Unraveling the Impact of Land Cover Changes on Climate Using Machine Learning and Explainable Artificial Intelligence
Abstract
:1. Introduction
2. Data
2.1. Land Cover Dataset
2.2. Simulated Temperature Data
3. Machine Learning and Explainable Artificial Intelligence
4. Experiments
4.1. Feature Extraction
4.2. Analyzing Effects of LC Changes on Temperature Using XAI
- To analyze the effect of some LC changes, we must check that the given change is frequently present in the training dataset to ensure that the ML method has learned the relation between this LC change and the temperature change well. If a LC change is not present in the training dataset, we cannot trust the model prediction related to this change. We will, therefore, only show the effects for the most frequent LC changes in the dataset.
- In statistical inference, multicollinearity is a well-known issue, resulting in a range of models that have about the same agreement with the data, but may represent different inferential conclusions. The XAI technique used in this paper has to tackle the same potential challenge. However, except from the "grand" collinearity in Equation (5), we did not observe any strong multicollinarity in the data, and we can, therefore, reliably use the suggested XAI approach.
- It is well-known that the association between LC changes and temperature is complex and associated with noise. It is, therefore, important to quantify the uncertainty of the ML prediction. We quantify uncertainty by using standard model output prediction intervals
5. Results
5.1. Evaluation of ML Methods to Predict Temperature Changes from LC Changes
5.2. Effects of LC Changes on Temperature
6. Discussion
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A. Effects of LC Changes
LC Change | Event Rate | Year, °C | Winter (DJF), °C | Spring (MAM), °C | Summer (JJA), °C | Autumn (SON), °C |
---|---|---|---|---|---|---|
Permanent Wetland to Open Shrublands | 8444 | [−0.1177, 0.4338] | [−0.5883, 0.4403] | [0.3553, 1.6446] | [−0.5858, 0.9682] | [−0.7983, 0.1586] |
Evergreen Needleleaf Forest to Open Shrublands | 7728 | [−0.1976, 0.3539] | [−0.5871, 0.4416] | [0.6168, 1.9061] | [−0.5377, 1.0164] | [−0.7309, 0.226] |
Permanent Wetland to Evergreen Needleleaf Forest | 6685 | [−0.0996, 0.452] | [−0.5532, 0.4754] | [0.0165, 1.3058] | [0.1051, 1.6591] | [−0.6916, 0.2653] |
Barren or Sparsely Vegetated to Open Shrublands | 5860 | [0.1398, 0.6913] | [−0.313, 0.7156] | [1.1442, 2.4334] | [−1.0866, 0.4674] | [−0.6445, 0.3124] |
Permanent Wetland to Mixed Forest | 5450 | [−0.1356, 0.4159] | [−0.7163, 0.3123] | [0.4486, 1.7379] | [0.1063, 1.6604] | [−0.5375, 0.4194] |
Evergreen Needleleaf Forest to Permanent Wetland | 5191 | [−0.1806, 0.3709] | [−0.775, 0.2537] | [−0.5402, 0.7491] | [0.1807, 1.7347] | [−0.661, 0.2959] |
Mixed Forest to Open Shrublands | 4935 | [−0.2339, 0.3176] | [−0.4794, 0.5492] | [0.5399, 1.8292] | [−0.5467, 1.0074] | [−0.7691, 0.1877] |
Permanent Wetland to Deciduous Broadleaf Forest | 4648 | [−0.166, 0.3855] | [−0.4265, 0.6021] | [0.174, 1.4633] | [−0.1017, 1.4523] | [−0.7823, 0.1746] |
Deciduous Broadleaf Forest to Open Shrublands | 4396 | [−0.1111, 0.4405] | [−0.6223, 0.4063] | [0.5051, 1.7944] | [−0.7121, 0.842] | [−0.5298, 0.4271] |
Cropland/Natural Vegetation Mosaic to Open Shrublands | 4293 | [−0.1426, 0.409] | [−0.4483, 0.5803] | [0.4013, 1.6906] | [−0.7162, 0.8378] | [−0.6488, 0.3081] |
LC Change | Event Rate | Year, °C | Winter (DJF), °C | Spring (MAM), °C | Summer (JJA), °C | Autumn (SON), °C |
---|---|---|---|---|---|---|
Cropland to Urban and Built-Up | 23,387 | [0.0373, 0.7504] | [0.0412, 0.7993] | [−0.8996, 0.7225] | [0.0409, 1.2777] | [−0.5651, 0.3416] |
Cropland/Natural Vegetation Mosaic to Urban and Built-Up | 18,211 | [−0.1335, 0.5796] | [−0.4248, 0.3333] | [−0.5393, 1.0828] | [−0.0097, 1.2272] | [−0.5714, 0.3353] |
Cropland/Natural Vegetation Mosaic to Open Shrublands | 14,102 | [−0.1972, 0.5159] | [−0.3326, 0.4255] | [−0.9703, 0.6518] | [−0.3001, 0.9367] | [−0.5031, 0.4036] |
Cropland/Natural Vegetation Mosaic to Deciduous Broadleaf Forest | 10,880 | [−0.5925, 0.1205] | [−0.3238, 0.4344] | [−0.7084, 0.9137] | [−1.0207, 0.2162] | [−0.8381, 0.0686] |
Cropland to Open Shrublands | 10,420 | [−0.2108, 0.5023] | [−0.2227, 0.5355] | [−0.492, 1.1301] | [−0.5929, 0.644] | [−0.4537, 0.453] |
Cropland/Natural Vegetation Mosaic to Mixed Forest | 9314 | [−0.3991, 0.314] | [−0.4607, 0.2974] | [−0.3244, 1.2977] | [−0.925, 0.3118] | [−0.5842, 0.3225] |
Grassland to Urban and Built-Up | 8993 | [0.0328, 0.7458] | [−0.1802, 0.5779] | [−0.6771, 0.945] | [−0.1435, 1.0934] | [−0.4331, 0.4736] |
Cropland to Deciduous Broadleaf Forest | 8816 | [−0.4883, 0.2248] | [−0.3208, 0.4374] | [−0.5455, 1.0766] | [−0.9398, 0.297] | [−0.6289, 0.2778] |
Deciduous Broadleaf Forest to Open Shrublands | 8406 | [−0.4172, 0.2959] | [−0.659, 0.0991] | [−1.2918, 0.3303] | [−0.4992, 0.7377] | [−0.2814, 0.6253] |
Cropland/Natural Vegetation Mosaic to Evergreen Needleleaf Forest | 8231 | [−0.4309, 0.2821] | [−0.5338, 0.2243] | [−0.6073, 1.0148] | [−0.7261, 0.5107] | [−0.5276, 0.3791] |
Deciduous Broadleaf Forest to Urban and Built-Up | 7977 | [0.051, 0.7641] | [−0.4977, 0.2604] | [−0.3922, 1.2299] | [0.1501, 1.3869] | [−0.3628, 0.5439] |
Evergreen Needleleaf Forest to Urban and Built-Up | 7406 | [0.1921, 0.9051] | [0.1358, 0.894] | [−0.3556, 1.2665] | [−0.0935, 1.1433] | [−0.3311, 0.5756] |
Barren or Sparsely Vegetated to Urban and Built-Up | 5583 | [−0.4757, 0.2373] | [−0.3166, 0.4415] | [−0.6784, 0.9437] | [−0.5866, 0.6502] | [−1.0893, −0.1826] |
LC Change | Event Rate | Year, °C | Winter (DJF), °C | Spring (MAM), °C | Summer (JJA), °C | Autumn (SON), °C |
---|---|---|---|---|---|---|
Barren or Sparsely Vegetated to Urban and Built-Up | 5233 | [−0.1294, 0.3696] | [−0.1071, 0.219] | [−1.0459, 0.0215] | [−0.0131, 0.7063] | [−0.1367, 0.4365] |
Cropland to Urban and Built-Up | 4473 | [−0.1651, 0.3339] | [−0.0778, 0.2483] | [−0.8228, 0.2446] | [0.4718, 1.1912] | [−0.2072, 0.3661] |
Barren or Sparsely Vegetated to Cropland | 3455 | [−0.6361, −0.1371] | [−0.1009, 0.2253] | [−0.8968, 0.1706] | [−0.9814, −0.262] | [−0.6312, −0.0579] |
Cropland/Natural Vegetation Mosaic to Urban and Built-Up | 3417 | [−0.2611, 0.238] | [−0.1155, 0.2107] | [−0.9243, 0.1432] | [0.4579, 1.1773] | [−0.2176, 0.3557] |
Cropland/Natural Vegetation Mosaic to Open Shrublands | 3071 | [−0.2362, 0.2628] | [−0.2812, 0.045] | [−0.7906, 0.2769] | [0.2316, 0.951] | [−0.405, 0.1683] |
Cropland/Natural Vegetation Mosaic to Cropland | 2029 | [−0.3848, 0.1142] | [−0.1325, 0.1937] | [−1.1184, −0.051] | [−1.5166, −0.7972] | [−0.3396, 0.2337] |
Barren or Sparsely Vegetated to Open Shrublands | 1926 | [−0.2398, 0.2593] | [−0.2134, 0.1128] | [−0.7118, 0.3556] | [0.0753, 0.7947] | [−0.3321, 0.2412] |
Cropland/Natural Vegetation Mosaic to Evergreen Needleleaf Forest | 1424 | [−0.2675, 0.2315] | [−1.1594, −0.8333] | [−1.0964, −0.029] | [−0.2992, 0.4202] | [−0.525, 0.0483] |
Cropland to Open Shrublands | 1422 | [−0.313, 0.1861] | [−0.2122, 0.1139] | [−1.1058, −0.0384] | [0.2722, 0.9916] | [−0.0905, 0.4828] |
Cropland/Natural Vegetation Mosaic to Deciduous Broadleaf Forest | 1412 | [−0.4676, 0.0315] | [−0.1385, 0.1877] | [−1.1793, −0.1119] | [−0.4408, 0.2786] | [−0.4877, 0.0856] |
References
- Knüsel, B.; Zumwald, M.; Baumberger, C.; Hadorn, G.H.; Fischer, E.M.; Bresch, D.N.; Knutti, R. Applying big data beyond small problems in climate research. Nat. Clim. Chang. 2019, 9, 196–202. [Google Scholar] [CrossRef]
- Hassani, H.; Huang, X.; Silva, E. Big Data and climate change. Big Data Cogn. Comput. 2019, 3, 12. [Google Scholar] [CrossRef] [Green Version]
- Faghmous; Kumar, J.V.H. Spatio-temporal Data Mining for Climate Data: Advances, Challenges, and Opportunities. In Data Mining and Knowledge Discovery for Big Data; Springer: Berlin/Heidelberg, Germany, 2014; pp. 83–116. [Google Scholar]
- NASA Graphics and Multimedia. Available online: https://climate.nasa.gov/resources/graphics-and-multimedia/ (accessed on 22 June 2021).
- EU Climaterope. Available online: https://www.climateurope.eu/climate-and-society/at-a-glance/multimedia/ (accessed on 22 June 2021).
- Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. IPCC, 2014: Climate Change 2014: Synthesis Report; Core Writing Team, Pachauri, R.K., Meyer, L.A., Eds.; IPCC: Geneva, Switzerland, 2014; p. 151. [Google Scholar]
- Shukla, P.R.; Skea, J.; Slade, R.; van Diemen, R.; Haughey, E.; Malley, J.; Pathak, M.; Portugal Pereira, J. Technical Summary. In Climate Change and Land: An IPCC Special Report on Climate Change, Desertification, Land Degradation, Sustainable Land Management, Food Security, and Greenhouse Gas Fluxes in Terrestrial Ecosystems; IPCC: Geneva, Switzerland, 2019. [Google Scholar]
- Collins, M.; Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Stocker, T.F. Long-Term Climate Change: Projections, Commitments and Irreversibility, in Climate Change 2013: The Physical Science Basis; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2013. [Google Scholar]
- Marland, G.; Pielke, R.A.; Apps, M.; Avissar, R.; Betts, R.A.; Davis, K.J.; Frumhoff, P.C.; Jackson, S.T.; Joyce, L.A.; Kauppi, P.; et al. The Climatic Impacts of Land Surface Change and Carbon Management and The Implications For Climate-Change Mitigation Policy. Clim. Policy 2003, 3, 149–157. [Google Scholar] [CrossRef] [Green Version]
- WMO. WMO Confirms 2019 As Second Hottest Year On Record; WMO: Geneva, Switzerland, 2020. [Google Scholar]
- WMO. WMO Provisional Statement on the State of the Global Climate in 2019; WMO: Geneva, Switzerland, 2019. [Google Scholar]
- Cherubini, F.; Huang, B.; Hu, X.; Tölle, M.H.; Strømman, A.H. Quantifying the climate response to extreme land cover changes in Europe with a regional model. Environ. Res. Lett. 2018, 13, 074002. [Google Scholar] [CrossRef]
- Hu, X.; Huang, B.; Cherubini, F. Impacts of idealized land cover changes on climate extremes in Europe. Ecol. Indic. 2019, 104, 626–635. [Google Scholar] [CrossRef]
- Huang, B.; Hu, X.; Fuglstad, G.A.; Zhou, X.; Zhao, W.; Cherubini, F. Predominant Regional Biophysical Cooling From Recent Land Cover Changes In Europe. Nat. Commun. 2020, 11, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Hu, X.; Næss, J.S.; Iordan, C.M.; Huang, B.; Zhao, W.; Cherubini, F. Recent global land cover dynamics and implications for soil erosion and carbon losses from deforestation. Anthropocene 2021, 34, 100291. [Google Scholar] [CrossRef]
- Zhou, N.; Hu, X.; Byskov, I.; Næss, J.S.; Wu, Q.; Zhao, W.; Cherubini, F. Overview of recent land cover changes, forest harvest areas, and soil erosion trends in Nordic countries. Geogr. Sustain. 2021. [Google Scholar] [CrossRef]
- Hu, X.; Huang, B.; Verones, F.; Cavalett, O.; Cherubini, F. Overview of recent land-cover changes in biodiversity hotspots. Front. Ecol. Environ. 2021, 19, 91–97. [Google Scholar] [CrossRef]
- Luyssaert, S.; Jammet, M.; Stoy, P.; Estel, S.; Pongratz, J.; Ceschia, E.; Churkina, G.; Don, A.; Erb, K.H.; Ferlicoq, M.; et al. Land Management And Land-cover Change Have Impacts Of Similar Magnitude On Surface Temperature. Nat. Clim. Chang. 2014, 4, 389–393. [Google Scholar] [CrossRef] [Green Version]
- Mölders, N. Land-Use and Land-Cover Changes. Impact on Climate and Air Quality; Springer: Dordrecht, The Netherlands, 2012. [Google Scholar] [CrossRef]
- Huntingford, C.; Jeffers, E.S.; Bonsall, M.B.; Christensen, H.M.; Lees, T.; Yang, H. Machine learning and artificial intelligence to aid climate change research and preparedness. Environ. Res. Lett. 2019, 14, 124007. [Google Scholar] [CrossRef] [Green Version]
- Kalnay, E.; Cai, M. Impact of Urbanization and Land-Use Change on Climate. Nature 2003, 423, 528–531. [Google Scholar] [CrossRef]
- Dale, V. The Relationship Between Land-Use Change and Climate Change. Ecol. Appl. 1997, 7, 753–769. [Google Scholar] [CrossRef]
- Feddema, J.J.; Oleson, K.W.; Bonan, G.B.; Mearns, L.O.; Buja, L.E.; Meehl, G.A.; Washington, W.M. The Importance of Land-Cover Change in Simulating Future Climates. Science 2005, 310, 1674–1678. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Findell, K.; Berg, A.; Gentine, P.; Krasting, J.; Lintner, B.; Malyshev, S.; Santanello, J.; Shevliakova, E. The Impact Of Anthropogenic Land Use And Land Cover Change On Regional Climate Extremes. Nat. Commun. 2017, 8, 1–10. [Google Scholar] [CrossRef]
- Duveiller, G.; Hooker, J.; Cescatti, A. The Mark Of Vegetation Change On Earth’s Surface Energy Balance. Nat. Commun. 2018, 9, 679. [Google Scholar] [CrossRef] [Green Version]
- Lejeune, Q.; Davin, E.L.; Gudmundsson, L.; Winckler, J.; Seneviratne, S.I. Historical Deforestation Locally Increased The Intensity Of Hot Days In Northern Mid-latitudes. Nat. Clim. Chang. 2018, 8, 386–390. [Google Scholar] [CrossRef]
- Jones, P.D.; Groisman, P.Y.; Coughlan, M.; Plummer, N.; Wang, W.; Karl, T. Assessment Of Urbanization Effects In Time Series Of Surface Air Temperature Over Land. Nature 1990, 347, 169–172. [Google Scholar] [CrossRef]
- Weng, Q. Impacts of Urbanization on Land Surface Temperature and Water Quality. In Techniques and Methods in Urban Remote Sensing; Wiley-IEEE Press: New York, NY, USA, 2020; pp. 267–306. [Google Scholar] [CrossRef]
- Jordan, M.I.; Mitchell, T.M. Machine learning: Trends, perspectives, and prospects. Science 2015, 349, 255–260. [Google Scholar] [CrossRef]
- Adadi, A.; Berrada, M. Peeking inside the black-box: A survey on explainable artificial intelligence (XAI). IEEE Access 2018, 6, 52138–52160. [Google Scholar] [CrossRef]
- Kotlarski, S.; Keuler, K.; Christensen, O.; Colette, A.; Deque, M.; Gobiet, A.; Goergen, K.; Jacob, D.; Lüthi, D.; Meijgaard, E.; et al. Regional Climate Modeling On European Scales: A Joint Standard Evaluation Of The EURO-CORDEX RCM Ensemble. Geosci. Model Dev. 2014, 7, 1297–1333. [Google Scholar] [CrossRef] [Green Version]
- Poulter, B.; MacBean, N.; Hartley, A.; Khlystova, I.; Arino, O.; Betts, R.; Bontemps, S.; Boettcher, M.; Brockmann, C.; Defourny, P.; et al. Plant Functional Type Classification For Earth System Models: Results From The European Space Agency’s Land Cover Climate Change Initiative. Geosci. Model Dev. 2015, 8, 2315–2328. [Google Scholar] [CrossRef] [Green Version]
- Di Gregorio, A. Land Cover Classification System: Classification Concepts And User Manual: LCCS; Food & Agriculture Organization: Rome, Italy, 2005; Volume 2. [Google Scholar]
- Jacob, D.; Petersen, J.; Eggert, B.; Alias, A.; Christensen, O.B.; Bouwer, L.M.; Braun, A.; Colette, A.; Déqué, M.; Georgievski, G.; et al. EURO-CORDEX: New high-resolution climate change projections for European impact research. Reg. Environ. Chang. 2014, 14, 563–578. [Google Scholar] [CrossRef]
- Vautard, R.; Gobiet, A.; Jacob, D.; Belda, M.; Colette, A.; Déqué, M.; Fernández, J.; García-Díez, M.; Goergen, K.; Güttler, I.; et al. The simulation of European heat waves from an ensemble of regional climate models within the EURO-CORDEX project. Clim. Dyn. 2013, 41, 2555–2575. [Google Scholar] [CrossRef]
- Dee, D.P.; Uppala, S.M.; Simmons, A.; Berrisford, P.; Poli, P.; Kobayashi, S.; Andrae, U.; Balmaseda, M.; Balsamo, G.; Bauer, D.P.; et al. The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Q. J. R. Meteorol. Soc. 2011, 137, 553–597. [Google Scholar] [CrossRef]
- Tibshirani, R. Regression shrinkage and selection via the lasso. J. R. Stat. Soc. Ser. B 1996, 58, 267–288. [Google Scholar] [CrossRef]
- Hyndman, R.J.; Athanasopoulos, G. Forecasting: Principles and Practice; OTexts: Melbourne, Australia, 2018. [Google Scholar] [CrossRef]
- Dietterich, T.G. Approximate Statistical Tests For Comparing Supervised Classification Learning Algorithms. Neural Comput. 1998, 10, 1895–1923. [Google Scholar] [CrossRef] [Green Version]
- Myers-Smith, H.; Forbes, B.; Wilmking, M.; Hallinger, M.; Lantz, T.; Blok, D.; Tape, K.; Macias-Fauria, M.; Sass-Klaassen, U.; Lévesque, E.; et al. Shrub Expansion In Tundra Ecosystems: Dynamics, Impacts And Research Priorities. Environ. Res. Lett. 2011, 6, 045509. [Google Scholar] [CrossRef] [Green Version]
- Lawrence, D.M.; Swenson, S.C. Permafrost Response To Increasing Arctic Shrub Abundance Depends On The Relative Influence Of Shrubs On Local Soil Cooling Versus Large-scale Climate Warming. Environ. Res. Lett. 2011, 6, 045504. [Google Scholar] [CrossRef]
- Chapin, F.S.; Sturm, M.; Serreze, M.C.; Mcfadden, J.P.; Key, J.R.; Lloyd, A.H.; Mcguire, A.D.; Rupp, T.S.; Lynch, A.H.; Schimel, J.P.; et al. Role Of Land-surface Changes In Arctic Summer Warming. Science 2005, 310, 657–660. [Google Scholar] [CrossRef]
- Myers-Smith, I.H.; Elmendorf, S.C.; Beck, P.S.; Wilmking, M.; Hallinger, M.; Blok, D.; Tape, K.D.; Rayback, S.A.; Macias-Fauria, M.; Forbes, B.C.; et al. Climate Sensitivity Of Shrub Growth Across The Tundra Biome. Nat. Clim. Chang. 2015, 5, 887–891. [Google Scholar] [CrossRef]
- Elmendorf, S.C.; Henry, G.H.; Hollister, R.D.; Björk, R.G.; Boulanger-Lapointe, N.; Cooper, E.J.; Cornelissen, J.H.; Day, T.A.; Dorrepaal, E.; Elumeeva, T.G.; et al. Plot-scale Evidence Of Tundra Vegetation Change And Links To Recent Summer Warming. Nat. Clim. Chang. 2012, 2, 453–457. [Google Scholar] [CrossRef]
- Bonfils, C.; Phillips, T.; Lawrence, D.; Cameron-Smith, P.; Riley, W.; Subin, Z. On The Influence Of Shrub Height And Expansion On Northern High Latitude Climate. Environ. Res. Lett. 2012, 7, 015503. [Google Scholar] [CrossRef] [Green Version]
- Chrysanthou, A.; Van Der Schrier, G.; Van den Besselaar, E.J.; Klein Tank, A.; Brandsma, T. The Effects Of Urbanization On The Rise Of The European Temperature Since 1960. Geophys. Res. Lett. 2014, 41, 7716–7722. [Google Scholar] [CrossRef]
- Paranunzio, R.; Ceola, S.; Laio, F.; Montanari, A. Evaluating The Effects Of Urbanization Evolution On Air Temperature Trends Using Nightlight Satellite Data. Atmosphere 2019, 10, 117. [Google Scholar] [CrossRef] [Green Version]
- Strandberg, G.; Kjellström, E. Climate Impacts From Afforestation And Deforestation In Europe. Earth Interact. 2019, 23, 1–27. [Google Scholar] [CrossRef]
- Li, Y.; Zhao, M.; Mildrexler, D.J.; Motesharrei, S.; Mu, Q.; Kalnay, E.; Zhao, F.; Li, S.; Wang, K. Potential and Actual Impacts of Deforestation and Afforestation on Land Surface Temperature. J. Geophys. Res. Atmos. 2016, 121, 14–372. [Google Scholar] [CrossRef]
Land Cover Categories | |
---|---|
Evergreen Needleleaf Forest | Cropland |
Evergreen Broadleaf Forest | Urban and Built-Up |
Deciduous Needleleaf Forest | Cropland/Natural Vegetation Mosaic |
Deciduous Broadleaf Forest | Snow and Ice |
Mixed Forest | Barren or Sparsely Vegetated |
Closed Shrublands | Water |
Open Shrublands | Wooden Tundra |
Woody Savannas | Mixed Tundra |
Savannas | Barren Tundra |
Grassland | Lake |
Permanent Wetland |
Sector Size | 75 × 75 | 50 × 50 | 25 × 25 |
---|---|---|---|
Baseline | 0.1727 | 0.1730 | 0.1638 |
MLR | 0.1713 | 0.1726 | 0.1618 |
LASSO | 0.1727 | 0.1729 | 0.1638 |
RF | 0.1642 | 0.1631 | 0.1511 |
SVM | 0.1718 | 0.1745 | 0.1634 |
LC Change | Event Rate | Year, °C | Winter (DJF), °C | Spring (MAM), °C | Summer (JJA), °C | Autumn (SON), °C |
---|---|---|---|---|---|---|
Cropland to Urban and Built-Up | 29,694 | [0.0074, 0.6232] | [−0.3763, 0.3403] | [−0.743, 0.6816] | [0.131, 1.3258] | [−0.5429, 0.2748] |
Cropland/Natural Vegetation Mosaic to Open Shrublands | 21,539 | [−0.2683, 0.3475] | [−0.5078, 0.2088] | [−0.9844, 0.4402] | [0.1809, 1.3757] | [−0.4492, 0.3685] |
Evergreen Needleleaf Forest to Open Shrublands | 16,561 | [−0.3856, 0.2302] | [0.2147, 0.9313] | [−0.8066, 0.6179] | [−0.3429, 0.8519] | [0.2222, 1.0399] |
Cropland to Open Shrublands | 13,891 | [−0.4164, 0.1994] | [−0.5177, 0.1988] | [−0.6879, 0.7367] | [0.1593, 1.3542] | [−0.4127, 0.405] |
Cropland/Natural Vegetation Mosaic to Evergreen Needleleaf Forest | 12,671 | [−0.3734, 0.2425] | [−0.4416, 0.275] | [−0.8785, 0.546] | [0.0558, 1.2506] | [−0.5779, 0.2398] |
Barren or Sparsely Vegetated to Urban and Built-Up | 12,350 | [−0.1896, 0.4262] | [−0.3071, 0.4095] | [−1.0188, 0.4057] | [−1.2128, −0.018] | [−0.6348, 0.1829] |
Deciduous Broadleaf Forest to Urban and Built-Up | 10,773 | [0.0911, 0.7069] | [−0.433, 0.2836] | [−0.1756, 1.2489] | [0.0826, 1.2774] | [−0.2724, 0.5453] |
Evergreen Needleleaf Forest to Urban and Built-Up | 10,629 | [0.0343, 0.6501] | [−0.1379, 0.5787] | [−0.444, 0.9805] | [−0.2144, 0.9804] | [−0.4064, 0.4113] |
Deciduous Broadleaf Forest to Cropland | 10,587 | [−0.943, −0.3271] | [−0.3909, 0.3257] | [−1.3147, 0.1098] | [−1.7565, −0.5617] | [−0.8687, −0.051] |
Grassland to Urban and Built-Up | 10,448 | [0.0068, 0.6227] | [−0.3413, 0.3753] | [−0.6201, 0.8045] | [−0.2194, 0.9754] | [−0.4165, 0.4012] |
Barren or Sparsely Vegetated to Open Shrublands | 10,131 | [0.1269, 0.7427] | [−0.1964, 0.5202] | [1.1181, 2.5427] | [−0.7157, 0.4791] | [−0.5438, 0.2739] |
Evergreen Needleleaf Forest to Cropland | 9983 | [−0.9488, −0.3329] | [−0.1522, 0.5643] | [−1.2604, 0.1642] | [−1.7591, −0.5643] | [−0.5507, 0.267] |
Permanent Wetland to Open Shrublands | 9935 | [−0.1733, 0.4425] | [−0.4717, 0.2449] | [0.2164, 1.6409] | [−0.3666, 0.8282] | [−0.7281, 0.0897] |
Mixed Forest to Open Shrublands | 9320 | [−0.2837, 0.3322] | [−0.617, 0.0996] | [0.1774, 1.602] | [−0.359, 0.8359] | [−0.627, 0.1907] |
Cropland to Mixed Forest | 8943 | [−0.2976, 0.3182] | [−0.3925, 0.3241] | [−0.7132, 0.7113] | [0.4207, 1.6156] | [−0.6425, 0.1752] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kolevatova, A.; Riegler, M.A.; Cherubini, F.; Hu, X.; Hammer, H.L. Unraveling the Impact of Land Cover Changes on Climate Using Machine Learning and Explainable Artificial Intelligence. Big Data Cogn. Comput. 2021, 5, 55. https://doi.org/10.3390/bdcc5040055
Kolevatova A, Riegler MA, Cherubini F, Hu X, Hammer HL. Unraveling the Impact of Land Cover Changes on Climate Using Machine Learning and Explainable Artificial Intelligence. Big Data and Cognitive Computing. 2021; 5(4):55. https://doi.org/10.3390/bdcc5040055
Chicago/Turabian StyleKolevatova, Anastasiia, Michael A. Riegler, Francesco Cherubini, Xiangping Hu, and Hugo L. Hammer. 2021. "Unraveling the Impact of Land Cover Changes on Climate Using Machine Learning and Explainable Artificial Intelligence" Big Data and Cognitive Computing 5, no. 4: 55. https://doi.org/10.3390/bdcc5040055
APA StyleKolevatova, A., Riegler, M. A., Cherubini, F., Hu, X., & Hammer, H. L. (2021). Unraveling the Impact of Land Cover Changes on Climate Using Machine Learning and Explainable Artificial Intelligence. Big Data and Cognitive Computing, 5(4), 55. https://doi.org/10.3390/bdcc5040055