A Holistic Framework for Forecasting Transformative AI
Abstract
:1. Introduction
2. Literature Review
2.1. Forecasting
2.2. Technology Forecasting
2.3. Scenario Analysis
2.3.1. Scenario Analysis for Mapping
2.3.2. Using Expert Opinion for Scenario Analysis
2.4. AI Forecasting
2.5. Summary of the Related Literature
3. Judgmental Distillation Mapping
4. A Holistic Framework for Forecasting AI
5. Discussion
5.1. Strengths and Weaknesses
5.2. Implications for Practice
5.3. Implications for Research
5.4. Challenges and Future Work
6. Conclusions
Funding
Acknowledgments
Conflicts of Interest
References
- Roper, A.T.; Cunningham, S.W.; Porter, A.L.; Mason, T.W.; Rossini, F.A.; Banks, J. Forecasting and Management of Technology; John Wiley & Sons: Hoboken, NJ, USA, 2011. [Google Scholar]
- Krizhevsky, A.; Sutskever, I.; Hinton, G.E. Imagenet Classification with Deep Convolutional Neural Networks. Available online: https://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf / (accessed on 21 June 2019).
- Silver, D.; Huang, A.; Maddison, C.J.; Guez, A.; Sifre, L.; Van Den Driessche, G.; Schrittwieser, J.; Antonoglou, I.; Panneershelvam, V.; Lanctot, M. Mastering the game of Go with deep neural networks and tree search. Nature 2016, 529, 484–489. [Google Scholar] [CrossRef]
- Team. OpenAI Five. Available online: https://openai.com/blog/openai-five/ (accessed on 31 May 2019).
- Building High-Level Features Using Large Scale Unsupervised Learning. Available online: https://icml.cc/2012/papers/73.pdf (accessed on 21 June 2019).
- Brundage, M. Modeling progress in AI. In Proceedings of the Thirtieth AAAI Conference on Artificial Intelligence, Phoenix, AZ, USA, 12–17 February 2016. [Google Scholar]
- Dafoe, A. AI Governance: A Research Agenda; Future of Humanity Institute, University of Oxford: Oxford, UK, 2018. [Google Scholar]
- Rahwan, I.; Cebrian, M.; Obradovich, N.; Bongard, J.; Bonnefon, J.-F.; Breazeal, C.; Crandall, J.W.; Christakis, N.A.; Couzin, I.D.; Jackson, M.O. Machine Behaviour. Nature 2019, 568, 477–486. [Google Scholar] [CrossRef]
- Duckworth, P.; Graham, L.; Osborne, M.A. Inferring Work Task Automatability from AI Expert Evidence. In Proceedings of the 2nd Conference on Artificial Intelligence for Ethics and Society, Honolulu, HI, USA, 26–28 January 2019. [Google Scholar]
- Forecasting Transformative AI: An Expert Survey. Available online: https://arxiv.org/abs/1901.08579 (accessed on 21 June 2019).
- Hutter, M. Universal Artificial Intelligence: Sequential Decisions Based on Algorithmic Probability; Springer: Berlin/Hiedelberg, Germany, 2005. [Google Scholar]
- Minsky, M.L.; Singh, P.; Sloman, A.J. The St. Thomas common sense symposium: Designing architectures for human-level intelligence. AI Mag. 2004, 25, 113. [Google Scholar]
- Drexler, K.E. Reframing Superintelligence. Available online: https://www.fhi.ox.ac.uk/wp-content/uploads/Reframing_Superintelligence_FHI-TR-2019-1.1-1.pdf (accessed on 31 May 2019).
- Armstrong, J.S. Principles of Forecasting: A Handbook for Researchers and Practitioners; Kluwer Academic Publishers: Dordrecht, The Netherlands, 2001; Volume 30. [Google Scholar]
- Hyndman, R.J.; Athanasopoulos, G. Forecasting: Principles and Practice; OTexts: Melbourne, Australia, 2018. [Google Scholar]
- Orrell, D.; McSharry, P. System economics: Overcoming the pitfalls of forecasting models via a multidisciplinary approach. Int. J. Forecast. 2009, 25, 734–743. [Google Scholar] [CrossRef]
- Cooke, R. Experts in Uncertainty: Opinion and Subjective Probability in Science; Oxford University Press on Demand: New York, NY, USA, 1991. [Google Scholar]
- Aspinall, W. A route to more tractable expert advice. Nature 2010, 463, 294. [Google Scholar] [CrossRef]
- Bradfield, R.; Wright, G.; Burt, G.; Cairns, G.; Van Der Heijden, K. The origins and evolution of scenario techniques in long range business planning. Futures 2005, 37, 795–812. [Google Scholar] [CrossRef]
- Amer, M.; Daim, T.U.; Jetter, A. A review of scenario planning. Futures 2013, 46, 23–40. [Google Scholar] [CrossRef]
- Goodwin, P.; Wright, G. The limits of forecasting methods in anticipating rare events. Technol. Forecast. Soc. Chang. 2010, 77, 355–368. [Google Scholar] [CrossRef] [Green Version]
- Rowe, G.; Wright, G. Expert opinions in forecasting: The role of the Delphi technique. In Principles of Forecasting; Springer: Dordrecht, The Netherlands, 2001; pp. 125–144. [Google Scholar]
- Arrow, K.J.; Forsythe, R.; Gorham, M.; Hahn, R.; Hanson, R.; Ledyard, J.O.; Levmore, S.; Litan, R.; Milgrom, P.; Nelson, F.D.; et al. The Promise of Prediction Markets. Science 2008, 320, 877–878. [Google Scholar] [CrossRef]
- Green, K.C.; Armstrong, J.S.; Graefe, A. Methods to Elicit Forecasts from Groups: Delphi and Prediction Markets Compared. Foresight 2007, 8, 17–20. [Google Scholar]
- Tetlock, P.E.; Gardner, D. Superforecasting: The Art and Science of Prediction; Penguin Random House: New York, NY, USA, 2016. [Google Scholar]
- Schoemaker, P.J.; Tetlock, P.E. Superforecasting: How to upgrade your company’s judgment. Harv. Bus. Rev. 2016, 94, 72–78. [Google Scholar]
- Beard, S.; Rowe, T.; Fox, J. An Analysis and Evaluation of Methods Currently Used to Quantify Existential Risk, under review.
- Sanders, N.R.; Ritzman, L.P. Judgmental adjustment of statistical forecasts. In Principles of Forecasting; Springer: Dordrecht, The Netherlands, 2001; pp. 405–416. [Google Scholar]
- Tversky, A.; Kahneman, D. Judgment under uncertainty: Heuristics and biases. Science 1974, 185, 1124–1131. [Google Scholar] [CrossRef]
- Goodwin, P.; Wright, G. Enhancing strategy evaluation in scenario planning: A role for decision analysis. J. Manag. Stud. 2001, 38, 1–16. [Google Scholar] [CrossRef]
- Wright, G.; Goodwin, P. Decision making and planning under low levels of predictability: Enhancing the scenario method. Int. J. Forecast. 2009, 25, 813–825. [Google Scholar] [CrossRef] [Green Version]
- Lipinski, A.; Loveridge, D. Institute for the future’s study of the UK, 1978–1995. Futures 1982, 14, 205–239. [Google Scholar] [CrossRef]
- Rea, L.M.; Parker, R.A. Designing and Conducting Survey Research: A Comprehensive Guide; John Wiley & Sons: San Francisco, CA, USA, 2014. [Google Scholar]
- Watts, R.J.; Porter, A.L. Innovation forecasting. Technol. Forecast. Soc. Chang. 1997, 56, 25–47. [Google Scholar] [CrossRef]
- Porter, A.L.; Cunningham, S.W. Tech mining. Compet. Intell. Mag. 2005, 8, 30–36. [Google Scholar]
- Phaal, R.; et al. Technology roadmapping—A planning framework for evolution and revolution. Technol. Forecast. Soc. Chang. 2004, 71, 5–26. [Google Scholar] [CrossRef]
- Duin, P.A. Qualitative Futures Research for Innovation; Eburon Academic Publishers: Delft, The Netherlands, 2006. [Google Scholar]
- Garcia, M.L.; Bray, O.H. Fundamentals of Technology Roadmapping; Sandia National Labs: Albuquerque, NM, USA, 1997. [Google Scholar]
- Rip, A. Mapping of science: Possibilities and limitations. In Handbook of Quantitative Studies of Science and Technology; Elsevier: Amsterdam, The Netherlands, 1988; pp. 253–273. [Google Scholar]
- Tijssen, R.J.; Van Raan, A.F. Mapping changes in science and technology: Bibliometric co-occurrence analysis of the R&D literature. Eval. Rev. 1994, 18, 98–115. [Google Scholar]
- Nagy, B.; Farmer, J.D.; Bui, Q.M.; Trancik, J.E. Statistical basis for predicting technological progress. PLoS ONE 2013, 8, e52669. [Google Scholar] [CrossRef]
- Mullins, C. Retrospective Analysis of Technology Forecasting: In-Scope Extension; The Tauri Group: Alexandria VA, USA, 2012. [Google Scholar]
- Brynjolfsson, E.; Mitchell, T. What can machine learning do? Workforce implications. Science 2017, 358, 1530–1534. [Google Scholar] [CrossRef]
- Van der Heijden, K.; Bradfield, R.; Burt, G.; Cairns, G.; Wright, G. The Sixth Sense: Accelerating Organizational Learning with Scenarios; John Wiley & Sons: San Francisco, CA, USA, 2002. [Google Scholar]
- Perla, P.P. The Art of Wargaming: A Guide for Professionals and Hobbyists; Naval Institute Press: Annapolis, MD, USA, 1990. [Google Scholar]
- Roxburgh, C. The use and abuse of scenarios. Mckinsey Q. 2009, 1, 1–10. [Google Scholar]
- Chermack, T.J.; Lynham, S.A.; Ruona, W.E. A review of scenario planning literature. Futures Res. Q. 2001, 17, 7–32. [Google Scholar]
- Gordon, T.J.; Helmer, O. Report on a Long-Range Forecasting Study; Rand Corp: Santa Monica, CA, USA, 1964. [Google Scholar]
- Schoemaker, P.J. Scenario planning: A tool for strategic thinking. Sloan Manag. Rev. 1995, 36, 25–50. [Google Scholar]
- Van Vliet, M.; Kok, K.; Veldkamp, T. Linking stakeholders and modellers in scenario studies: The use of Fuzzy Cognitive Maps as a communication and learning tool. Futures 2010, 42, 1–14. [Google Scholar] [CrossRef]
- Soetanto, R.; Dainty, A.R.; Goodier, C.I.; Austin, S.A. Unravelling the complexity of collective mental models: A method for developing and analysing scenarios in multi-organisational contexts. Futures 2011, 43, 890–907. [Google Scholar] [CrossRef] [Green Version]
- List, D. Scenario network mapping. J. Futures Stud. 2007, 11, 77–96. [Google Scholar]
- Inayatullah, S. Causal layered analysis: Poststructuralism as method. Futures 1998, 30, 815–829. [Google Scholar] [CrossRef]
- Axelrod, R. Structure of Decision: The Cognitive Maps of Political Elites; Princeton University Press: Princeton, NJ, USA, 2015. [Google Scholar]
- Tolman, E.C. Cognitive maps in rats and men. Psychol. Rev. 1948, 55, 189–208. [Google Scholar] [CrossRef]
- Jetter, A.J.; Kok, K. Fuzzy Cognitive Maps for futures studies—A methodological assessment of concepts and methods. Futures 2014, 61, 45–57. [Google Scholar] [CrossRef]
- Papageorgiou, E.I. Fuzzy Cognitive Maps for Applied Sciences and Engineering: From Fundamentals to Extensions and Learning Algorithms; Springer: Berlin/Heidelberg, Germany, 2013; Volume 54. [Google Scholar]
- List, D. Scenario Network Mapping: The Development of a Methodology for Social Inquiry; University of South Australia: Adelaide, Australia, 2005. [Google Scholar]
- Michie, D. Machines and the theory of intelligence. Nature 1973, 241, 507–512. [Google Scholar] [CrossRef]
- Grace, K. AI Timeline Surveys. Available online: https://aiimpacts.org/ai-timeline-surveys/ (accessed on 31 May 2019).
- Grace, K.; Salvatier, J.; Dafoe, A.; Zhang, B.; Evans, O. When will AI exceed human performance? Evidence from AI experts. J. Artif. Intell. Res. 2018, 62, 729–754. [Google Scholar] [CrossRef]
- Zhang, B.; Dafoe, A. Artificial Intelligence: American Attitudes and Trends; University of Oxford: Oxford, UK, 2019. [Google Scholar]
- Baum, S.D.; Goertzel, B.; Goertzel, T.G. How long until human-level AI? Results from an expert assessment. Technol. Forecast. Soc. Chang. 2011, 78, 185–195. [Google Scholar] [CrossRef]
- Müller, V.C.; Bostrom, N. Future progress in artificial intelligence: A survey of expert opinion. In Fundamental Issues of Artificial Intelligence; Springer International Publishing: Basel, Switzerland, 2016; pp. 555–572. [Google Scholar]
- Armstrong, S.; Sotala, K. How we’re predicting AI–or failing to. In Beyond Artificial Intelligence; Springer: Pilsen, Czech Republic, 2015; pp. 11–29. [Google Scholar]
- Armstrong, S.; Sotala, K.; hÉigeartaigh, S.Ó. The errors, insights and lessons of famous AI predictions–and what they mean for the future. J. Exp. Theor. Artif. Intell. 2014, 26, 317–342. [Google Scholar] [CrossRef]
- What Do We Know About AI Timelines? Available online: https://www.openphilanthropy.org/focus/global-catastrophic-risks/potential-risks-advanced-artificial-intelligence/ai-timelines (accessed on 31 May 2019).
- What Should We Learn from Past AI Forecasts? Available online: https://www.openphilanthropy.org/focus/global-catastrophic-risks/potential-risks-advanced-artificial-intelligence/what-should-we-learn-past-ai-forecasts (accessed on 31 May 2019).
- AI and Compute. Available online: https://openai.com/blog/ai-and-compute/ (accessed on 31 May 2019).
- Interpreting AI Compute Trends. Available online: https://aiimpacts.org/interpreting-ai-compute-trends/ (accessed on 31 May 2019).
- Reinterpreting “AI and Compute”. Available online: https://aiimpacts.org/reinterpreting-ai-and-compute/ (accessed on 31 May 2019).
- Measuring the Progress of AI Research. Available online: https://www.eff.org/ai/metrics (accessed on 31 May 2019).
- Trends in Algorithmic Progress. Available online: https://aiimpacts.org/trends-in-algorithmic-progress/ (accessed on 31 May 2019).
- Constantin, S. Performance Trends in AI. Available online: https://srconstantin.wordpress.com/2017/01/28/performance-trends-in-ai/ (accessed on 31 May 2019).
- AI Metrics Data. Available online: https://raw.githubusercontent.com/AI-metrics/master_text/master/archive/AI-metrics-data.txt (accessed on 31 May 2019).
- Adams, S.; Arel, I.; Bach, J.; Coop, R.; Furlan, R.; Goertzel, B.; Hall, J.S.; Samsonovich, A.; Scheutz, M.; Schlesinger, M. Mapping the landscape of human-level artificial general intelligence. AI Mag. 2012, 33, 25–42. [Google Scholar] [CrossRef]
- Goertzel, B. The AGI Revolution: An Inside View of the Rise of Artificial General Intelligence; Humanity+ Press: Los Angeles, CA, USA, 2016. [Google Scholar]
- Goertzel, B. Ten Years to the Singularity If We Really Really Try; Humanity+ Press: Los Angeles, CA, USA, 2014. [Google Scholar]
- Gruetzmacher, R.; Paradice, D. Alternative Techniques for Mapping Paths to HLAI. arXiv 2019, arXiv:1905.00614. [Google Scholar]
- Computing Community Consortium (CCC) (Ed.) Townhall: A 20-Year Roadmap for AI Research. In Proceedings of the 33nd Annural Conference for the Association of the Advancement of Artificial Intelligence, Honolulu, HI, USA, 27 January–1 February 2019. [Google Scholar]
- Bostrom, N. Superintelligence; Oxford University Press: Oxford, UK, 2014. [Google Scholar]
- A Survey of Artificial General Intelligence Projects for Ethics, Risk, and Policy. Available online: https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3070741 (accessed on 31 May 2019).
- Barrett, A.M.; Baum, S.D. Risk analysis and risk management for the artificial superintelligence research and development process. In The Technological Singularity; Springer: Berlin/Heidelberg, Germany, 2017; pp. 127–140. [Google Scholar]
- Barrett, A.M.; Baum, S.D. A model of pathways to artificial superintelligence catastrophe for risk and decision analysis. J. Exp. Theor. Artif. Intell. 2017, 29, 397–414. [Google Scholar] [CrossRef]
- Baum, S.; Barrett, A.; Yampolskiy, R.V. Modeling and interpreting expert disagreement about artificial superintelligence. Informatica 2017, 41, 419–428. [Google Scholar]
- Avin, S. Exploring Artificial Intelligence Futures. J. AI Humanit. Forthcoming.
- Parson, E.A. What Can You Learn from A Game? Wise Choices: Games, Decisions, and Negotiations; Harvard Business School Press: Boston, MA, USA, 1996. [Google Scholar]
- Davis, P.K. Illustrating a Model-Game-Model Paradigm for Using Human Wargames in Analysis; RAND National Defense Research Institute: Santa Monica, CA, USA, 2017. [Google Scholar]
- Fernández-Macías, E.; Gómez, E.; Hernández-Orallo, J.; Loe, B.S.; Martens, B.; Martínez-Plumed, F.; Tolan, S. A multidisciplinary task-based perspective for evaluating the impact of AI autonomy and generality on the future of work. arXiv 2018, arXiv:1807.02416. [Google Scholar]
- Evaluation of General-Purpose Artificial Intelligence: Why, What & How. Available online: http://dmip.webs.upv.es/EGPAI2016/papers/EGPAI_2016_paper_9.pdf (accessed on 31 May 2019).
- Hernández-Orallo, J. AI Evaluation: Past, Present and Future. arXiv 2014, arXiv:1408.6908. [Google Scholar]
- Martínez-Plumed, F.; Avin, S.; Brundage, M.; Dafoe, A.; hÉigeartaigh, S.Ó.; Hernández-Orallo, J. Accounting for the neglected dimensions of ai progress. arXiv 2018, arXiv:1806.00610. [Google Scholar]
- Martínez-Plumed, F.; Hernández-Orallo, J. Analysing Results from AI Benchmarks: Key Indicators and How to Obtain Them. arXiv 2018, arXiv:1811.08186. [Google Scholar]
- Hernández-Orallo, J. The Measure of All Minds: Evaluating Natural and Artificial Intelligence; Cambridge University Press: Cambridge, UK, 2017. [Google Scholar]
- Riedl, M.O. The Lovelace 2.0 test of artificial intelligence and creativity. In Proceedings of the 29th AAAI Conference on Artificial Intelligence Workshops, Austin, TX, USA, 25–26 January 2015. [Google Scholar]
- Hernández-Orallo, J.; Baroni, M.; Bieger, J.; Chmait, N.; Dowe, D.L.; Hofmann, K.; Martínez-Plumed, F.; Strannegård, C.; Thórisson, K.R. A new AI evaluation cosmos: Ready to play the game? AI Mag. 2017, 38, 66–69. [Google Scholar] [CrossRef]
- Castelvecchi, D. Tech giants open virtual worlds to bevy of AI programs. Nat. News 2016, 540, 323. [Google Scholar] [CrossRef]
- Brundage, M. Responsible Governance for Artificial Intelligence: An Assessment, Theoretical Framework, and Exploration, 2018; Unpublished.
- Gruetzmacher, R.; Paradice, D. Mapping the Paths to AGI. In Proceedings of the 12th Annual Conference on Artificial General Intelligence, Shenzhen, China, 6–9 August 2019. [Google Scholar]
- Clune, J. AI-GAs: AI-Generating Algorithms, an Alternate Paradigm for Producing General Artificial Intelligence. arXiv 2019, arXiv:1905.10985. [Google Scholar]
- List, D. Scenario Mapping: A User’s Manual; Original Books: Adelaide, Australia, 2006. [Google Scholar]
- Gruetzemacher, R. Rethinking AI Strategy and Policy as Entangled Super Wicked Problems. In Proceedings of the 2018 AAAI/ACM Conference on AI, Ethics, and Society, New Orleans, LA, USA, 2–3 February 2018; p. 122. [Google Scholar]
- There’s No Fire Alarm for Artificial General Intelligence. Available online: https://intelligence.org/2017/10/13/fire-alarm/ (accessed on 31 May 2019).
- Saura, J.R.; Palos-Sánchez, P.; Cerdá Suárez, L.M. Understanding the digital marketing environment with KPIs and web analytics. Future Internet 2017, 9, 76. [Google Scholar] [CrossRef]
- Devlin, J.; Chang, M.W.; Lee, K.; Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv 2018, arXiv:1810.04805. [Google Scholar]
- Cohan, A.; Ammar, W.; van Zuylen, M.; Cady, F. Structural Scaffolds for Citation Intent Classification in Scientific Publications. arXiv 2019, arXiv:1904.01608. [Google Scholar]
- Saura, J.R.; Bennett, D.R. A Three-Stage method for Data Text Mining: Using UGC in Business Intelligence Analysis. Symmetry 2019, 11, 519. [Google Scholar] [CrossRef]
- Cobo, M.J.; López-Herrera, A.G.; Herrera-Viedma, E.; Herrera, F. Science mapping software tools: Review, analysis, and cooperative study among tools. J. Am. Soc. Inf. Sci. Technol. 2011, 62, 1382–1402. [Google Scholar] [CrossRef]
Study | Year | Type | Results | Conclusion (Median yrs) |
---|---|---|---|---|
AI Forecasting Surveys | ||||
Baum et al. | 2011 | Expert (HLAI) | Statistical | Experts expect HLAI in coming decades, much disagreement |
Grace et al. | 2016 | Expert | Probabilistic | 45 yrs 50% chance HLAI, Significant cognitive dissonance |
Gruetzemacher et al. | 2019 | Expert (HLAI/AI) | Probabilistic | 50 yrs 50% chance HLAI, Type of expertise is significant |
Müller and Bostrom | 2014 | Expert | Statistical | 2040–50 50% chance HLAI; <30 yrs to superintelligence |
Zhang & Dafoe | 2019 | Non-expert (Americans) | Probabilistic | 54% chance of HLAI by 2028, support AI, weak support HLAI |
Other AI Forecasting Studies | ||||
Amodei and Hernandez | 2018 | Extrapolation | Trendline | Compute required for AI milestones doubling every 18 months |
Armstrong and Sotala | 2012 | Comparative Analysis | Decomposition schema analysis | Expert predictions contradictory and no better than non-experts |
Armstrong et al. | 2014 | Comparative Analysis | Decomposition schema analysis | Models superior to judgment, expert judgment poor, timelines unreliable |
Brundage | 2016 | Methods | Modeling Framework | A framework for modeling AI progress |
Muehlhauser | 2015 | Comparative Analysis | Generalization | We know very little about timelines, accuracy is difficult |
Muehlhauser | 2016 | Historical Survey | Suggestions | Future work ideas, AI characterized by periods of hype/pessimism |
Scenario Mapping Techniques | |||||
---|---|---|---|---|---|
Technique | No. Scenarios | Quantitative | Qualitative | Strengths | Weaknesses |
Scenario Network Mapping (SNM) | 30 to 50 | No | Yes | Complex cases with large numbers of scenarios | Time consuming and requires 15–20 experts |
Cognitive Maps | 8 to 24 | No | Yes | Useful in multiplle organization contexts, rapid workshop development | Weak scenario development, lack of rigor in method |
Fuzzy Cognitive Map (FCM) | 8 to 18 | Yes | Yes | Flexible method, quantitative and qualitative elements, aggregates coginitive maps | Limited quantitiative value, limited judgmental value |
Judgmental Distillation Mapping (JDM) | 6 to 30 | Yes | Yes | Complex cases that require probabilistic forecasts | Resource intensive and requires diversty of experts |
© 2019 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gruetzemacher, R. A Holistic Framework for Forecasting Transformative AI. Big Data Cogn. Comput. 2019, 3, 35. https://doi.org/10.3390/bdcc3030035
Gruetzemacher R. A Holistic Framework for Forecasting Transformative AI. Big Data and Cognitive Computing. 2019; 3(3):35. https://doi.org/10.3390/bdcc3030035
Chicago/Turabian StyleGruetzemacher, Ross. 2019. "A Holistic Framework for Forecasting Transformative AI" Big Data and Cognitive Computing 3, no. 3: 35. https://doi.org/10.3390/bdcc3030035
APA StyleGruetzemacher, R. (2019). A Holistic Framework for Forecasting Transformative AI. Big Data and Cognitive Computing, 3(3), 35. https://doi.org/10.3390/bdcc3030035