Contact Tracing Strategies for COVID-19 Prevention and Containment: A Scoping Review
Abstract
:1. Introduction
2. Justification for the Study
- What design issues, efficiency, and implementation bottlenecks currently exist in developing and deploying COVID-19 contact tracing Apps?
- What are the differences in the approaches in terms of contextual requirements (setting, environment, population), and technological considerations in developing automatic contact tracing tools for COVID-19?
- What are the privacy concerns, security, and ethical considerations for developing a robust COVID-19 contact tracing?
- Review of ACT studies between November 2018 and May 2021 considering implementation strategies, contextual environments, privacy, and security concerns which could provide a springboard for developing a more robust ACT especially in the African context.
- Specific country-wise analysis of the use of ACTs for containing the spread of COVID-19.
- Recommendations for researchers in developing a more dynamic and user-centric ACTs for monitoring the spread of COVID-19.
- Identification of some open and future research directions in developing and deploying a robust ACT system for containing the spread of COVID-19.
3. Materials and Methods
3.1. Databases Search Strategy and Eligibility Criteria
3.2. Search Terms
3.3. Design Consideration
3.3.1. Technological Factors
3.3.2. Epidemiological Intelligence and Privacy Issues
3.4. Implementation Considerations
3.4.1. Peer-to-Peer Contact Tracing
3.4.2. Labour-Intensive Contact Tracing
3.4.3. Adoption of New Digital Technologies
3.5. Efficiency Considerations
3.6. Contextual Implications of Digital Contact Tracing
3.6.1. Location Tracking and Analysis
3.6.2. Location-Based Social Network Tracking Technique
3.6.3. Real-Time Location System Development
3.6.4. Technological Considerations in Contact Tracing Apps
3.6.5. Artificial Intelligence and Machine Learning in Contact Tracing
3.7. Privacy, Security, and Ethical Issues
3.7.1. Privacy in the Centralized Contract Tracing Model
Centralized GPS-Based Contact Tracing Solutions
Centralized Bluetooth-Based Contact Tracing Schemes
3.7.2. Privacy in the De-Centralized Contract Tracing Model
Decentralized GPS-Based Contact Tracing Solutions
Decentralized Bluetooth-Based Contact Tracing Solutions
3.7.3. Privacy in the Hybrid Contact Tracing Approach
4. Results and Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Ferretti, L.; Wymant, C.; Kendall, M.; Zhao, L.; Nurtay, A.; Abeler-Dörner, L.; Parker, M.; Bonsall, D.; Fraser, C. Quantifying SARS-CoV-2 Transmission Suggests Epidemic Control with Digital Contact Tracing. Science 2020, 368, eabb6936. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cinaglia, P.; Cannataro, M. Forecasting COVID-19 Epidemic Trends by Combining a Neural Network with Rt Estimation. Entropy 2022, 24, 929. [Google Scholar] [CrossRef] [PubMed]
- Imai, N.; Gaythorpe, K.A.; Abbott, S.; Bhatia, S.; van Elsland, S.; Prem, K.; Liu, Y.; Ferguson, N.M. Adoption and impact of non-pharmaceutical interventions for COVID-19. Wellcome Open Res. 2020, 5, 59. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bi, Q.; Wu, Y.; Mei, S.; Ye, C.; Zou, X.; Zhang, Z.; Liu, X.; Wei, L.; Truelove, S.A.; Zhang, T.; et al. Epidemiology and Transmission of COVID-19 in 391 Cases and 1286 of Their Close Contacts in Shenzhen, China: A Retrospective Cohort Study. Lancet Infect. Dis. 2020, 20, 911–919. [Google Scholar] [CrossRef]
- Alamo, T.; Reina, D.G.; Gata, P.M.; Preciado, V.M.; Giordano, G. Data-Driven Methods for Present and Future Pandemics: Monitoring, Modelling and Managing. Annu. Rev. Control. 2021, 52, 448–464. [Google Scholar] [CrossRef]
- Wang, L.; Li, J.; Guo, S.; Xie, N.; Yao, L.; Cao, Y.; Day, S.W.; Howard, S.C.; Graff, J.C.; Gu, T.; et al. Real-time estimation and prediction of mortality caused by COVID-19 with patient information based algorithm. Sci. Total Environ. 2020, 727, 138394. [Google Scholar] [CrossRef]
- Olu, O.O.; Lamunu, M.; Nanyunja, M.; Dafae, F.; Samba, T.; Sempiira, N.; Kuti-George, F.; Abebe, F.Z.; Sensasi, B.; Chimbaru, A.; et al. Contact Tracing during an Outbreak of Ebola Virus Disease in the Western Area Districts of Sierra Leone: Lessons for Future Ebola Outbreak Response. Front. Public Health 2016, 4, 130. [Google Scholar] [CrossRef] [Green Version]
- Panigutti, C.; Tizzoni, M.; Bajardi, P.; Smoreda, Z.; Colizza, V. Assessing the use of mobile phone data to describe recurrent mobility patterns in spatial epidemic models. R. Soc. Open Sci. 2017, 4, 160950. [Google Scholar] [CrossRef] [Green Version]
- Altmann, S.; Milsom, L.; Zillessen, H.; Blasone, R.; Gerdon, F.; Bach, R.; Kreuter, F.; Nosenzo, D.; Toussaert, S.; Abeler, J. Acceptability of App-Based Contact Tracing for COVID-19: Cross-Country Survey Study. JMIR mHealth uHealth 2020, 8, e19857. [Google Scholar] [CrossRef]
- Kedia, T.; Ratcliff, J.; O’Connor, M.; Oluic, S.; Rose, M.; Freeman, J.; Rainwater-Lovett, K. Technologies Enabling Situational Awareness during Disaster Response: A Systematic Review. Disaster Med. Public Health Prep. 2020, 16, 341–359. [Google Scholar] [CrossRef]
- Schmidtke, H.R. Location-aware systems or location-based services: A survey with applications to COVID-19 contact tracking. J. Reliab. Intell. Environ. 2020, 6, 191–214. [Google Scholar] [CrossRef]
- Azad, M.A.; Arshad, J.; Akmal, S.M.A.; Riaz, F.; Abdullah, S.; Imran, M.; Ahmad, F. A First Look at Privacy Analysis of COVID-19 Contact-Tracing Mobile Applications. IEEE Internet Things J. 2020, 8, 15796–15806. [Google Scholar] [CrossRef] [PubMed]
- Wiens, J.; Shenoy, E.S. Machine Learning for Healthcare: On the Verge of a Major Shift in Healthcare Epidemiology. Clin. Infect. Dis. 2017, 66, 149–153. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Walrave, M.; Waeterloos, C.; Ponnet, K. Adoption of a Contact Tracing App for Containing COVID-19: A Health Belief Model Approach. JMIR Public Health Surveill. 2020, 6, e20572. [Google Scholar] [CrossRef] [PubMed]
- Yasaka, T.M.; Lehrich, B.M.; Sahyouni, R. Peer-to-Peer Contact Tracing: Development of a Privacy-Preserving Smartphone App. JMIR mHealth uHealth 2020, 8, e18936. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vedaei, S.S.; Fotovvat, A.; Mohebbian, M.R.; Rahman, G.M.; Wahid, K.A.; Babyn, P.; Marateb, H.R.; Mansourian, M.; Sami, R. COVID-SAFE: An IoT-based system for automated health monitoring and surveillance in post-pandemic life. IEEE Access 2020, 8, 188538. [Google Scholar] [CrossRef]
- Breeher, L.; Boon, A.; Hainy, C.; Murad, M.H.; Wittich, C.; Swift, M. A Framework for Sustainable Contact Tracing and Exposure Investigation for Large Health Systems. Mayo Clin. Proc. 2020, 95, 1432–1444. [Google Scholar] [CrossRef]
- Nachega, J.B.; Atteh, R.; Ihekweazu, C.; Sam-Agudu, N.A.; Adejumo, P.; Nsanzimana, S.; Rwagasore, E.; Condo, J.; Paleker, M.; Mahomed, H.; et al. Contact Tracing and the COVID-19 Response in Africa: Best Practices, Key Challenges, and Lessons Learned from Nigeria, Rwanda, South Africa, and Uganda. Am. J. Trop. Med. Hyg. 2021, 104, 1179–1187. [Google Scholar] [CrossRef]
- Zhang, B.; Kreps, S.; McMurry, N.; McCain, R.M. Americans’ perceptions of privacy and surveillance in the COVID-19 pandemic. PLoS ONE 2020, 15, e0242652. [Google Scholar] [CrossRef]
- Siffels, L.E. Beyond privacy vs. health: A justification analysis of the contact-tracing apps debate in the Netherlands. Ethic-Inf. Technol. 2020, 23, 99–103. [Google Scholar] [CrossRef]
- Tom-Aba, D.; Nguku, P.M.; Arinze, C.C.; Krause, G. Assessing the Concepts and Designs of 58 Mobile Apps for the Management of the 2014-2015 West Africa Ebola Outbreak: Systematic Review. JMIR Public Health Surveill. 2018, 4, e68. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Braithwaite, I.; Callender, T.; Bullock, M.; Aldridge, R.W. Automated and partly automated contact tracing: A systematic review to inform the control of COVID-Lancet Digit. Health 2020, 2, e607–e621. [Google Scholar] [CrossRef]
- Thomas, R.; Michaleff, Z.A.; Greenwood, H.; Abukmail, E.; Glasziou, P. Concerns and Misconceptions About the Australian Government’s COVIDSafe App: Cross-Sectional Survey Study. JMIR Public Health Surveill. 2020, 6, e23081. [Google Scholar] [CrossRef] [PubMed]
- Arksey, H.; O’Malley, L. Scoping Studies: Towards a Methodological Framework. Int. J. Soc. Res. Methodol. 2005, 8, 19–32. [Google Scholar] [CrossRef] [Green Version]
- Beskorovajnov, W.; Dörre, F.; Hartung, G.; Koch, A.; Müller-Quade, J.; Strufe, T. Contra Corona: Contact Tracing against the Coronavirus by Bridging the Centralized—Decentralized Divide for Stronger Privacy. In International Conference on the Theory and Application of Cryptology and Information Security; Springer: Cham, Switzerland, 2021. [Google Scholar]
- Braun, P.; Haffner, S.; Woodcock, B.G. COVID-19 Pandemic Predictions Using the Modified Bateman Siz Model and Observational Data for Heidelberg, Germany: Effect of Vaccination with a SARS-CoV-2 Vaccine, Coronavirus Testing and Application of the Corona-Warn-App. Int. J. Clin. Pharmacol. Ther. 2020, 58, 417–425. [Google Scholar] [CrossRef]
- Cheng, W.; Hao, C. Case-Initiated COVID-19 Contact Tracing Using Anonymous Notifications. JMIR mHealth uHealth 2020, 8, e20369. [Google Scholar] [CrossRef]
- Leith, D.J.; Farrell, S. Coronavirus Contact Tracing App Privacy: What Data Is Shared by the Singapore Opentrace App? In Security and Privacy in Communication Networks; Sun, K., Park, N., Foresti, S., Butler, K., Saxena, N., Eds.; Springer: Cham, Switzerland, 2020. [Google Scholar]
- Wang, D.; Liu, F. Privacy Risk and Preservation in Contact Tracing of COVID-19. Chance 2020, 33, 49–55. [Google Scholar] [CrossRef]
- Biasse, J.F.; Chellappan, S.; Kariev, S.; Khan, N.; Menezes, L.; Seyitoglu, E.; Somboonwit, C.; Yavuz, A. Trace-Σ: A Privacy-Preserving Contact Tracing App.; International Association for Cryptologic Research: Lyon, France, 2020. [Google Scholar]
- Garg, L.; Chukwu, E.; Nasser, N.; Chakraborty, C.; Garg, G. Anonymity Preserving Iot-Based COVID-19 and Other Infectious Disease Contact Tracing Model. IEEE Access 2020, 8, 159402–159414. [Google Scholar] [CrossRef]
- Gong, M.; Liu, L.; Sun, X.; Yang, Y.; Wang, S.; Zhu, H. Cloud-Based System for Effective Surveillance and Control of COVID-19: Useful Experiences from Hubei, China. J. Med Internet Res. 2020, 22, e18948. [Google Scholar] [CrossRef]
- Halper, E. Lawmakers Weigh Contact Tracing Risks against Rewards. Los Angeles Times, 27 April 2020. [Google Scholar]
- Xu, H.; Zhang, L.; Onireti, O.; Fang, Y.; Buchanan, W.J.; Imran, M.A. BeepTrace: Blockchain-Enabled Privacy-Preserving Contact Tracing for COVID-19 Pandemic and Beyond. IEEE Internet Things J. 2020, 8, 3915–3929. [Google Scholar] [CrossRef]
- Hekmati, A.; Ramachandran, G.; Krishnamachari, B. Contain: Privacy-Oriented Contact Tracing Protocols for Epidemics. In Proceedings of the 2021 IFIP/IEEE International Symposium on Integrated Network Management (IM), Bordeaux, France, 17–21 May 2021. [Google Scholar]
- Ho, H.J.; Zhang, Z.X.; Huang, Z.; Aung, A.H.; Lim, W.-Y.; Chow, A. Use of a Real-Time Locating System for Contact Tracing of Health Care Workers during the COVID-19 Pandemic at an Infectious Disease Center in Singapore: Validation Study. J. Med. Internet Res. 2020, 22, e19437. [Google Scholar] [CrossRef] [PubMed]
- Iwaya, L.H.; Li, J.; Fischer-Hübner, S.; Åhlfeldt, R.M.; Martucci, L.A. E-Consent for Data Privacy: Consent Management for Mobile Health Technologies in Public Health Surveys and Disease Surveillance. Stud. Health Technol. Inform. 2019, 264, 1223–1227. [Google Scholar] [PubMed]
- Jhanwar, M.P.; Sarkar, S. Phyct: Privacy Preserving Hybrid Contact Tracing. IACR Cryptol. ePrint Arch. 2020, 2020, 793. [Google Scholar]
- Kassaye, S.G.; Spence, A.B.; Lau, E.; Bridgeland, D.M.; Cederholm, J.; Dimolitsas, S.; Smart, J. Rapid Deployment of a Free, Privacy-Assured COVID-19 Symptom Tracker for Public Safety during Reopening: System Development and Feasibility Study. JMIR Public Health Surveill. 2020, 6, e19399. [Google Scholar] [CrossRef]
- Kato, F.; Cao, Y.; Yoshikawa, M. Secure and Efficient Trajectory-Based Contact Tracing using Trusted Hardware. In Proceedings of the 2020 IEEE International Conference on Big Data (Big Data), Atlanta, GA, USA, 10–13 December 2020; pp. 4016–4025. [Google Scholar] [CrossRef]
- Klaine, P.V.; Zhang, L.; Zhou, B.; Sun, Y.; Xu, H.; Imran, M. Privacy-Preserving Contact Tracing and Public Risk Assessment Using Blockchain for COVID-19 Pandemic. IEEE Internet Things Mag. 2020, 3, 58–63. [Google Scholar] [CrossRef]
- Kuzdeuov, A.; Karabay, A.; Baimukashev, D.; Ibragimov, B.; Varol, H.A. A Particle-Based COVID-19 Simulator with Contact Tracing and Testing. IEEE Open J. Eng. Med. Biol. 2021, 2, 111–117. [Google Scholar] [CrossRef]
- Liu, J.K.; Au, M.H.; Yuen, T.H.; Zuo, C.; Wang, J.; Sakzad, A.; Luo, X.; Li, L.; Choo, K.K. Privacy-Preserving COVID-19 Contact Tracing App: A Zero-Knowledge Proof Approach. IACR Cryptol. ePrint Arch. 2020, 2020, 528. [Google Scholar]
- Ng, P.C.; Spachos, P.; Plataniotis, K.N. COVID-19 and Your Smartphone: BLE-Based Smart Contact Tracing. IEEE Syst. J. 2021, 15, 5367–5378. [Google Scholar] [CrossRef]
- Nguyen, K.A.; Luo, Z.; Watkins, C. Epidemic contact tracing with smartphone sensors. J. Locat. Based Serv. 2020, 14, 92–128. [Google Scholar] [CrossRef]
- Nwawudu, E.; Ikwu, A.; Ikwu, U.; Oparah, N.; Nnorom, S. Proposed Design of a Real-Time COVID-19 Pandemic Contact Tracing Using Mobile Phone. Eur. Sci. J. ESJ 2020, 16, 1–7. [Google Scholar] [CrossRef]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. BMJ 2021, 372, n71. [Google Scholar] [CrossRef] [PubMed]
- Pietrzak, K. Delayed Authentication: Preventing Replay and Relay Attacks in Private Contact Tracing. In International Conference on Cryptology in India; Springer: Cham, Switzerland, 2020; pp. 3–15. [Google Scholar] [CrossRef]
- Polenta, A.; Rignanese, P.; Sernani, P.; Falcionelli, N.; Mekuria, D.; Tomassini, S.; Dragoni, A. An Internet of Things Approach to Contact Tracing—The BubbleBox System. Information 2020, 11, 347. [Google Scholar] [CrossRef]
- Abrich, R.; Chan, G.S. Privacy Preserving Contact Tracing. Dev. Connect. Cybersecur. Lead. Glob. 2020, 12. [Google Scholar]
- Vaudenay, S. Analysis of Dp3t—Between Scylla and Charybdis. 2020. Available online: https://infoscience.epfl.ch/record/277808/files/dp3t-ana.pdf?ln=en (accessed on 1 September 2020).
- Wang, P.; Lin, C.; Obaidat, M.S.; Yu, Z.; Wei, Z.; Zhang, Q. Contact Tracing Incentive for COVID-19 and Other Pandemic Diseases from a Crowdsourcing Perspective. IEEE Internet Things J. 2021, 8, 15863–15874. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Ding, S.; Xiong, L. A New System for Surveillance and Digital Contact Tracing for COVID-19: Spatiotemporal Reporting Over Network and GPS. JMIR mHealth uHealth 2020, 8, e19457. [Google Scholar] [CrossRef] [PubMed]
- Whaiduzzaman; Hossain, R.; Shovon; A.R.; Roy, S.; Laszka, A.; Buyya, R.; Barros, A. A Privacy-Preserving Mobile and Fog Computing Framework to Trace and Prevent COVID-19 Community Transmission. IEEE J. Biomed. Health Inform. 2020, 24, 3564–3575. [Google Scholar] [CrossRef]
- Willem, L.; Van Hoang, T.; Funk, S.; Coletti, P.; Beutels, P.; Hens, N. SOCRATES: An online tool leveraging a social contact data sharing initiative to assess mitigation strategies for COVID-19. BMC Res. Notes 2020, 13, 293. [Google Scholar] [CrossRef]
- Yap, K.Y.-L.; Xie, Q. Personalizing symptom monitoring and contact tracing efforts through a COVID-19 web-app. Infect. Dis. Poverty 2020, 9, 93. [Google Scholar] [CrossRef]
- Yu, S.-H. PrivyTRAC: Privacy and Security Preserving Contact Tracing System. arXiv 2020, arXiv:abs/2006.08568. [Google Scholar]
- Hernandez-Orallo, E.; Manzoni, P.; Calafate, C.T.; Cano, J.-C. Evaluating How Smartphone Contact Tracing Technology Can Reduce the Spread of Infectious Diseases: The Case of COVID-19. IEEE Access 2020, 8, 99083–99097. [Google Scholar] [CrossRef]
- Jian, S.-W.; Cheng, H.-Y.; Huang, X.-T.; Liu, D.-P. Contact tracing with digital assistance in Taiwan’s COVID-19 outbreak response. Int. J. Infect. Dis. 2020, 101, 348–352. [Google Scholar] [CrossRef] [PubMed]
- Kim, W.; Lee, H.; Chung, Y.D. Safe contact tracing for COVID-19: A method without privacy breach using functional encryption techniques based-on spatio-temporal trajectory data. PLoS ONE 2020, 15, e0242758. [Google Scholar] [CrossRef] [PubMed]
- Nakamoto, I.; Jiang, M.; Zhang, J.; Zhuang, W.; Guo, Y.; Jin, M.-H.; Huang, Y.; Tang, K. Evaluation of the Design and Implementation of a Peer-To-Peer COVID-19 Contact Tracing Mobile App (COCOA) in Japan. JMIR mHealth uHealth 2020, 8, e22098. [Google Scholar] [CrossRef] [PubMed]
- Simmhan, Y.; Rambha, T.; Khochare, A.; Ramesh, S.; Baranawal, A.; George, J.V.; Bhope, R.A.; Namtirtha, A.; Sundararajan, A.; Bhargav, S.S.; et al. GoCoronaGo: Privacy Respecting Contact Tracing for COVID-19 Management. J. Indian Inst. Sci. 2020, 100, 623–646. [Google Scholar] [CrossRef]
- Wight, E.; Swift, M.; O’Horo, J.C.; Hainy, C.; Molella, R.; Morrow, A.; Breeher, L. COVID-19 Infections in Health Care Personnel by Source of Exposure and Correlation with Community Incidence. J. Occup. Environ. Med. 2022, 64, 675–678. [Google Scholar] [CrossRef]
- Almagor, J.; Picascia, S. Exploring the effectiveness of a COVID-19 contact tracing app using an agent-based model. Sci. Rep. 2020, 10, 22235. [Google Scholar] [CrossRef]
- Park, Y.J.; Choe, Y.J.; Park, O.; Park, S.Y.; Kim, Y.M.; Kim, J.; Kweon, S.; Woo, Y.; Gwack, J.; Kim, S.S.; et al. Contact Tracing during Coronavirus Disease Outbreak, South Korea, 2020. Emerg. Infect. Dis. 2020, 26, 2465–2468. [Google Scholar] [CrossRef]
- Bradford, L.; Aboy, M.; Liddell, K. COVID-19 Contact Tracing Apps: A Stress Test for Privacy, the Gdpr, and Data Protection Regimes. J. Law Biosci. 2020, 7, lsaa034. [Google Scholar] [CrossRef]
- Lanzing, M. Contact tracing apps: An ethical roadmap. Ethic-Inf. Technol. 2020, 23, 87–90. [Google Scholar] [CrossRef]
- Martin, J.; Klapsa, D.; Wilton, T.; Zambon, M.; Bentley, E.; Bujaki, E.; Fritzsche, M.; Mate, R.; Majumdar, M. Tracking SARS-CoV-2 in sewage: Evidence of changes in virus variant predominance during COVID-19 pandemic. Viruses 2020, 12, 1144. [Google Scholar] [CrossRef]
- Russo, L.; Anastassopoulou, C.; Tsakris, A.; Bifulco, G.N.; Campana, E.F.; Toraldo, G.; Siettos, C. Tracing day-zero and forecasting the COVID-19 outbreak in Lombardy, Italy: A compartmental modelling and numerical optimization approach. PLoS ONE 2020, 15, e0240649. [Google Scholar] [CrossRef] [PubMed]
- Xia, Y.; Lee, G. How to Return to Normalcy: Fast and Comprehensive Contact Tracing of COVID-19 through Proximity Sensing Using Mobile Devices. arXiv 2020, arXiv:abs/2004.12576. [Google Scholar]
- Nawaz, M.S.; Fournier-Viger, P.; Shojaee, A.; Fujita, H. Using artificial intelligence techniques for COVID-19 genome analysis. Appl. Intell. 2021, 51, 3086–3103. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.-I.; Celik, S.; Logsdon, B.A.; Lundberg, S.M.; Martins, T.J.; Oehler, V.G.; Estey, E.H.; Miller, C.P.; Chien, S.; Dai, J.; et al. A machine learning approach to integrate big data for precision medicine in acute myeloid leukemia. Nat. Commun. 2018, 9, 42. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rahmatizadeh, S.; Valizadeh-Haghi, S.; Dabbagh, A. The role of Artificial Intelligence in Management of Critical COVID-19 patients. J. Cell. Mol. Anesth. 2020, 5, 16–22. [Google Scholar] [CrossRef]
- Adeboje, O.T.; Gabriel, A.J.; Adetunmbi, A.O. Development of an Audio Steganography System Using Discrete Cosine Transform and Spread Spectrum Techniques. In Proceedings of the Computational Science and Its Applications—ICCSA 2020, Cagliari, Italy, 1–4 July 2020; Springer: Cham, Switzerland, 2020. [Google Scholar]
- Pingley, A.; Yu, W.; Zhang, N.; Fu, X.; Zhao, W. A context-aware scheme for privacy-preserving location-based services. Comput. Networks 2012, 56, 2551–2568. [Google Scholar] [CrossRef]
- Zhao, S.; Lyu, M.R.; King, I. Understanding Human Mobility from Geographical Perspective. In Point-of-Interest Recommendation in Location-Based Social Networks; Zhao, S., Lyu, M.R., King, I., Eds.; Springer: Singapore, 2018; pp. 29–36. [Google Scholar]
- Mazumdar, P.; Patra, B.K.; Babu, K.S.; Lock, R. Hidden location prediction using check-in patterns in location-based social networks. Knowl. Inf. Syst. 2018, 57, 571–601. [Google Scholar] [CrossRef] [Green Version]
- Valverde-Rebaza, J.C.; Roche, M.; Poncelet, P.; de Andrade Lopes, A. The role of location and social strength for friendship prediction in location-based social networks. Inf. Process. Manag. 2018, 54, 475–489. [Google Scholar] [CrossRef] [Green Version]
- Chowdhury, M.A.; Hossain, N.; Kashem, M.A.; Shahid, M.A.; Alam, A. Immune Response in COVID-19: A Review. J. Infect. Public Health 2020, 13, 1619–1629. [Google Scholar] [CrossRef]
- Gabriel, A.J.; Darwsih, A.; Hassanien, A.E. Cyber Security in the Age of COVID-19. In Digital Transformation and Emerging Technologies for Fighting COVID-19 Pandemic: Innovative Approaches; Hassanien, A.E., Darwish, A., Eds.; Springer International Publishing: Cham, Switzerland, 2021. [Google Scholar]
- Li, H.; Zhu, Y.; Niu, Y. Contact Tracing Research: A Literature Review Based on Scientific Collaboration Network. Int. J. Environ. Res. Public Health 2022, 19, 9311. [Google Scholar] [CrossRef]
- Tobore, I.; Li, J.; Yuhang, L.; Al-Handarish, Y.; Kandwal, A.; Nie, Z.; Wang, L. Deep learning intervention for health care challenges: Some biomedical domain considerations. JMIR mHealth and uHealth. 2020, 7, 8. [Google Scholar] [CrossRef] [PubMed]
- Kannan, S.; Subbaram, K.; Ali, S.; Kannan, H. The Role of Artificial Intelligence and Machine Learning Techniques: Race for COVID-19 Vaccine. Arch. Clin. Infect. Dis. 2020, 15, e103232. [Google Scholar] [CrossRef]
- Li, L.; Liu, J.; Cheng, L.; Qiu, S.; Wang, W.; Zhang, X.; Zhang, Z. CreditCoin: A Privacy-Preserving Blockchain-Based Incentive Announcement Network for Communications of Smart Vehicles. IEEE Trans. Intell. Transp. Syst. 2018, 19, 2204–2220. [Google Scholar] [CrossRef]
- Lovelace. Public Attitudes to COVID-19, Technology and Inequality: A Tracker. Available online: https://www.adalovelaceinstitute.org/feature/public-attitudes-covid-19-technology-inequality-tracker/ (accessed on 1 September 2020).
- Ryan, B.J.; Coppola, D.; Canyon, D.V.; Brickhouse, M.; Swienton, R. COVID-19 Community Stabilization and Sustainability Framework: An Integration of the Maslow Hierarchy of Needs and Social Determinants of Health. Disaster Med. Public Health Prep. 2020, 14, 623–629. [Google Scholar] [CrossRef] [Green Version]
- De Montjoye, Y.A.; Ramadorai, T.; Valletti, T.; Walther, A. Privacy, Adoption, and Truthful Reporting: A Simple Theory of Contact Tracing Applications. Econ. Lett. Forthcom. 2020, 198, 109676. [Google Scholar] [CrossRef]
- Shen, H.; Zhou, J.; Cao, Z.; Dong, X.; Choo, K.-K.R. Blockchain-Based Lightweight Certificate Authority for Efficient Privacy-Preserving Location-Based Service in Vehicular Social Networks. IEEE Internet Things J. 2020, 7, 6610–6622. [Google Scholar] [CrossRef]
- Ojagh, S.; Malek, M.R.; Saeedi, S.; Liang, S. A location-based orientation-aware recommender system using IoT smart devices and Social Networks. Future Gener. Comput. Syst. 2020, 108, 97–118. [Google Scholar] [CrossRef]
- Bai, X.; Fang, C.; Zhou, Y.; Bai, S.; Liu, Z.; Xia, L.; Chen, Q.; Xu, Y.; Xia, T.; Gong, S.; et al. Predicting COVID-19 Malignant Progression with Ai Techniques. medRxiv 2020. [Google Scholar] [CrossRef]
- Zhang, J.; Wu, M. Blockchain Use in IoT for Privacy-Preserving Anti-Pandemic Home Quarantine. Electronics 2020, 9, 1746. [Google Scholar] [CrossRef]
- Ye, Q.; Zhou, J.; Wu, H. Using Information Technology to Manage the COVID-19 Pandemic: Development of a Technical Framework Based on Practical Experience in China. JMIR Med. Inform. 2020, 8, e19515. [Google Scholar] [CrossRef]
- Clingan, C.A.; Dittakavi, M.; Rozwadowski, M.; Gilley, K.N.; Cislo, C.R.; Barabas, J.; Sandford, E.; Olesnavich, M.; Flora, C.; Tyler, J.; et al. Monitoring Health Care Workers at Risk for COVID-19 Using Wearable Sensors and Smartphone Technology: Protocol for an Observational mHealth Study. JMIR Res. Protoc. 2021, 10, e29562. [Google Scholar] [CrossRef] [PubMed]
- WHO. Contact Tracing in the Context of COVID-19. Available online: https://apps.who.int/iris/bitstream/handle/10665/332049/WHO-2019-nCoV-Contact_Tracing-2020.1-eng.pdf (accessed on 10 May 2020).
- Song, Y.; Hu, Z.; Leng, X.; Tian, H.; Yang, K.; Ke, X. Friendship influence on mobile behavior of location based social network users. J. Commun. Networks 2015, 17, 126–132. [Google Scholar] [CrossRef]
- Lee, S.M.; Kang, W.S.; Cho, A.-R.; Kim, T.; Park, J.K. Psychological impact of the 2015 MERS outbreak on hospital workers and quarantined hemodialysis patients. Compr. Psychiatry 2018, 87, 123–127. [Google Scholar] [CrossRef] [PubMed]
- Bradford, B.; Hobson, Z.; Kyprianides, A.; Yesberg, J.; Jackson, J.; Posch, K. Policing the Lockdown: Compliance, Enforcement and Procedural Justice. In COVID-19 Special Papers; UCL: London, UK, 2020. [Google Scholar]
- Farah, W.; Breeher, L.; Shah, V.; Wang, Z.; Hainy, C.; Swift, M. Coworkers are more likely than patients to transmit SARS-CoV-2 infection to healthcare personnel. Occup. Environ. Med. 2022, 79, 713–716. [Google Scholar] [CrossRef] [PubMed]
- Mobo, F.D.; Garcia, A.R. Using Automated Contact Tracing System App with QR Code to Monitor and Safeguard Parishioners against COVID-19 at St. Anthony of Padua Parish, Subic, Zambales. Am. Res. J. Comput. Sci. Inf. Technol. 2020, 4, 1–4. [Google Scholar]
- Collins, A. COVID-19 Contact Tracing: Efficacy and Privacy. EPFL. Available online: https://www.epfl.ch/research/domains/irgc/spotlight-on-risk-series/covid-19-contact-tracing-efficacy-and-privacy/ (accessed on 1 August 2020).
- Bilinski, A.; Mostashari, F.; Salomon, J.A. Modeling Contact Tracing Strategies for COVID-19 in the Context of Relaxed Physical Distancing Measures. JAMA Netw. Open 2020, 3, e2019217. [Google Scholar] [CrossRef]
- Hernández-Orallo, E.; Calafate, C.T.; Cano, J.-C.; Manzoni, P. Evaluating the Effectiveness of COVID-19 Bluetooth-Based Smartphone Contact Tracing Applications. Appl. Sci. 2020, 10, 7113. [Google Scholar] [CrossRef]
- Osman, M.; Fenton, N.; McLachlan, S.; Lucas, P.; Dube, K.; Hitman, G.; Kyrimi, L.; Neil, M. The thorny problems of COVID-19 Contact Tracing Apps: The need for a holistic approach. J. Behav. Econ. Policy 2020, 4, 57–61. [Google Scholar]
- Pinter, G.; Felde, I.; Mosavi, A.; Ghamisi, P.; Gloaguen, R. COVID-19 Pandemic Prediction for Hungary; A Hybrid Machine Learning Approach. Mathematics 2020, 8, 890. [Google Scholar] [CrossRef]
- Cheng, H.-Y.; Jian, S.-W.; Liu, D.-P.; Ng, T.-C.; Huang, W.-T.; Lin, H.-H.; The Taiwan COVID-19 Outbreak Investigation Team. Contact Tracing Assessment of COVID-19 Transmission Dynamics in Taiwan and Risk at Different Exposure Periods before and after Symptom Onset. JAMA Intern. Med. 2020, 180, 1156–1163. [Google Scholar] [CrossRef]
- Kleinman, R.A.; Merkel, C. Digital contact tracing for COVID-19. Can. Med Assoc. J. 2020, 192, E653–E656. [Google Scholar] [CrossRef] [PubMed]
- Jenness, S.M.; Willebrand, K.S.; Malik, A.A.; Lopman, B.A.; Omer, S.B. Dynamic Network Strategies for SARS-CoV-2 Control on a Cruise Ship. Epidemics 2021, 37, 100488. [Google Scholar] [CrossRef] [PubMed]
- COVID-19 National Emergency Response Center. Contact Transmission of COVID-19 in South Korea: Novel Investigation Techniques for Tracing Contacts. Osong. Public Health Res. Perspect. 2020, 11, 60–63. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Collado-Borrell, R.; Escudero-Vilaplana, V.; Villanueva-Bueno, C.; Herranz-Alonso, A.; Sanjurjo-Saez, M. Features and Functionalities of Smartphone Apps Related to COVID-19: Systematic Search in App Stores and Content Analysis. J. Med. Internet Res. 2020, 22, e20334. [Google Scholar] [CrossRef] [PubMed]
- Thindwa, D.; Farooq, Y.G.; Shakya, M.; Saha, N.; Tonks, S.; Anokwa, Y.; Gordon, M.A.; Hartung, C.; Meiring, J.E.; Pollard, A.J.; et al. Electronic Data Capture for Large Scale Typhoid Surveillance, Household Contact Tracing, and Health Utilisation Survey: Strategic Typhoid Alliance across Africa and Asia. Wellcome Open Res. 2020, 5, 66. [Google Scholar] [CrossRef]
- Dar, A.B.; Lone, A.H.; Zahoor, S.; Khan, A.A.; Naaz, R. Applicability of Mobile Contact Tracing in Fighting Pandemic (COVID-19): Issues, Challenges and Solutions. Comput. Sci. Rev. 2020, 38, 100307. [Google Scholar] [CrossRef]
- Huang, Z.; Guo, H.; Lee, Y.-M.; Ho, E.C.; Ang, H.; Chow, A. Performance of Digital Contact Tracing Tools for COVID-19 Response in Singapore: Cross-Sectional Study. JMIR mHealth uHealth 2020, 8, e23148. [Google Scholar] [CrossRef]
- Vitak, J.; Zimmer, M. More Than Just Privacy: Using Contextual Integrity to Evaluate the Long-Term Risks from COVID-19 Surveillance Technologies. Soc. Media Soc. 2020, 6, 2056305120948250. [Google Scholar] [CrossRef]
- Nuzzo, A.; Tan, C.O.; Raskar, R.; DeSimone, D.C.; Kapa, S.; Gupta, R. Universal Shelter-in-Place Versus Advanced Automated Contact Tracing and Targeted Isolation: A Case for 21st-Century Technologies for SARS-CoV-2 and Future Pandemics. Mayo Clin. Proc. 2020, 95, 1898–1905. [Google Scholar] [CrossRef]
- Ram, N.; Gray, D. Mass surveillance in the age of COVID-19. J. Law Biosci. 2020, 7, lsaa023. [Google Scholar] [CrossRef]
- Dominguez-Rodriguez, A.; De La Rosa-Gómez, A.; Jiménez, M.J.H.; Arenas-Landgrave, P.; Martínez-Luna, S.C.; Silva, J.A.; Hernández, J.E.G.; Arzola-Sánchez, C.; Guzmán, V.A. A Self-Administered Multicomponent Web-Based Mental Health Intervention for the Mexican Population during the COVID-19 Pandemic: Protocol for a Randomized Controlled Trial. JMIR Res. Protoc. 2020, 9, e23117. [Google Scholar] [CrossRef] [PubMed]
- Kędzior, M. The right to data protection and the COVID-19 pandemic: The European approach. ERA Forum. 2020, 21, 533–543. [Google Scholar] [CrossRef]
- Ojokoh, B.A.; Sarumi, O.A.; Salako, K.V.; Gabriel, A.J.; Taiwo, A.E.; Johnson, O.V.; Adegun, I.P.; Babalola, O.T. Modeling and Predicting the Spread of COVID-19: A Continental Analysis. In Data Science for COVID-19; Kose, U., Gupta, D., de Albuquerque, V.H.C., Khanna, A., Eds.; Academic Press: Cambridge, MA, USA, 2022; pp. 299–317. [Google Scholar]
- Firth, J.A.; Hellewell, J.; Klepac, P.; Kissler, S.; Kucharski, A.J.; Spurgin, L.G.; Jit, M.; Atkins, K.E.; Clifford, S.; Villabona-Arenas, C.J.; et al. Using a real-world network to model localized COVID-19 control strategies. Nat. Med. 2020, 26, 1616–1622. [Google Scholar] [CrossRef] [PubMed]
- Sarumi, O.A.; Aouedi, O.; Muhammad, L.J. Muhammad. Potential of Deep Learning Algorithms in Mitigating the Spread of COVID-19. In Understanding COVID-19: The Role of Computational Intelligence; Nayak, J., Naik, B., Abraham, A., Eds.; Springer International Publishing: Cham, Switzerland, 2022. [Google Scholar]
- Fernández-Caramés, T.; Froiz-Míguez, I.; Fraga-Lamas, P. An IoT and Blockchain Based System for Monitoring and Tracking Real-Time Occupancy for COVID-19 Public Safety. Eng. Proc. 2020, 2, 67. [Google Scholar] [CrossRef]
- Nakamoto, I.; Wang, S.; Guo, Y.; Zhuang, W. A QR Code–Based Contact Tracing Framework for Sustainable Containment of COVID-19: Evaluation of an Approach to Assist the Return to Normal Activity. JMIR mHealth uHealth 2020, 8, e22321. [Google Scholar] [CrossRef] [PubMed]
- Maghdid, H.S.; Ghafoor, K.Z. A Smartphone Enabled Approach to Manage COVID-19 Lockdown and Economic Crisis. SN Comput. Sci. 2020, 1, 271. [Google Scholar] [CrossRef]
- Idrees, S.M.; Nowostawski, M.; Jameel, R. Blockchain-Based Digital Contact Tracing Apps for COVID-19 Pandemic Management: Issues, Challenges, Solutions, and Future Directions. JMIR Med. Inform. 2021, 9, e25245. [Google Scholar] [CrossRef]
- Sharma, S.; Singh, G.; Sharma, R.; Jones, P.; Kraus, S.; Dwivedi, Y.K. Digital Health Innovation: Exploring Adoption of COVID-19 Digital Contact Tracing Apps. IEEE Trans. Eng. Manag. 2020, 1–17. [Google Scholar] [CrossRef]
- Aleta, A.; Martın-Corral, D.; Piontti, A.P.; Ajelli, M.; Litvinova, M.; Chinazzi, M.; Dean, N.E.; Halloran, M.E.; Longini, I.M., Jr.; Merler, S.; et al. Modeling the Impact of Social Distancing, Testing, Contact Tracing and Household Quarantine on Second-Wave Scenarios of the COVID-19 Epidemic. medRxiv 2020. [Google Scholar] [CrossRef]
- Shelby, T.; Schenck, C.; Weeks, B.; Goodwin, J.; Hennein, R.; Zhou, X.; Spiegelman, D.; Grau, L.E.; Niccolai, L.; Bond, M.; et al. Lessons Learned from COVID-19 Contact Tracing during a Public Health Emergency: A Prospective Implementation Study. Front. Public Health 2021, 9, 721952. [Google Scholar] [CrossRef]
- Pandl, K.D.; Thiebes, S.; Schmidt-Kraepelin, M.; Sunyaev, A. How detection ranges and usage stops impact digital contact tracing effectiveness for COVID-19. Sci. Rep. 2021, 11, 9414. [Google Scholar] [CrossRef] [PubMed]
- Grantz, K.H.; Meredith, H.R.; Cummings, D.A.T.; Metcalf, C.J.E.; Grenfell, B.T.; Giles, J.R.; Mehta, S.; Solomon, S.; Labrique, A.; Kishore, N.; et al. The use of mobile phone data to inform analysis of COVID-19 pandemic epidemiology. Nat. Commun. 2020, 11, 4961. [Google Scholar] [CrossRef] [PubMed]
- El-Rashidy, N.; El-Sappagh, S.; Islam, S.; El-Bakry, H.; Abdelrazek, S. End-to-End Deep Learning Framework for Coronavirus (COVID-19) Detection and Monitoring. Electronics 2020, 9, 1439. [Google Scholar] [CrossRef]
- Rahman, T.; Khan, R.T.; Khandaker, M.R.A.; Sellathurai, M.; Salan, S.A. An Automated Contact Tracing Approach for Controlling COVID-19 Spread Based on Geolocation Data from Mobile Cellular Networks. IEEE Access 2020, 8, 213554–213565. [Google Scholar] [CrossRef] [PubMed]
- Thangamani, M.; Ganthimathi, M.; Sridhar, S.R.; Akila, M.; Keerthana, R.; Ramesh, P.S. Detecting Coronavirus Contact Using Internet of Things. Int. J. Pervasive Comput. Commun. 2020, 16, 447–456. [Google Scholar]
- Hoffman, A.S.; Jacobs, B.; van Gastel, B.; Schraffenberger, H.; Sharon, T.; Pas, B. Towards a Seamful Ethics of COVID-19 Contact Tracing Apps? Ethics Inf. Technol. 2020, 23, 105–115. [Google Scholar] [CrossRef]
- Brack, S.; Reichert, L.; Scheuermann, B. Caudht: Decentralized Contact Tracing Using a Dht and Blind Signatures. In Proceedings of the 2020 IEEE 45th Conference on Local Computer Networks (LCN), Sydney, Australia, 16–19 November 2020. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ojokoh, B.A.; Aribisala, B.; Sarumi, O.A.; Gabriel, A.J.; Omisore, O.; Taiwo, A.E.; Igbe, T.; Chukwuocha, U.M.; Yusuf, T.; Afolayan, A.; et al. Contact Tracing Strategies for COVID-19 Prevention and Containment: A Scoping Review. Big Data Cogn. Comput. 2022, 6, 111. https://doi.org/10.3390/bdcc6040111
Ojokoh BA, Aribisala B, Sarumi OA, Gabriel AJ, Omisore O, Taiwo AE, Igbe T, Chukwuocha UM, Yusuf T, Afolayan A, et al. Contact Tracing Strategies for COVID-19 Prevention and Containment: A Scoping Review. Big Data and Cognitive Computing. 2022; 6(4):111. https://doi.org/10.3390/bdcc6040111
Chicago/Turabian StyleOjokoh, Bolanle Adefowoke, Benjamin Aribisala, Oluwafemi A. Sarumi, Arome Junior Gabriel, Olatunji Omisore, Abiola Ezekiel Taiwo, Tobore Igbe, Uchechukwu Madukaku Chukwuocha, Tunde Yusuf, Abimbola Afolayan, and et al. 2022. "Contact Tracing Strategies for COVID-19 Prevention and Containment: A Scoping Review" Big Data and Cognitive Computing 6, no. 4: 111. https://doi.org/10.3390/bdcc6040111
APA StyleOjokoh, B. A., Aribisala, B., Sarumi, O. A., Gabriel, A. J., Omisore, O., Taiwo, A. E., Igbe, T., Chukwuocha, U. M., Yusuf, T., Afolayan, A., Babalola, O., Adebayo, T., & Afolabi, O. (2022). Contact Tracing Strategies for COVID-19 Prevention and Containment: A Scoping Review. Big Data and Cognitive Computing, 6(4), 111. https://doi.org/10.3390/bdcc6040111