T.; Harion, J.-L. Topology Optimization of Conjugate Heat Transfer Systems: A Competition between Heat Transfer Enhancement and Pressure Drop Reduction. Int. J. Heat Fluid Flow 2019, 75, 165–184. [Google Scholar] [CrossRef]
- Perelmann, L.T. On Conjugate Problems of Heat Transfer. Int. J. Heat Mass Transf. 1961, 3, 293–303. [Google Scholar] [CrossRef]
- Luikov, A.V. Conjugate Convective Heat Transfer Problems. Int. J. Heat Mass Transf. 1974, 17, 257–265. [Google Scholar] [CrossRef]
- Verstraete, T. CADO: A Computer Aided Design and Optimization Tool for Turbomachinery Applications. In Proceedings of the 2nd International Conference on Engineering Optimization, Lisbon, Portugal, 6–9 September 2010; pp. 6–9. [Google Scholar]
- Nocedal, J.; Wright, S.J. Numerical Optimization; Springer Science & Business Media, LLC: Berlin/Heidelberg, Germany, 2006; Volume 2. [Google Scholar]
- Gkaragkounis, K.T.; Papoutsis-Kiachagias, E.M.; Giannakoglou, K.C. The Continuous Adjoint Method for Shape Optimization in Conjugate Heat Transfer Problems with Turbulent Incompressible Flows. Appl. Therm. Eng. 2018, 140, 351–362. [Google Scholar] [CrossRef]
- Mousavi, S.A. Constrained Aerodynamic and Heat Transfer Optimization of Gas Turbine Blades Using an Adjoint Approach. Ph.D. Thesis, McGill University, Montreal, QC, Canada, 2012. [Google Scholar]
- Burghardt, O.; Albring, T.; Gauger, N.R. Computation of Accurate Adjoint-based Gradients for Optimization in Conjugate Heat Transfer Problems. In Proceedings of the 6th European Conference on Computational Mechanics, Glasgow, UK, 11–15 June 2018. [Google Scholar]
- Burghardt, O.; Gauger, N.R.; Economon, T.D. Coupled Adjoints for Conjugate Heat Transfer in Variable Density Incompressible Flows. In Proceedings of the AIAA Aviation 2019 Forum, Dallas, TX, USA, 17–21 June 2019. [Google Scholar]
- Towara, M.; Lotz, J.; Naumann, U. Discrete Adjoint Approaches for CHT Applications in OpenFOAM. In Proceedings of the Eurogen 2019, Guimarães, Portugal, 12–14 September 2019. [Google Scholar]
- Verdicchio, J.A.; Chew, J.W.; Hills, N.J. Coupled Fluid/Solid Heat Transfer Computation for Turbine Discs. In Proceedings of the ASME Turbo Expo, New Orleans, LA, USA, 4–7 June 2001; Volume 3. Paper No. 2001-GT-0205. [Google Scholar]
- Errera, M.P.; Baqué, B. A Quasi-dynamic Procedure for Coupled Thermal Simulations. Int. J. Numer. Methods Fluids 2013, 72, 1183–1206. [Google Scholar] [CrossRef]
- Sun, Z.; Chew, J.W.; Hills, N.J.; Volkov, K.N.; Barnes, C.J. Efficient Finite Element Analysis/Computational Fluid Dynamics Thermal Coupling for Engineering Applications. J. Turbomach. 2010, 132, 031016. [Google Scholar] [CrossRef] [Green Version]
- Meng, F.; Dong, S.; Wang, J.; Guo, D. A New Algorithm of Global Tightly-coupled Transient Heat Transfer Based on Quasi-steady Flow to the Conjugate Heat Transfer Problem. Theor. Appl. Mech. Lett. 2016, 6, 233–235. [Google Scholar] [CrossRef] [Green Version]
- Radenac, E.; Gressier, J.; Millan, P.; Giovannini, A. A Conservative Coupling Numerical Method for Transient Conjugate Heat Transfer. In Proceedings of the International Conference on Computational Methods for Coupled Problems in Science and Engineering, Santorin, Greece, 25–28 May 2005. [Google Scholar]
- Verstraete, T. Multidisciplinary Turbomachinery Component Optimization Considering Performance, Stress, and Internal Heat Transfer. Ph.D. Thesis, Universiteit Gent, Gent, Belgium, 2008. [Google Scholar]
- Verstraete, T.; Van den Braembussche, R. A Novel Method for the Computation of Conjugate Heat Transfer with Coupled Solvers. In Proceedings of the International Symposium on Heat Transfer in Gas Turbine Systems, Antalya, Turkey, 9–14 August 2009. [Google Scholar]
- Verstraete, T.; Scholl, S. Stability Analysis of Partitioned Methods for Predicting Conjugate Heat Transfer. Int. J. Heat Mass Transf. 2016, 101, 852–869. [Google Scholar] [CrossRef]
- Bathe, K.J.; Khoshgoftaar, M.R. Finite Element Formulation and Solution of Nonlinear Heat Transfer. Nucl. Eng. Des. 1979, 51, 389–401. [Google Scholar] [CrossRef] [Green Version]
- Blazek, J. Computational Fluid Dynamics: Principles and Applications, 2nd ed.; Elsevier Science Ltd.: Amsterdam, The Netherlands, 2001. [Google Scholar]
- Schwalbach, M.; Verstraete, T.; Gauger, N.R. Adjoint Optimization of Turbomachinery Components under Mechanical Constraints. In The 8th VKI PhD Symposium; von Karman Institute for Fluid Dynamics: Sint-Genesius-Rode, Belgium, 2007. [Google Scholar]
- Dhondt, G. The Finite Element Method for Three-Dimensional Thermomechanical Applications; John Wiley & Sons Ltd.: Chichester, UK, 2004. [Google Scholar]
- Martins, J.R.R.A.; Alonso, J.J.; Reuther, J.J. A Coupled-Adjoint Sensitivity Analysis Method for High-Fidelity Aero-Structural Design. Optim. Eng. 2005, 6, 33–62. [Google Scholar] [CrossRef]
- Griewank, A.; Walther, A. Evaluating Derivatives: Principles and Techniques of Algorithmic Differentiation, 2nd ed.; Siam: Philadelphia, PA, USA, 2008. [Google Scholar]
- Scholl, S.; Janssens, B.; Verstraete, T. Stability of Static Conjugate Heat Transfer Coupling Approaches Using Robin Interface Conditions. Comput. Fluids 2018, 172, 209–225. [Google Scholar] [CrossRef]
- Hirsch, C. Numerical Computation of Internal and External Flows, Volume 2: Computational Methods for Inviscid and Viscous Flows; Wiley: Chichester, UK, 1990. [Google Scholar]
- Taguchi, G. Introduction to Quality Engineering: Designing Quality into Products and Processes; Asian Productivity Organization/UNIPUB: White Plain, NY, USA; Unipub/Kraus: New York, NY, USA, 1986. [Google Scholar]
Domain Settings | Value |
---|---|
Fluid domain length/height | 0.25 m/0.1 m |
Fluid mesh cells count | 365,000 |
Plate thickness/length | 0.01 m/0.2 m |
Solid mesh nodes count/elements count | 35,000 |
Fluid type | Air |
Inlet flow total pressure | 1.03 × 105 Pa |
Inlet flow temperature | 1000 K |
Outlet flow static pressure | 1.029 × 105 Pa |
Plate temperature at bottom face | 600 K |
Plate thermal conductivity | 0.29 W/m K |
Virtual heat transfer coefficient | 100 W/m2 K |
Boundary Conditions | Value |
---|---|
Inlet total pressure p0 | 173 kPa |
Inlet total temperature T0 | 1080 K |
Inlet flow angle α from radial direction | 62 deg |
Outlet static pressure ps | 101 kPa |
Blade rotational speed ω | 140,000 RPM |
Factors Levels | Value |
---|---|
Fluid domain “coarse”—cells count | 0.8 M |
Fluid domain “mid”—cells count | 1.3 M |
Fluid domain “fine”—cells count | 2.1 M |
Solid domain “coarse”—nodes count | 105 k |
Solid domain “mid”—nodes count | 295 k |
Solid domain “fine”—nodes count | 1.1 M |
low–mid–high (W/m2 K) | 800–1000–1300 |
Test Case Number | CFD Mesh | FEM Mesh | |
---|---|---|---|
1 | coarse | coarse | 800 |
2 | coarse | mid | 1000 |
3 | coarse | fine | 1300 |
4 | mid | coarse | 1000 |
5 | mid | mid | 1300 |
6 | mid | fine | 800 |
7 | fine | coarse | 1300 |
8 | fine | mid | 800 |
9 | fine | fine | 1000 |
Case# | #CHT Loops to Convergence [-] | Norm. Computational Time for CHT Iteration | Computational Time: CFD—FEM w.r.t. Total | Maximum Solid Temperature [K] | Delta Temperature Integral |
---|---|---|---|---|---|
1 | 11 | 1.0× | 97.0–0.5% | 1019 | 0.121 |
2 | 10 | 1.02× | 95.2–1.9% | 1025 | 0.053 |
3 | 9 | 1.36× | 71.3–25.0% | 1027 | 0.045 |
4 | 8 | 1.76× | 98.3–0.3% | 1026 | 0.092 |
5 | 10 | 1.78× | 97.2–1.1% | 1028 | 0.038 |
6 | 12 | 2.12× | 81.6–16.1% | 1028 | 0.023 |
7 | 11 | 2.4× | 98.6–0.2% | 1026 | 0.074 |
8 | 11 | 2.44× | 97.2–0.8% | 1028 | 0.019 |
9 | 8 | 2.76× | 86.5–12.4% | 1028 | 0.000 |
Design Variables α | |
---|---|
1 | Rotor hub meridional contour: Y-coordinate at 20% chord; |
2 | Rake angle; |
3 | Back-plate thickness; |
4 | Turbine shaft diameter; |
5 | Turbine shaft length; |
6 | Rotor maximum diameter; |
7 | Blade height at leading edge; |
8 | Back-plate/shaft connection axial position; |
9 | Blade hub thickness; |
10 | Blade hub fillet radius. |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Racca, A.; Verstraete, T.; Casalino, L. Radial Turbine Thermo-Mechanical Stress Optimization by Multidisciplinary Discrete Adjoint Method. Int. J. Turbomach. Propuls. Power 2020, 5, 30. https://doi.org/10.3390/ijtpp5040030
Racca A, Verstraete T, Casalino L. Radial Turbine Thermo-Mechanical Stress Optimization by Multidisciplinary Discrete Adjoint Method. International Journal of Turbomachinery, Propulsion and Power. 2020; 5(4):30. https://doi.org/10.3390/ijtpp5040030
Chicago/Turabian StyleRacca, Alberto, Tom Verstraete, and Lorenzo Casalino. 2020. "Radial Turbine Thermo-Mechanical Stress Optimization by Multidisciplinary Discrete Adjoint Method" International Journal of Turbomachinery, Propulsion and Power 5, no. 4: 30. https://doi.org/10.3390/ijtpp5040030
APA StyleRacca, A., Verstraete, T., & Casalino, L. (2020). Radial Turbine Thermo-Mechanical Stress Optimization by Multidisciplinary Discrete Adjoint Method. International Journal of Turbomachinery, Propulsion and Power, 5(4), 30. https://doi.org/10.3390/ijtpp5040030